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Trajectory Tracking for Unmanned Air Vehicles With
Velocity and Heading Rate Constraints
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Abstract—This paper considers the problem of constrained
nonlinear trajectory tracking control for unmanned air vehicles
(UAVs). We assume that the UAV is equipped with longitudinal and
lateral autopilots which reduces the 12-state model to a six-state
model with altitude, heading, and velocity command inputs. One
of the novel features of our approach is that we explicitly account
for heading rate and velocity input constraints. For a UAV, the
velocity is constrained to lie between two positive constants, and
therefore presents particular challenges for the control design.
We propose a control Lyapunov function (CLF) approach. We
first introduce a CLF for the input constrained case, and then
construct the set of all constrained inputs that are feasible with
respect to this CLF. The control input is then selected from this
“feasible” set. The proposed approach is applied to a simulation
scenario, where the UAV is assigned to transition through several
targets in the presence of multiple dynamic threats.

Index Terms—Control Lyapunov functions, input constraints,
trajectory tracking, unmanned air vehicles.

I. INTRODUCTION

CONTROLLER design for nonlinear systems subject to
input constraints offers both practical significance and

theoretical challenges. Two effective approaches for the design
of nonlinear controllers are control Lyapunov functions (CLFs)
[1], [2] and receding horizon control (RHC)/model predictive
control (MPC), [3], [4]. Both approaches can be extended
to find control laws for nonlinear systems subject to certain
input constraints. In [5] and [6], constrained CLFs are applied
to construct stabilizing universal formulas, respectively, for
systems with control inputs bounded in a unit ball and systems
with a scalar control input that is positive and/or bounded. Input
constraints can also be incorporated into the MPC framework,
which is known as constrained MPC [4]. The issues limiting the
utility of the RHC approach are its computation requirements
and stability concerns.

In this paper, we consider the problem of constrained non-
linear tracking control for small fixed-wing unmanned air vehi-
cles (UAVs). The inherent properties of fixed-wing UAVs im-
pose the input constraints of positive-minimum velocity due
to the stall conditions of the aircraft, bounded maximum ve-
locity due to thrust limitations, and saturated heading rate due
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to roll angle and pitch-rate constraints. Unmanned air vehicles
(UAVs) equipped with low-level altitude-hold, velocity-hold,
and heading-hold autopilots can be modeled by kinematic equa-
tions of motion that are similar to those of nonholonomic mobile
robots. However, existing approaches for mobile robots [7]–[10]
are not directly applicable to this problem since negative veloc-
ities are allowed in these approaches. This paper deals with the
issue of tracking control for UAV kinematic models with phys-
ically motivated heading rate and velocity constraints. We ap-
proach the problem using constrained CLFs.

The first step is to propose a time-varying, constrained CLF
for the kinematic model of the UAV. Following [11], the CLF
is used to define a state-dependent time-varying set of feasible
control values from which different controllers can be instanti-
ated. Selection from this feasible control set guarantees accu-
rate tracking as well as satisfaction of the saturation constraints.
As noted in [11], different control strategies can be derived by
selection from the feasible control set according to some auxil-
iary performance index. This approach introduces a great deal
of flexibility to the tracking control problem. In this papeŗ we
propose an aggressive, i.e., high-gain selection scheme.

The motivation for this selection scheme is computational
simplicity. It is worthwhile to mention that the existing
CLF-based universal formulas introduced in [5], [6] are not
feasible in the UAV case due to its special input constraints, that
is, controls are constrained to lie in a time-varying rectangle.

The salient features of our approach are as follows. First,
under the proposed framework, we allow the reference velocity
and angular velocity to be piecewise continuous while other ap-
proaches to tracking control [9], [10] constrain them to be uni-
formly continuous in order to apply Barbalat’s lemma. Second,
using different selection schemes, our approach can be used to
derive a variety of other trajectory tracking strategies. Finally,
it is computationally simple and can be implemented with a
low-cost low-power microcontroller. To illustrate the effective-
ness of the controller, we apply our approach to a scenario where
the UAV is assigned to transition through several opportunities
in the presence of dynamic hazards. Instead of following simple
paths composed of straight lines and circles [9], [10], the UAV
tracks a trajectory generated dynamically from the trajectory
generator described in [12], which responds to the current, pos-
sibly time-varying, opportunity/hazard scenario.

