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Abstract: Formation control ideas for multiple spacecraft using the virtual structure approach are
presented. If there is no formation feedback from the spacecraft to the virtual structure, the
spacecraft will get out of formation when the virtual structure moves too fast for the spacecraft to
track due to spacecraft control saturation or the total system must sacrifice convergence speed in
order to keep the spacecraft in formation. The spacecraft may also get out of formation when the
system is affected by internal or external disturbances. To overcome these drawbacks, an idea of
introducing formation feedback from the spacecraft to the virtual structure is illustrated in detail.
An application of these ideas to multiple spacecraft interferometers in deep space is given.

1 Introduction

The coordination and control of formations of multiple
vehicles has received significant attention in recent years.
Applications in this area include the coordination of
multiple robots, unmanned air vehicles, satellites, aircraft,
autonomous underwater vehicles, and spacecraft [1–12].
Many different control strategies, schemes, and applications
of multiple vehicle control have been contributed to the
literature. While the applications are different, the funda-
mental approaches to formation control are similar: the
common theme being the coordination of multiple vehicles
in a certain way to accomplish an objective.

In terms of formation control approaches, to name a few,
there are roughly three approaches reported in the literature,
namely leader-following, behavioural, and virtual structure
approaches. In the leader-following approach [1, 12–14],
some agents are designated as leaders while others are
designated as followers. The leaders track predefined
trajectories, and the followers track transformed versions
of the states of their nearest neighbours according to given
schemes. One advantage of the leader-following approach is
that it is easy to understand and implement. Another
advantage is that the formation can still be maintained even
if the leader is perturbed by some disturbances. The
disadvantage is that there is no explicit feedback to the
formation, that is, no explicit feedback from the followers to
the leader in this case. If the follower is perturbed, the
formation cannot be maintained. Another disadvantage is
that the leader is a single point of failure for the formation.

In the behavioural approach [2, 15–17], the control
action for each agent is defined by a weighted average of the
control corresponding to each desired behaviour for the
agent. Possible behaviours include collision avoidance,
obstacle avoidance, goal seeking, formation keeping, and so
on. One advantage of the behavioural approach is that it is

natural to derive control strategies when vehicles have
multiple competing objectives. Another advantage is that
explicit feedback is included through communication
between neighbours. One disadvantage of the behavioural
approach is that the group behaviour cannot be explicitly
defined. Another disadvantage is that it is hard to analyse the
behavioural approach mathematically and guarantee its
group stability.

In the virtual structure approach [3, 18], the entire desired
formation is treated as a single entity. The desired states for
each vehicle in the formation can be specified by the place-
holders in the virtual structure. Similar ideas include the
perceptive reference frame in [8], the virtual leader in [19],
and the formation reference point in [20]. One advantage of
the virtual structure approach is that it is easy to prescribe
the coordinated behaviour for the group. Another advantage
is that the virtual structure can maintain the formation very
well during the manoeuvres in the sense that the virtual
structure can evolve as a whole in a given direction with
some given orientation and maintain a rigid geometric
relationship among multiple vehicles. The disadvantage is
that requiring the formation to act as a virtual structure
limits the class of potential applications of this approach.
For example, when the formation shape is time-varying or
needs to be reconfigured frequently, the virtual structure
approach may not be the best option.

In the case of the application of synthesising multiple
spacecraft interferometers [21] in deep space, it is desirable
to have a constellation of spacecraft act as a single rigid
body in order to image stars in deep space, that is, a certain
tight formation shape needs to be preserved in this case. As a
result, it is suitable to choose the virtual structure approach
to accomplish formation manoeuvres.

In general, there is a dilemma when there is no feedback
applied from the spacecraft to the virtual structure. On the
one hand, if the virtual structure evolves too fast, the
spacecraft cannot track their desired trajectories accurately
since their control force or torque may reach saturation
limits. As a result, the spacecraft will get out of formation.
On the other hand, the virtual structure might be slowed
down sufficiently to allow the spacecraft to track their
trajectories accurately. However, this results in unreason-
ably slow formation dynamics. Also, when performing
formation manoeuvres, the total system is often disturbed by
internal or external factors. For example, some spacecraft
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may disintegrate from the formation due to external
disturbances in deep space or may even fail for a period
of time due to mechanical or electrical malfunctions. If there
is no feedback from spacecraft to the formation, the
disintegrated or failed spacecraft will be left behind while
the other spacecraft still keep moving towards their final
goals, and the entire system cannot adjust to maintain
formation. In the remainder of the paper, we refer to the
group feedback from vehicles to the formation as formation
feedback. Formation feedback from spacecraft to the virtual
structure provides a good compromise between formation
keeping and convergence speed as well as improved group
stability and robustness.

The idea of formation feedback is brought to the literature
recently in [6, 18, 22, 23]. In [18], the authors introduce a
coordination architecture for spacecraft formation control
which subsumes leader-following, behavioural, and virtual
structure approaches to the multi-agent coordination
problem. Using this architecture, including formation
feedback is possible but it is not implemented in the paper.
In [22], formation feedback is used for the coordinated
control problem for multiple robots. In the case of spacecraft
control, system dynamics are more complicated than the
double integrator dynamics applied in [22]. In [6], a
Lyapunov formation function is used to define a formation
error for a class of robots (double integrator dynamics) so
that a constrained motion control problem of multiple
systems is converted into a stabilisation problem for one
single system. In [6], error feedback is incorporated to the
virtual leader through parameterised trajectories. The
strength of this approach is that the formation error is
guaranteed to be below a given upperbound under certain
assumptions. However, this approach results in a steady-
state formation error during the manoeuvre, that is, the
formation error will always reach an equilibrium value
which is close to the given upperbound even if the initial
formation error is zero. As a result, formation is only
maintained within a certain bound during the manoeuvre,
which may not be proper for the requirement of precise
formation maintenance.