II. PROBLEM STATEMENT

As shown in Fig. 1, the overall system architecture considered
in this paper consists of five layers [13]: waypoint path planner
(WPP), dynamic trajectory smoother (DTS), trajectory tracker
(TT), longitudinal and lateral autopilots, and the UAV.
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Fig. 1. System architecture.

The WPP generates waypoint paths (straight-line segments)
that change in accordance with the dynamic environment con-
sisting of the location of the UAV, the targets, and the dynami-
cally changing threats. The DTS smoothes through these way-
points and produces a feasible time-parameterized reference tra-
jectory where ( , ) is the reference position, is
the reference heading, and is the reference altitude. The
TT outputs the velocity command , heading command , and
altitude command to the autopilots based on the desired tra-
jectory. The autopilots then use these commands to control the
elevator, , aileron, , rudder , and throttle , of the UAV
[13]. In this paper, we focus on the Trajectory Tracker.

With the UAV equipped with standard autopilots, the re-
sulting UAV/autopilot models are assumed to be first order
for heading and Mach hold, and second order for altitude hold
[14]. Letting , , , and denote the inertial position,
heading angle, velocity, and altitude of the UAV, respectively,
the kinematic equations of motion are given by

(1)

where , , and are the commanded heading angle, ve-
locity, and altitude to the autopilots, and are positive con-
stants associated with the autopilot [14].

Assuming that is large relative to , converges to
quickly relative to the time-scale of the other dynamics. There-
fore, the first four equations in (1) reduce to

(2)

In the remainder of the paper, we assume that the altitude
controller follows the design presented in [15], and focus on
the design of the velocity and heading controller based on (2).
Letting , (2) becomes

(3)

The dynamics of the UAV impose the following input con-
straints

(4)

Note that if , then (3) is the same as the kinematic
model for a mobile robot with similar input constraints.

We will assume that the desired reference trajectory ( , ,
, , ) produced by the DTS satisfies

where and are piecewise continuous and satisfy the con-
straints

(5)

where and are positive control parameters. The inclusion
of in the constraints of the reference trajectory generator,
guarantees that there is sufficient control authority to track the
trajectory. We will see that as approach zero, the feasible con-
trol set vanishes. The control objective is to find feasible control
inputs and such that
as .

Transforming the tracking errors expressed in the inertial
frame to the UAV frame, the error coordinates can be denoted
as [16]

(6)

Accordingly, the tracking-error model can be represented as

(7)

Following [10], (7) can be simplified as

(8)

where

(9)

and and .
The input constraints under the transformation become

(10)

where , , ,

and are time-varying.
Obviously, (6) and (9) are invertible transformations,

which means that is equiv-
alent to , or in other words

. Therefore, the original tracking
control objective is converted to a stabilization objective. That
is, our goal is to find feasible control inputs and to
stabilize , , and .
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Note from (8) that when both and go to zero, be-
comes uncontrollable. To avoid this situation we introduce an-
other change of variables. Let , where

and . Accordingly,
. Obviously, is equivalent to

. Therefore, it is sufficient to find con-
trol inputs and to stabilize , , and . With the same
input constraints (10), (8) can be rewritten as

(11)

where

and

III. CLF FOR TRACKING CONTROL WITH SATURATION

CONSTRAINTS

In this section, we find a valid CLF for UAV trajectory
tracking with input constraints. Consider the following class of
affine nonlinear time-varying systems

(12)

where , , and and
are locally Lipschitz in and piecewise

continuous in .
Definition 1: (See [1]) A continuously differentiable func-

tion is a control Lyapunov function (CLF)
for system (12) with input constraints if it is posi-
tive–definite, decrescent, radially unbounded in , and satisfies

(13)

and where is a continuous positive–defi-
nite function.

In order to find a CLF with bounded input constraints, we
prefer the partial derivative of to be bounded. Accordingly,
we have the following lemma.