This paper is aimed as a further development of [18] and
[22]. We will propose a different approach of formation
feedback from [6] and apply this idea to the more
complicated spacecraft interferometry problem so that
formation keeping is guaranteed throughout the manoeuvre
and the total system robustness is improved. The main
features of our approach are as follows. Firstly, the approach
is easy to implement. The formation feedback is included
through a non-linear gain matrix in the virtual structure
dynamics. The components of this matrix can be con-
veniently tuned to satisfy different design specifications.
Secondly, the approach guarantees both formation main-
tenance and formation speed. Using coupled dynamics
between each spacecraft and the virtual structure, the system
will achieve a reasonable speed based on current formation
maintenance level. During the manoeuvre, tracking error for
each spacecraft will approach zero, that is, spacecraft will
preserve the desired formation shape precisely. When the
formation is maintained accurately, the formation can
evolve at a reasonably fast speed and keep this speed.
Thirdly, detailed simulation analyses are provided to
consider the cases of control saturation and disturbances.
The system with formation feedback preserves the for-
mation much better than the system without formation
feedback. It is worthwhile to mention that the same
idea proposed in this paper is also applicable to the leader-
following approach except that in that case, the formation
feedback is introduced from the followers to the leader.

2 Background and problem statement

In the virtual structure approach, we treat the entire desired
formation as a single entity with place-holders correspond-
ing to each spacecraft embedded in the virtual structure to
represent the desired position and attitude for each space-
craft. As the virtual structure, that is, the entire desired
formation as a whole evolves in time, the place-holders trace
out trajectories for each corresponding spacecraft to track.

The coordinate frame geometry is shown in Fig. 1.
Reference frame CO is an inertial frame. Reference frame Ci

is embedded in the ith spacecraft as a body frame to
represent its configuration. Reference frame Cd

i is
embedded in the ith place-holder to represent the ith
spacecraft’s desired configuration. The desired formation
shape can then be defined by the relative geometric
configuration among place-holders, that is, among desired

reference frame Cd
i : Since the desired formation can be

thought of as a single entity with inertial position rF;
velocity vF ; unit quaternion attitude qF; and angular
velocity vF ; we define the formation reference frame CF

located at rF ; which is also the virtual centre of the virtual
structure, with an orientation given by qF with respect to the
inertial frame CO: Each spacecraft can be represented either
by position ri; velocity vi; unit quaternion attitude qi; and
angular velocity vi with respect to the inertial frame CO or,
by riF ; viF; qiF; and viF with respect to the formation
reference frame CF: Correspondingly, a superscript ‘d’
above a vector represents the desired state for each
spacecraft, that is, the actual state for each corresponding
place-holder. For simplicity, we use the same symbol to
denote a vector and its corresponding coordinate frame
representation in the remainder of the paper.

In this paper, the control is derived in four steps: firstly,
the dynamics of the virtual structure are defined; secondly,
the motion of the virtual structure is translated into the
desired motion for each spacecraft; thirdly, tracking controls
for each spacecraft are derived; and finally, formation
feedback is introduced from each spacecraft to the virtual
structure.

In the sequel, we will first introduce spacecraft dynamics.
Then, the desired states for each spacecraft will be derived
from the states of the virtual structure. Finally, we define the
dynamics of the virtual structure.

2.1 Spacecraft dynamics

The translational dynamics for the ith spacecraft are

_rri ¼ vi

Mi _vvi ¼ f i

ð1Þ

where Mi is the mass of the ith spacecraft, and f i is the
control force.

Fig. 1 Coordinate frame geometry
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The rotational dynamics for the ith spacecraft [24] are

_~qq~qqi ¼ �
1

2
vi �~qqi þ

1

2
�qqivi

_�qq�qqi ¼ �
1

2
vi �~qqi

Ji _vv i ¼ �vi � Jivi þ ti ð2Þ
where ~qqi is the vector part of the quaternion qi; �qqi is the
scalar part of the quaternion qi (see Appendix), Ji is the
moment of inertia of the ith spacecraft, and ti is the control
torque on the ith spacecraft.

2.2 Desired states for each spacecraft

The desired states for the ith spacecraft in terms of its
corresponding coordinate representation are given by

rd
i ðtÞ ¼ rFðtÞ þ COFðtÞrd

iFðtÞ

vd
i ðtÞ ¼ vFðtÞ þ COFðtÞvd

iFðtÞ

þvFðtÞ � ðCOFðtÞrd
iFðtÞÞ

qd
i ðtÞ ¼ qFðtÞqd

iFðtÞ

vd
i ðtÞ ¼ vFðtÞ þ COFðtÞvd

iFðtÞ

ð3Þ

where COFðtÞ is the rotation matrix of the frame CO with
respect to CF: COF is given as

COF ¼ CT
FO ¼ ð2�qq2

F � 1ÞIþ 2~qqF~qq
T
F þ 2�qqF~qq

�
F

Generally, all parameters in (3) can vary with time. Among
them, rF and vF correspond to the translational motion of
the virtual structure, qF ; vF ; and COF correspond to the
rotational motion of the virtual structure, and rd

iF; vd
iF; qd

iF;
and vd

iF correspond to the desired formation shape.
Therefore, if rd

iF ; qd
iF ; vd

iF; and vd
iF vary with time, the

desired formation shape is time-varying. However, if we are
concerned with formation manoeuvres that preserve the
overall formation shape, that is, each place-holder needs to
preserve fixed relative position and orientation in the virtual
structure, rd

iF and vd
iF should be constant and qd

iF and vd
iF

should be zero. The requirement to preserve fixed relative
position between each place-holder in the virtual structure
can be loosened to make the formation shape more flexible
by allowing the place-holders to expand or contract while
still keeping fixed relative orientation, that is, the overall
formation shape is allowed to be expanded or contracted.
In this paper, we focus on formation manoeuvres that have
those properties. Of course, the approach hereafter can
easily be extended to the general case.