Lemma 2: If , then is continu-
ously differentiable, radially unbounded, positive–definite, and

.
Proof: Trivial.

Lemma 2 will be used to construct a CLF for system (11). The
following lemma defines a continuous positive–definite func-
tion that will be used in the construction of the CLF.

Lemma 3: Let

(14)

where . If , , and
, then is continuous and pos-

itive–definite.
Proof: Since is a composition of continuous functions,

it is continuous. The first term in (14) is clearly positive and zero
if and only if . The second term in (14) is nonnegative if

. But since

(15)

the second term is positive and zero if and only if . Since

(16)

the third term in (14) is positive and zero if and only if .
The following theorem defines a valid CLF for UAV trajec-

tory tracking with input constraints.
Theorem 4: The function

satisfies (that is, is
a CLF for system (11) with input constraints (10)), if is
given by Lemma 3, , and

where

(17)

(18)

(19)
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Fig. 2. The feasible control set F(t; x) at some time t = t̂.

and

(20)

(21)

Proof: See Appendix I.
It is straightforward to show that and in (20) and (21)

are bounded as approaches both 0 and . Therefore,
and are finite and can be found by standard numerical

methods.
Theorem 4 demonstrates that is a valid CLF for system

(11) under saturation constraints (10). Note from the proof in
Appendix I that a very conservative upper bound is found for

, which can be much smaller in practice.

IV. NONLINEAR TRACKING CONTROL BASED ON CLF

With the CLF given in Theorem 4, our goal in this section is
to find a family of feasible tracking control laws based on this
CLF.

Define the feasible control set as

where is given in Theorem 4 and is given in Lemma 3.
Note that the fact that is a constrained CLF for system (11)
guarantees that is nonempty for any and .

Fig. 2 shows the feasible control set at some time . The
line denoted by sepa-
rates the 2-D control space into two halves, where the half plane

(the entire right plane in
Fig. 2) represents the unconstrained stabilizing control set. The
input constraints (10) produce a time-varying rectangle in the

plane. The shaded area represents the stabilizing con-
trols which also satisfy input constraints (10), that is, the feasible
control set .

We have the following theorem.
Theorem 5: If the time-varying feedback control law

satisfies

1) ,
2) , ,
3) is locally Lipschitz in and piecewise continuous

in , and ,
then this control solves the tracking problem with input con-
straints, that is, as .

Proof: See [11].
There are an infinite number of possibilities for selecting a

feedback strategy that satisfies Theorem 5. In this paper we will
investigate the performance of an aggressive selection scheme
that chooses the maximum allowable and outside of a
region close to the origin. This scheme can be interpreted as a
high-gain scheme with saturation. Define the saturation function
as

where it is assumed that .
Lemma 6: If

(22)

(23)

where and and and are defined in
Appendix II, then satisfies the conditions
of Theorem 5.

Proof: See Appendix II.
In Lemma 6, we used a simple control law that stays in the

feasible control set. Other continuous saturation functions like
atan, tanh are also possible as long as they stay in the feasible
control set. In the case of and being uniformly continuous,
it is also possible to use geometrical strategies to find feasible
control laws (e.g., choose the geometrical center of the feasible
control set as feasible controls).

Note that the commanded velocity and heading rate to the
autopilots are defined as and

.
Physically, there may exist perturbation terms in system (11)

due to uncertainties and external disturbances. We address the
issue of uncertainties and disturbances under the input-to-state
(ISS) framework [17].

Consider the system

(24)

which introduces a perturbation term to the nominal
system (12).

Definition 7: [18] A continuously differentiable function
is an ISS-CLF for system (24) if it is positive–def-

inite, decrescent, radially unbounded in and there exist class
functions and such that
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Given in (14), there exists a class function such
that , ([19], Lemma 3.5).

Lemma 8: Let and
. If , where , then

is also an ISS-CLF with input constraints (10) for system

(25)

where is the perturbation term to the nominal system (11).
Proof: Note that

, where ,
, and .

It can be seen that

Note that in the last inequality is also a class function
of and is well defined since .