Group manoeuvres with the above properties can be
achieved as a succession of elementary formation
manoeuvres. Therefore, we will redefine the desired states
for each spacecraft via elementary formation manoeuvres.
The elementary formation manoeuvres include translations,
rotations, and expansions=contractions: Let jFðtÞ ¼ ½�1ðtÞ;
�2ðtÞ; �3ðtÞ�T with its components representing the
expansion=contraction rates along each CF axis. An
expansion=contraction matrix is defined as JðtÞ ¼
diagðjFðtÞÞ; which is a diagonal matrix. The coordination
vector can then be defined as XFðtÞ ¼ ½rT

F ; v
T
F; q

T
F ;v

T
F ; j

T
F;

_jjT
F�T ; which represents the states of the virtual structure with

respect to the inertial frame CO:
To realise elementary formation manoeuvres, we can

vary rF and vF to translate the formation, vary qF (qF can be
transformed to the rotation matrix COF:) and vF to rotate
the formation, and vary jF and _jjF to expand/contract the
formation. Arbitrary formation manoeuvres can be realised

by varying rFðtÞ; vFðtÞ; qFðtÞ; vFðtÞ; jðtÞ; and _jjðtÞ
simultaneously. As a result, the desired states for the ith
spacecraft are redefined as

rd
i ðtÞ ¼ rFðtÞ þ COFðtÞJðtÞrd

iF

vd
i ðtÞ ¼ vFðtÞ þ COFðtÞ _JJðtÞrd

iF

þvFðtÞ � ðCOFðtÞJðtÞrd
iFÞ

qd
i ðtÞ ¼ qFðtÞqd

iF

vd
i ðtÞ ¼ vFðtÞ

ð4Þ

Obviously, assuming that rd
iF and qd

iF are given in advance of
the desired formation shape specifications, the desired states
for each spacecraft are determined by the states of the
virtual structure, that is, the coordination vector XF:

The derivatives of the desired states are given by

_rrd
i ðtÞ ¼ _rrFðtÞ þvF � ðCOFðtÞJðtÞrd

iFÞ þ COFðtÞ _JJðtÞrd
iF

_vvd
i ðtÞ ¼ _vvFðtÞ þ 2vF � ðCOFðtÞ _JJðtÞrd

iFÞ

þ COFðtÞ €JJðtÞrd
iF þ _vvFðtÞ � ðCOFðtÞJðtÞrd

iFÞ

_qqd
i ðtÞ ¼ _qqFðtÞqd

iF

_vvd
i ðtÞ ¼ _vvFðtÞ

ð5Þ
From (4), we can see that if the velocity of the formation is
zero, that is, vFðtÞ ¼ 0; vFðtÞ ¼ 0; and _jjðtÞ ¼ 0; then the
desired velocity of each spacecraft is zero, that is, vd

i ðtÞ ¼ 0
and vd

i ðtÞ ¼ 0: Also, from (4) and (5), if both the velocity
and acceleration of the formation are zero, that is, vFðtÞ ¼ 0;
vFðtÞ ¼ 0; _jjðtÞ ¼ 0; _vvFðtÞ ¼ 0; _vvFðtÞ ¼ 0; and €jjðtÞ ¼ 0;
then both the desired velocity and acceleration of each
spacecraft are zero, that is, vd

i ðtÞ ¼ 0; vd
i ðtÞ ¼ 0; _vvd

i ðtÞ ¼ 0;
and _vvd

i ðtÞ ¼ 0:

2.3 Dynamics of the virtual structure

Since the virtual structure is thought of as a rigid body, we
assume that its actual and desired states, that is, the
coordination vector XF and desired coordination vector Xd

F ;
both satisfy the following rigid body dynamics

_rrF

MF _vvF
_~qq~qqF

_�qq�qqF

JF _vvF
_jjF
€jjF

0
BBBBBBBB@

1
CCCCCCCCA
¼

vF

fF

� 1
2
vF �~qqF þ 1

2
�qqFvF

� 1
2
vF �~qqF

�vF � JFvF þ tF
_jjF

nF

0
BBBBBBBB@

1
CCCCCCCCA

ð6Þ

where MF and JF are the virtual mass and virtual inertia of
the virtual structure, fF and tF are the virtual force and
virtual torque exerted on the virtual structure, and nF is the
virtual control effort used to expand or contract the
formation.

Unlike spacecraft dynamics, the virtual structure
dynamics is implemented on-board. As a result, there are
no physical saturation constraints for its control effort. Also,
the virtual mass and inertia can be chosen arbitrarily based
on the design requirements. Intuitively, controls with fast
performance and high cost may be implemented easily.
However, as we will see later, the control law design for the
virtual structure affects system formation maintenance
significantly.
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3 Formation control strategies with formation
feedback

In this section we propose control strategies for both virtual
structure dynamics and spacecraft dynamics. Formation
feedback will be introduced from the spacecraft to the
virtual structure.

3.1 Main results

Let XiðtÞ ¼ ½rT
i ; v

T
i ; q

T
i ;v

T
i �T and Xd

i ðtÞ ¼ ½rd
i

T
; vd

i
T
; qd

i
T
;

vd
i

T �T represent the states and desired states for the ith
spacecraft with respect to the inertial frame CO respectively.

Accordingly, let X ¼ ½XT
1 ;X

T
2 ; � � � ;XT

N �T and Xd ¼ ½XdT

1 ;

XdT

2 ; � � � ;XdT

N �T ; where N is the number of spacecraft in the
formation. Let XFðtÞ be the coordination vector defined in

Section 2 and Xd
F ¼ ½rdT

F ; v
dT

F ; q
dT

F ;v
dT

F ; j
dT

F ; _jj dT

F �T be the

desired constant coordination vector. Unlike rd
i and qd

i ; rd
F;

qd
F ; and j d

F are constant, which implies that vd
F ¼ vd

F ¼
_jj d

F ¼ 0: Hereafter, we use a tilde above a vector to represent
the error state between the actual state and the desired state,
e.g. ~rri ¼ ri � rd

i ; ~qqF ¼ qF � qd
F; and so on.

The aim of the formation manoeuvre is to drive XFðtÞ
to Xd

F while guaranteeing that XiðtÞ tracks Xd
i ðtÞ:

Accordingly, we have the following definition.

Definition 3.1: A formation manoeuvre is asymptotically
achieved if XFðtÞ ! Xd

F and XiðtÞ ! Xd
i ðtÞ as t!1:

A centralised scheme will be used to illustrate the idea
of introducing formation feedback from spacecraft to the
virtual structure since only a few spacecraft are involved
in the application example. In the case of decentralised
control implementation of the virtual structure approach,
a similar idea can also be applied. Therefore, one
strategy is that the coordination vector XF can be
implemented at a centralised location (e.g. one of the
spacecraft) and broadcast to each spacecraft. Accord-
ingly, each spacecraft can derive its desired states Xd

i ðtÞ
from XF following (4). Another strategy is that the
desired states for each spacecraft can be implemented at
the same location as the coordination vector, and then
the desired states can be transmitted to each correspond-
ing spacecraft respectively. Obviously the second strategy
introduces more computation and communication require-
ment to the centralised location than the first one but it is
suitable for time-varying formation shape. In this paper,
we apply the first strategy.

The following lemma, known as the Rayleigh-Ritz
Theorem will be used to analyse our result.

Lemma 3.1: If A 2 Rn�n is symmetric, and lðAÞ and �llðAÞ
are the smallest and largest eigenvalue of A respectively,
then

lðAÞxT x � xT Ax � �llðAÞxT x; 8x 2 Rn

lðAÞ ¼ min
xT Ax

xT x
; 8x 6¼ 0

�llðAÞ ¼ max
xT Ax

xTx
; 8x 6¼ 0

Proof: see [25]. A

We have the following theorem to guarantee that a
formation manoeuvre is asymptotically achieved with
formation feedback.

Theorem 3.2: Let

_rrF

_vvF
_~qq~qqF

_�qq�qqF

JF _vvF
_jjF
€jjF

0
BBBBBBBB@

1
CCCCCCCCA
¼

vF

�KrðrF � rd
FÞ � GvðX;XdÞvF

�kp rF � rd
F

�� ��2
vF=kvFk2

� 1

2
vF �~qqF þ

1

2
�qqFvF

� 1

2
vF �~qqF

�vF � JFvF þ kq~qqeF � GvðX;XdÞvF

�ka qF � qd
F

�� ��2
vF=kvFk2

_jjF

�K�ðjF � j d
FÞ � G _��ðX;XdÞ_jjF

�ke jF � j d
F

�� ��2 _jjF=k_jjFk2

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

ð7Þ
and

_rri

_vvi
_~qq~qqi

_�qq�qqi

Ji _vv i

0
BBBB@

1
CCCCA ¼

vi

_vvd
i �Kri ri � rd

i

� �
�Kvi vi � vd

i

� �
� 1

2
vi �~qqi þ

1

2
�qqivi

� 1

2
vi �~qqi

�vi � Jivi þ Ji _vv
d
i þ

1

2
vi � Ji vi þvd

i

� �
þkqi~qqei �Koi vi �vd

i

� �

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

:

ð8Þ
If Kr; K�; Kri; Kvi; and Koi are symmetric positive
definite matrices, kp; ka; and ke are non-negative scalars,
kq and kqi are positive scalars, GvðX;XdÞ; GoðX;XdÞ; and

G _��ðX;XdÞ are symmetric positive definite matrices with
entries continuously dependent on X and Xd; and qeF ¼
q�Fqd

F and qei ¼ q�i qd
i ; then XFðtÞ � Xd

F

�� ��! 0 and

XiðtÞ � Xd
i ðtÞ

�� ��! 0 as t!1:

Proof: With formation feedback, the spacecraft dynamics
(8) and the virtual structure dynamics (7) are coupled in the
sense that each spacecraft needs the virtual structure states
XF to specify its desired states Xd

i according to (4) while the
virtual structure needs spacecraft states X to include
formation feedback. The spacecraft control law (8) can be
thought of as _~XX~XXi ¼ f ð ~XXi;XFÞ and the virtual structure
control law (7) can be thought of as _XXF ¼ gð ~XX;XFÞ; where
f ð�; �Þ and gð�; �Þ can be specified from each control law.
Therefore, the coupled dynamics are time-invariant with
states ~XX and XF ; which means that LaSalle’s invariance
principle is valid.