Note that here is a class function instead of a class
function, which in turn imposes constraints for . This

can be explained from the constrained input perspective. In the
case of , the derivative of the CLF cannot approach
as the tracking errors approach even with maximum control
authority due to the saturated controls. As a result, can
only be a class function given the input constraints. Also note
that with control inputs given by (22) and (23) is an ISS-
Lyapunov function under the assumptions of Lemma 8.

It is obvious that the commanded control and rely on
the state measurement , , and . Due to measurement noise,
there exist input uncertainties for . Equivalently, we
may consider input uncertainties for in system (11).
We denote the actual control input to system (11) as

, where and represent the uncertain-
ties. Due to saturation constraints, we know that
and .

We have the following lemma considering input uncertain-
ties.

Lemma 9: Let and
. If , where ,

then is an ISS-Lyapunov function for system (11) with
control inputs given by (22) and (23) and .

Proof: Noting that

where , and
, the result

then directly follows Lemma 8.
One advantage of the CLF-based approach used in this paper

is that it only requires and to be piecewise continuous
instead of being uniformly continuous, which results in wider

TABLE I
PARAMETER VALUES USED IN SIMULATION

potential applications than other approaches which require uni-
form continuity. The other advantage is that it provides the pos-
sibility to use other advanced strategies to choose feasible con-
trols from . For example, at each time , a feasible con-
trol may be generated from while optimizing some per-
formance index function or minimizing some cost function at
the same time. This may introduce more flexibility and benefits
to the tracking control problem than specifying a fixed control
law in advance. In addition, it is also possible to propose a sub-
optimal controller from based on the combination of
model predictive techniques and the tracking CLF.

Although the approach in this paper is designed specifically
for system (3), the design strategy can be applied more gener-
ally. If a constrained control Lyapunov function (CLF) can be
found for a system with polytopic input constraints, the feasible
control set that defines all the stabilizing controls with respect
to the CLF satisfying the input constraints can be specified ac-
cordingly. Ref. [11] provides a complete parametrization of the
unconstrained stabilizing controls with respect to a certain CLF.
Following this idea, a direct parametrization of the feasible con-
trol set or selection from the feasible control set is applicable,
e.g., finding the geometric mean of the feasible control set or a
parametrization based on the vertices of the feasible control set
(a polygon in this case).

V. SIMULATION RESULTS

In this section, we simulate a scenario where a UAV is as-
signed to transition through several known targets in the pres-
ence of dynamic threats. The parameters used in the simulation
are given in Table I, which are the parameters for a three foot
wingspan UAV used at Brigham Young University, Provo, UT.
The simulation results in this section are based on a full six-DOF
twelve-state model. Note that the value for is much lower than
the theoretical lower bound defined in Theorem 4. However, as
we will see in the following, the saturation controller works well
using this value, which implies the robustness of the controller
to parameter variations.

Fig. 3 shows the reference trajectory generated by the
dynamic trajectory smoother described in [12] and the actual
trajectories generated by the saturation controller proposed
in Lemma 6, and a controller based on the state-dependent
Riccati equation (SDRE) approach [20], respectively. We
note that the SDRE controller has been saturated to satisfy
the input constraints. The dots denote threat locations to be
avoided. Each trajectory at is denoted by a circle while
each trajectory at is denoted by a square. Also each
trajectory at is denoted by a plus symbol.
The trajectory tracking errors are plotted in Fig. 4. Note that
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Fig. 3. The reference and actual trajectories of the six-DOF model.

Fig. 4. The trajectory tracking errors of the six-DOF model.

the performance of the SDRE controller is much worse than
that of the saturation controller since the SDRE design does
not account for input constraints explicitly. In fact, the SDRE
controller is not guaranteed to stay in the feasible control set.
Without input constraints, the SDRE controller can achieve
much better performance at the expense of huge velocity and
heading rate commands. Fig. 5 shows the reference control
inputs and and commanded control inputs and .
Obviously, is only piecewise continuous instead of being
uniformly continuous. The reference control inputs generated
by the trajectory generator satisfy their constraints, respectively.

We can also see that and satisfy their input constraints,
respectively.