Consider a Lyapunov function candidate

V ¼ VF þ
XN

i¼1

Vi

where

VF ¼
1

2
~rrT

FKF ~rrF þ
1

2
kvFk2 þ kqk ~qqFk2

þ 1

2
vT

FJFvF þ
1

2
~jjT

FK�
~jjF þ

1

2
k_jjk2

and

Vi ¼
1

2
~rrT

i Kri ~rri þ
1

2
k~vvik2 þ kqik ~qiqik2 þ 1

2
~vvT

i Ji ~vvi:
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After some manipulation, the derivative of vF is given by:

_VVF ¼ � vT
FGvðX;XdÞvF � kpk~rrFk2

�vT
FGoðX;XdÞvF � kak ~qqFk2

� _jjT
FG _��ðX;XdÞ_jjF � kek~jjFk2 � 0

The third and fourth terms above come from the derivative
of kqk ~qqFj2 þ 1

2
vT

FJFvF; which can be obtained by follow-
ing a similar proof for attitude control in [12].

In the virtual structure approach, the desired states for
each spacecraft also satisfy the translational dynamics (1)
and rotational dynamics (2) since the desired states for each
spacecraft are also the states for each corresponding place-
holder in the virtual structure. Based on this fact, after some
manipulation, the derivative of Vi is given by:

_VVi ¼ �~vvT
i Kvi ~vvi � ~vvT

i Koi ~vvi � 0

Similarly, the second term above comes from the derivative
of kqk ~qqik2 þ 1

2
vT

i Jivi; which can also be obtained by
following a similar proof for attitude control in [12].

Thus _VV ¼ _VVF þ
PN

i¼1
_VVi � 0: Let V ¼ fð ~XX;XFÞj _VV ¼ 0g;

and let �VV be the largest invariant set in V: On �VV; _VV � 0;
which implies that _VVF � 0 and _VVi � 0: Two cases will be
considered as follows:

Case 1: kp; ka; ke>0:

From _VVF � 0; we know that ~rrF ¼ 0; vF ¼ 0; ~qqF ¼ 0;
vF ¼ 0; ~jjF ¼ 0; and _jjF ¼ 0:

Case 2: kp ¼ ka ¼ ke ¼ 0:

From _VVF � 0; we know that vF ¼ 0; vF ¼ 0; and _jjF ¼
0: From

PN
i¼1

_VVi � 0 and _VVF � 0; we know that k ~XXk and

kXFk are bounded, which implies that each entry in Gv

ðX;XdÞ; GoðX;XdÞ; and G _��ðX;XdÞ are also bounded.
Then, from the second, fourth, and sixth equation in (7),
we know that rF ¼ rd

F; ~qqeF ¼ 0; which implies that qF ¼
qd

F; and jF ¼ j d
F :

Accordingly, from _VVi � 0; we know that ~vvi ¼ 0 and ~vvi ¼
0: Then, from the second and fourth equation in (8), we
know that ~rri ¼ 0 and ~qqei ¼ 0; which implies that qi ¼ qd

i :
Therefore, by LaSalle’s invariance principle, kXFðtÞ �

Xd
Fk ! 0 and kXiðtÞ � Xd

i ðtÞk ! 0 asymptotically. A

Note that if we define a translational tracking error as
Eti ¼ 1

2
~rrT

i Kri ~rri þ 1
2
k~vvik2; Eti decreases during the

manoeuvre and ~rrT
i Kri ~rri is bounded by 2Etið0Þ � k~vvik2:

Similarly, if we define a rotational tracking error as Eri ¼
kqik ~qqik2 þ 1

2
~vviJi ~vvi; Eri decreases during the manoeuvre

and k ~qqik2 is bounded by 1
kqi
ðErið0Þ � 1

2
~vviJi ~vviÞ:

Corollary 3.3: If kp; ka; ke>0; then VF converges to zero
exponentially.

Proof: Following Lemma 3.1, it can be shown that:

�vT
FGvðX;XdÞvF � �lðGvðX;XdÞÞkvFk2

�kpk~rrFk2 � �ðkp=�llðKrÞÞ~rrT
FKr ~rrF

�vT
FGoðX;XdÞvF � �ðlðGoðX;XdÞÞ=�llðJFÞÞvT

FJFvF

�_jjT
FG _��ðX;XdÞ_jjF � �lðG _��ðX;XdÞÞk_jjFk2

�kek~jjFk2 � �ðke=�llðKjÞÞ~jjT
FK�

~jjF

Let

a¼ minf2lðGvðX;XdÞÞ;2kp=�llðKrÞ;2lðGoðX;XdÞÞ=�llðJFÞ;
ke=kq;2lðG _��ðX;XdÞÞ;2ke=�llðK�Þg

We know that _VVF ��aVF: Therefore, VF converges to zero
exponentially.

Remark 3.4: Note that from (7), in the case of kp; ka; ke 6¼ 0;
the control force, control torque, and control effort for the
virtual structure may be very large when vF; vF; and _jjF

approach zero. As a result, the global exponential
convergence of VF is only achieved when vF;vF; _jj 6¼ 0:
Those large magnitudes can be mitigated by adding a small
constant d to each denominator in (7). Also note that unlike
spacecraft dynamics, those large magnitudes may not be so
undesirable for the virtual structure since the virtual
structure dynamics are implemented on-board.

From (7), we can see that formation feedback is
introduced from each spacecraft to the virtual structure via
the non-linear gain matrix Gv; Go; and G _��; which depend on
each spacecraft’s actual and desired states. Next, we will
show the design motivation and methodology of the non-
linear and linear gain matrices in (7) and (8).

Define a performance measure as EðX;XdÞ; which is a
non-negative function of X and Xd and is used to measure
formation maintenance. For example, EðX;XdÞ can be
composed of two parts. One part is the spacecraft tracking
error, i.e. ~XXT P ~XX; where P is symmetric positive semi-
definite. The other part is the formation keeping error, i.e.PN

i¼1ð ~XXi � ~XXiþ1ÞT Qð ~XXi � ~XXiþ1Þ; where Q is symmetric
positive semi-definite and i is defined modulo N: Matrix P
and Q can be designed to adjust the relative weights of
translational and rotational formation error based on certain
requirements. Other functions are also feasible. We would
like to design the non-linear gain matrices to meet the
following requirements. When the spacecraft are out of the

desired formation, that is, EðX;XdÞ is large, the virtual
structure will slow down or even stop, allowing the
spacecraft to regain formation. When the spacecraft are
maintaining formation, that is, EðX;XdÞ is small, the virtual
structure will keep moving toward its final goal at a reasona-
ble speed. By this design, the virtual structure will be aimed at
performing reasonably fast formation manoeuvres as well as
preserving tight formation shape during the manoeuvre even
in the case of control saturation, disturbances, and malfunc-
tions. A candidate for such gain matrices can be defined
as G ¼ KþKFEðX;XdÞ2, where K ¼ KT >0 is the gain
matrix which corresponds to the nominal formation speed
when the formation is preserved tightly, and KF ¼ KT

F>0 is
the formation gain matrix which weights the performance
measure EðX;XdÞ: In the case of KF ¼ 0; no formation
feedback is introduced. We will see that formation gain
matrix with larger entries result in better formation
maintenance but slower convergence speed. We can see that:

EðX;XdÞ ! 0) G! K

EðX;XdÞ ! 1 ) G!1

Correspondingly, non-linear gain matrix Gv; Go; and G _�� in
(7) can be defined as

Gv ¼ Kv þKFvEvðX;XdÞ2

Go ¼ Ko þKFoEoðX;XdÞ2

G _�� ¼ K _�� þKF _��E _��ðX;XdÞ2 ð9Þ
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where Kv; Ko; K _��; KFv; KFo; and KF _�� are symmetric
positive definite matrices.

For a second order system s2 þ k1sþ k2 ¼ 0; if we define
rise time tr and damping ratio z; then natural frequency on is
approximately 1:8=tr: Therefore, if we let k2 ¼ o2

n ¼
ð1:8=trÞ2 and k1 ¼ 2zon ¼ 2zð1:8=trÞ; the transient specifi-
cations for the system are satisfied. We can design Kr; kq;K�;
Kri; and kqi according to k2; and design Kv;Ko;K _��;Kvi;Koi

according to k1: For example, Kr and Kv can be defined as
k2I3 and k1I3 respectively, where I3 is a 3� 3 identity matrix.

Different designs for pairs ðKr;GvÞ; ðkq;GoÞ; and ðK�;G _��Þ
can be applied to change the weights of translation, rotation,
and expansion=contraction effects. As a result, non-linear
gains slow down or speed up the virtual structure based on
how far out of the desired formation the spacecraft are.

An illustrative example is shown as follows. Let Kv ¼ I3

and kp ¼ 0 in theorem 3.2. Note that the translational
dynamics of the virtual structure can be rewritten as €~rr~rrF þ
Gv

_~rr~rrF þKr ~rrF ; where ~rrF ¼ rF � rd
F ¼ ½~rrFx; ~rrFy; ~rrFz�T :

Figure 2 shows a plot of ~rrFx for different choices of matrix
Gv: We can see that the dynamics of the virtual structure
evolve more slowly as the elements of Gv are increased to be
sufficiently large. That is, it takes a longer time for the
virtual structure to achieve its desired states. When Gv !
1; the virtual structure will stop evolving.

When Xd
F is specified for the virtual structure, XFðtÞ will

be regulated to Xd
F according to the control law for the

virtual structure with formation feedback. If the formation
moves too fast, EðX;XdÞ will increase. As a result of the
formation feedback, the virtual structure will slow down for
the spacecraft to track their desired states, that is, to keep the
formation. Thus EðX;XdÞ will decrease correspondingly,
and the formation can keep moving toward its goal with a
reasonable speed. As this coupled procedure proceeds with
time, the formation manoeuvre will be asymptotically
achieved.

3.2 Discussion

In the case of no formation feedback included, there is only
uni-directional information flow from the virtual structure to
each spacecraft, that is, the virtual structure does not need
information from each spacecraft to evolve its dynamics.
Also, each spacecraft derives its desired states based on the
information from the virtual structure, that is, the received
coordination vector XF : With formation feedback
introduced, there is not only information flow from the
virtual structure to each spacecraft but also information flow

from each spacecraft to the virtual structure. The centralised
location where the coordination vector is implemented will
need the information Xi from each spacecraft, which
requires more communication than the case without
formation feedback.