Fig. 6 shows the reference trajectory and the actual trajec-
tory of the six-DOF model using the saturation controller under
model uncertainties and disturbances. As in Fig. 3, a circle de-
notes the starting point of a trajectory and a square denotes
the ending point. A diamond symbol denotes the trajectory at

. Fig. 7 shows the corresponding tracking
errors. Here each sensor measurement is corrupted with zero
mean white noise. We can see that the saturation controller is
robust to model uncertainties and disturbances.
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Fig. 5. The reference and commanded control inputs of the six-DOF model.

Fig. 6. The simulation scenario of the six-DOF model with model uncertainties and disturbances.

VI. CONCLUSION

A tracking CLF for a UAV kinematic model with input con-
straints is derived. Based on this CLF, a feasible control set is
formed. This feasible control set facilitates the generation of a
variety of feasible control strategies that not only guarantee ac-
curate tracking but also optimize auxiliary performance func-
tions. A simple saturation control strategy generated from the
feasible control set was used and applied to a nontrivial simula-
tion scenario.

APPENDIX I
PROOF OF THEOREM 4

Obviously is positive–definite, decrescent, and radially un-
bounded, therefore, it remains to show that for all

.
Differentiating and setting , we obtain

the following expression after some algebraic manipulation:

(26)
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Fig. 7. The trajectory tracking errors of the six-DOF model with model uncertainties and disturbances.

where

Three cases will be considered with respect to .

Case 1) .Since , , and
, we know that . Note

that

Since , we get that

where the second inequality comes from
since .

Case 2) . Eq. (26) can be arranged as

We will show that

(27)

which implies that guarantees that
.

Set

.
(28)

For the first term in (27), consider the following
two cases with regard to .

1) .Noting that and

(29)

(30)

(31)
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the first term in (27) can be bounded as fol-
lows:

where the last inequality comes from
, since , and (21)

by letting and .
2) .Noting that

and
we

get that

The second term in (27) can be bounded as fol-
lows:

where the first inequality comes from
according to (15),

and the last inequality comes from ,
, and (20) by letting and

.
The third term in (27) can be bounded as follows:

Combining these expressions gives the desired re-
sult.

Case 3) .In this case we have
. For we have

From (28)

.
(32)

Consider the following two cases with regard to
.

1) .Similar to Case 2, we get that

which is nonpositive since and
.

2) . Similar to Case 2, we get that

which is also nonpositive.
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APPENDIX II

PROOF OF LEMMA 6

Define

(33)

(34)

(35)

where

and , , , and are defined in Theorem 4.
It is easy to see that , , and in (33), (34), and (35)

are bounded as approaches 1. Note that
since . For (33), two cases will be considered
with regard to . In the case of ,

, which is bounded by as ap-
proaches 0. In the case of , as approaches 0, ap-
proaches , which is negative since

and following (15). Thus,
as approaches 0. For (34), as approaches

0, approaches
, which is also negative following (16). Thus, as

approaches 0. For (35), as approaches 0, approaches
, which is also negative. Thus,

as approaches 0. Therefore, , , and are finite and
can be found by straightforward numerical techniques.

Define

(36)

(37)

where

Proof to lemma 6: Obviously satisfies the
first and third conditions in Theorem 5. We will show that
it also stays in the feasible control set , that is,

.

Note that

(38)

where

Four cases will be considered as follows.

Case 1) and . In this case,
the saturation functions are the same as the discon-
tinuous signum like functions in Theorem 4, which
implies that in this case.

Case 2) and . In this case,
we can see that and .
We also know that since

.
Noting that

(39)

(40)

(41)

(42)

where (39) comes from (33) by letting ,
, and , and (41) follows

Young’s Inequality. Therefore,

which is nonpositive since
and .

Case 3) and . In this case,
, and follow the same inequalities (39)

and (40), and .
Note that from the property of and .
If , we can get that .
Thus,

. If , we can get that
. Thus,
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. There-
fore, since .

Case 4) and . In this case,
and follows the same in-

equality (42). It can be seen that
since . We can see that

.
Then following the proof for Theorem 4, we know
that is guaranteed based on the choice
of .

Combining these four cases gives the desired result.
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