Also note that even if those non-linear gain matrices are
replaced by constant positive definite matrices, the proof for
theorem 3.2 is still valid but there is no formation feedback
included. However, without formation feedback included,
how well the spacecraft will preserve the formation shape
during the manoeuvre is not guaranteed. For example, the
errors kriðtÞ � rd

i ðtÞk and kqiðtÞ � qd
i ðtÞk for the ith space-

craft may be large during the manoeuvre due to control
saturation or disturbances or even malfunctions, that is, the
spacecraft may get out of the desired formation. If the virtual
structure moves too fast, the spacecraft could fall far behind
their desired positions or attitudes due to control saturation.
If the virtual structure moves too slowly, the manoeuvre
cannot be achieved within a reasonable time. In one extremal
case, the virtual structure dynamics may evolve much faster
than the spacecraft dynamics can achieve. When the virtual
structure approaches its goal, each spacecraft tries to track
the nearly constant desired states determined by Xd

F; that is,
transient performance during the manoeuvre is ignored. In
the other extremal case, the virtual structure has to sacrifice
its convergence speed significantly in order that each
spacecraft can achieve good tracking performance, which
result in unreasonably slow dynamics. Some spacecraft may
also be perturbed by disturbances, which may cause them to
be disintegrated from the desired formation. Without
formation feedback, those disintegrated spacecraft will be
left behind while the others keeping moving towards their
goals, and the entire system cannot adjust to maintain
formation. Therefore, we vary the non-linear gain matrices
Gv; Go; and G _�� with time to affect the evolution speed of the
virtual structure according to the tracking performance of
each spacecraft. As a result, formation feedback is
introduced from the spacecraft to the virtual structure. This
can be illustrated by the example in Section 3.1 and the
simulation studies in the next Section.

Furthermore, to focus on the main issue, we assume that
the dynamics of the virtual structure evolves much faster
than the spacecraft dynamics when we introduce the non-
linear gain matrices in the above discussion. In the case when
the spacecraft are ahead of their desired configurations, it is
straightforward to extend the above approach to speed up the
virtual structure dynamics rather than slow it down. That is,
the non-linear gain matrices can be designed to vary properly
with regard to whether each spacecraft is ahead of or behind
its desired configuration. For example, elements of the non-
linear gain matrices can be increased or decreased based on
whether the geometric centre of the spacecraft is behind or
ahead of the virtual centre of the virtual structure.

4 Simulation results

In this Section we will consider a group of three spacecraft
interferometers. The desired original positions of the three
spacecraft are given by rd

1F ¼ ½50; 0; 0�T ; rd
2F ¼ ½�50; 0; 0�T ;

rd
3F ¼ ½0; 0; 50

ffiffiffi
3
p
�T metres and the desired original attitudes

are given by qd
1F ¼ qd

2F ¼ qd
3F ¼ ½0; 0; 0; 1�T with respect to

the formation frame CF: The three spacecraft will perform a
formation manoeuvre of a combination of rotation and
expansion from rest with some initial errors. The desired
formation will start from rest with inertial attitude qFð0Þ ¼
½0; 0; 0; 1�T to the desired inertial attitude qd

F¼½uT sinðp=4Þ;
cosðp=4Þ�T ; where u ¼ ½0; 0; 1�T ; and expand 1.5 times the
original size.

Fig. 2 Plot of ~rrFx with initial conditions ~rrFx ¼ 1 and _~rr~rrFx ¼ 0 for
different choices of Gv
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The performance measure is chosen as EðX;XdÞ ¼
kX� Xdk2: The parameters for each spacecraft and the
virtual structure are given in Table 1 and Table 2
respectively, where I3 denotes the 3� 3 identity matrix.

In simulation, we will plot absolute position and attitude
errors as well as relative position and attitude errors for each

spacecraft. Control effort for some spacecraft will also be
plotted. Absolute position error is represented by absolute
difference between actual position and desired position for
each spacecraft. Absolute attitude error is represented by
absolute difference between actual attitude and desired
attitude for each spacecraft. Since the formation shape is an
equilateral triangle and the three spacecraft keep the same
attitude in the formation, we use absolute difference
between lengths of the sides in the equilateral triangle to
represent the relative position error and absolute difference
between the attitude of each spacecraft to represent the
relative attitude error. If the formation is preserved exactly,
the relative position and attitude errors should be zero.

In this Section, we use a subscript i (1 � i � 3) which
is defined modulo 3 to represent the states for the ith
spacecraft. For position and attitude error plots, in part (a),
we plot absolute position errors represented by kri � rd

i k: In
part (b), we plot absolute attitude errors represented by kqi

�qd
i k: In part (c), we plot relative position errors

represented byjkri � riþ1k � kriþ1 � riþ2kj: In part (d),
we plot relative attitude errors represented by kqi � qiþ1k:
For control effort plots, control force f and control torque t
will be plotted in parts (a) and (b) respectively. Note that
sometimes, some curves may coincide with each other.

Two cases with and without formation feedback will be
compared in this Section, including the case with control
saturation and the case with control saturation and space-
craft failure.

Under control saturation, position and attitude errors
without and with formation feedback are plotted in Figs. 3
and 4 respectively. Here we assume that the control force
is saturated at jfxj; jfyj; jfzj ¼ 50 N and the control torque is
saturated at jtxj; jtyj; jtzj ¼ 0:3 Nm. We can see that Fig. 4
achieves better performance than Fig. 3. Control effort for
spacecraft #1 without and with formation feedback is
plotted in Figs. 5 and 6 respectively. From Fig. 5, it is
obvious that fy saturates most of the time during the
manoeuvre, which accounts for the bad formation-keeping
performance shown in Fig. 3. However, in Fig. 6, fy only

Table 1: Parameter values used in simulation for each
spacecraft

Parameter Value

Mi 150 kg

Ji 25I3 kgm2

Kri 0:81I3

Kvi 1:27I3

kqi 3.24

K! 6:15I3

Table 2: Parameter values used in simulation for the
virtual structure

Parameter Value

MF 1 kg

JF I3 kgm2

Kr 0:03I3

Kv 0:25I3

kq 0.05

K! 0:32I3

K� 0:03I3

K _�� 0:25I3

KFv 0:01I3

KF! 0:02I3

KF _�� 0:01I3

kp ; ka; ke 0

Fig. 3 Position and attitude errors under control saturation without formation feedback
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saturates during the initial short time period due to the large
initial errors.

In Figs. 7 and 8, we simulate the formation manoeuvre
result under control saturation when spacecraft #1 fails from
5th to 20th second without and with formation feedback
respectively. Since there is no formation feedback in Fig. 7,
the virtual structure keeps moving towards its final goal even
if one of the spacecraft fails for some time. As a result,
spacecraft #1 cannot track its desired states satisfactorily,
and the system has large absolute and relative errors during

the period when spacecraft #1 fails. The large absolute and
relative errors after that period are due to the control
saturation. In fact, in this case the spacecraft are out of
formation for some time. However, in Fig. 8, since there is
formation feedback, the virtual structure slows down to
preserve the formation when one of the spacecraft fails for a
period of time. As a result, the system in Fig. 8 has smaller
absolute and relative errors than the one in Fig. 7. The control
effort of the above two cases for spacecraft #1 is plotted in
Figs. 9 and 10. We assume that spacecraft #1 has zero control

Fig. 4 Position and attitude errors under control saturation with formation feedback

Fig. 5 Control effort for spacecraft #1 under control saturation without formation feedback
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force and torque when it fails. Figure 9 shows that fx and fy for
spacecraft #1 saturates most of the time, which is mitigated in
Fig. 10 with formation feedback introduced.

Within the same range of error, the system with
formation feedback can choose smaller rise time, and
thus converge faster than the one without formation
feedback. Within the same range of convergence speed,
the system with formation feedback will have smaller
errors than the one without formation feedback. Also, the
system with formation feedback needs less control effort

for both cases. We know that absolute and relative errors
and control efforts will decrease when the entries in the
formation gain matrix KF increases, but the convergence
speed will decrease correspondingly. At the same time,
when the entries in the formation gain matrix KF decreases,
the system will converge faster, but the absolute and
relative errors and control efforts will increase correspond-
ingly. We also know by simulation that it is hard to choose
good rise times beforehand to achieve a good performance
in the system without formation feedback. However, a wide

Fig. 7 Position and attitude errors under control saturation without formation feedback when spacecraft #1 fails for 15 seconds

Fig. 6 Control effort for spacecraft #1 under control saturation with formation feedback
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range of rise times work well in the system with formation
feedback.

5 Conclusion

In this paper we have investigated an idea of introducing
formation feedback under the framework of virtual
structures through a detailed application of this idea to the
problem of synthesising multiple spacecraft in deep space.
From the simulation studies, we can see that introducing

formation feedback from spacecraft to the formation has
several advantages. Firstly, the system can achieve a good
performance in improving convergence speed and decreas-
ing manoeuvre errors. Secondly, formation feedback adds a
sense of group stability and robustness to the whole system.
Thirdly, formation feedback improves the robustness with
respect to choosing gains for different spacecraft. Finally,
formation feedback makes formation-keeping more robust
to synchronisation issues and the variability on each
spacecraft.

Fig. 9 Control effort for spacecraft #1 under control saturation without formation feedback when spacecraft #1 fails for 15 seconds

Fig. 8 Position and attitude errors under control saturation with formation feedback when spacecraft #1 fails for 15 seconds
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7 Appendix

Euler’s theorem for rigid body rotations states that “the
general displacement of a rigid body with one point fixed is
a rotation about some axis.” Let z represent a unit vector in
the direction of rotation, called the eigenaxis, and let f
represent the angle of rotation about z; called the Euler
angle. The unit quaternion representing this rotation is given
by q ¼ ½zT sinðf=2Þ; cosðf=2Þ�T ¼ ½~qqT ; �qq�T , where ~qq is a
3� 1 vector with its components represented in the given
coordinate frame and �qq is a scalar. It is easy to see that q and
�q represent the same attitude. However, uniqueness can be
achieved by restricting f to the range 0 � f � p so that
�qq � 0 all the time [24]. In the remainder of the paper, we
assume that �qq � 0:

Given a vector p; the corresponding cross-product
operation p� is defined as

p� ¼
0 �p3 p2

p3 0 �p1

�p2 p1 0

2
4

3
5

where p ¼ ½p1; p2; p3�T in terms of its components in the
given coordinate frame.

Fig. 10 Control effort for spacecraft #1 under control saturation with formation feedback when spacecraft #1 fails for 15 seconds
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If we let CO0O be a rotation matrix that represents the
orientation of the frame CO0 with respect to CO; then rO0 ¼
CO0OrO; where rO0 and rO represent vector r in terms of its
components in the frame CO0 and CO separately. The
relationship between the unit quaternion q and the rotation
matrix CO is defined as [24]:

CO0O ¼ ð2�qq2 � 1ÞIþ 2~qq~qqT � 2�qq~qq�

The relationship between two rotation matrices CO0O and
COO0 is given as:

COO0 ¼ CT
O0O ¼ ð2�qq2 � 1ÞIþ 2~qq~qqT þ 2�qq~qq�:

The multiplication of two quaternions is given by the
formula qaqb ¼ QðqbÞqa; where

QðqbÞ ¼
�qqbI�~qq�b ~qqb

�~qqT
b �qqb

� �
:

Let q� be the inverse of the quaternion q given by

q� ¼ ~qq
�qq

� ��
¼ �~qq

�qq

� �
:

Suppose that the unit quaternions q and qd represent the
actual attitude and the desired attitude of a rigid body
respectively, then the attitude error is given by

qe ¼ q�qd ¼ ~qqe

�qqe

� �
:
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