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In this article, we study multi-agent consensus algorithms with information reuse by intentionally introducing the
outdated state information into the traditional consensus algorithms. In the continuous-time case, we first show
that the outdated state information combined with the current state information does not necessarily jeopardise
the stability of a single system, but may improve the convergence speed without increasing the maximal control
effort. Then this idea is extended from the single-agent case to the multi-agent case. When the directed
communication graph is fixed, the corresponding Laplacian matrix and the outdated state information satisfy
certain conditions, we show that the consensus algorithm with both the current and outdated states can achieve a
faster convergence speed than the standard one. We also consider the case of a switching directed communication
graph and derive corresponding conditions. In the discrete-time case, we propose a discrete-time consensus
algorithm with both the current and outdated states under an undirected fixed communication graph. We then
derive conditions on the communication graph, the sampling period and the outdated state information such that
the proposed algorithm can achieve a faster convergence speed than that using the standard one. In both the
continuous-time and discrete-time settings, we show that the maximum control efforts for the proposed
consensus algorithms are identical to those for the standard ones. Several simulation examples are presented as a
proof of concept.
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1. Introduction

Multi-agent systems have received significant attention
in recent years because various benefits, such as low
complexity, high robustness and great efficiency can be
achieved by having a group of agents work coopera-
tively. A fundamental approach used in multi-agent
systems is consensus. Consensus means that agents in a
communication network achieve an agreement on their
common state by exchanging information with their
neighbours, which is of significance in many applica-
tions, such as formation control (Fax and Murray
2004), rendezvous (Lin, Morse, and Anderson 2003),
and attitude alignment (Ren 2007). Numerous results
on stability and convergence of multi-agent consensus
were obtained by using matrix analysis and
graph theory.

One of the most important problems in consensus
is that how the communication graph influences the
stability of multi-agent systems. Motivated by Vicsek,
Czirok, Jacob, Cohen, and Schochet (1995),
the authors in Jadbabaie, Lin, and Morse (2003)
showed that consensus can be achieved if the
undirected communication graph is jointly connected.

The authors in Moreau (2005), Ren and Beard (2005)

and Olfati-Saber and Murray (2004) extended the

results in Jadbabaie et al. (2003) to the case of a

directed communication graph. It was shown that

consensus can be achieved if the directed switching

communication graphs have a directed spanning tree

jointly.
In addition to the stability analysis, another

important feature of consensus algorithms is the

convergence speed. The authors in Olfati-Saber and

Murray (2004) studied the convergence speed of a

consensus algorithm and showed that the convergence

speed is determined by the second smallest eigenvalue

of the Laplacian matrix. Moreover, a semi-definite

programming-based approach was provided in Kim

and Mesbahi (2006) to maximise the second smallest

eigenvalue of a state-dependent Laplacian matrix such

that the fastest convergence speed is achieved. The

authors in Xiao and Boyd (2003) proposed an accurate

definition of the convergence speed for consensus, and

derived a linear iteration algorithm to find the optimal

weight matrix for the communication graph in order to

obtain the fastest convergence speed.
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Considering the fact that time delays are inevitable
in real systems, consensus algorithms with time delay
have been studied in different settings. The authors in
Olfati-Saber and Murray (2004) studied a uniform
input time delay under an undirected fixed commu-
nication graph while the authors in Lee and Spong
(2006) discussed a nonuniform communication time
delay under a general dynamic model. It was shown
in Moreau (2004b) that the uniform communication
time delay will not affect the stability of a consensus
algorithm under directed fixed or switching commu-
nication graphs. The authors in Xiao and Wang
(2008a, b) used nonnegative matrix theory to study,
respectively, the continuous-time and discrete-time
consensus algorithms with time-varying delays under
a switching network topology. The authors in Tian
and Liu (2008) provided a unified model considering
both the communication and input delays and
presented conservative conditions to guarantee the
stability. In Peng and Yang (2009), a Lyapunov
energy method was introduced to discuss the stability
of the leader–follower consensus problem under
time-varying delays. In these references, time delays
were considered a disadvantage, which will affect the
stability of the system. In contrast, the authors in
Ghosh, Muthukrishnan, and Schultz (1998) modelled
a diffusive schedule in a discrete-time setting, where
outdated time-delayed state information was
introduced intentionally. It was shown that the
outdated state information combined with the current
state information can be used to improve the
convergence speed of the distributed load balancing
algorithm. This approach was also adopted in Cao,
Spielman, and Yeh (2006), where gossip algorithms
were considered for a distributed averaging
problem in a network, and in Cao and Ren (2009),
where a consensus algorithm was discussed in a
continuous-time setting under fixed and undirected
interaction.

In this article, we first extend the existing results in
Cao and Ren (2009) to the directed fixed and switching
communication graphs in a continuous-time setting
and derive conditions on the communication graphs
and the outdated state information such that the
consensus algorithm with both the current and out-
dated state information achieves a faster convergence
speed than that using the standard one without
increasing the maximum control effort. We show the
significant difference between the cases of an undir-
ected communication graph and that of a directed
communication graph and obtain some interesting
conclusions. We then give the corresponding stability
and convergence analysis on the discrete-time case
under an undirected fixed graph. The conditions on the
communication graph, the sampling period and the

outdated state information are given such that the
proposed discrete-time consensus algorithm with both
the current and outdated state information achieves a
faster convergence speed than that using the standard
one without increasing the maximum control effort.

This article is organised as follows. In Section 2, we
introduce the graph theory notions used in this article.
In Section 3, we analyse the continuous-time consensus
algorithm with both the current and outdated states
under the directed fixed and switching communication
graphs. In Section 4, the stability and the convergence
speed of the proposed discrete-time algorithm with
both the current and outdated states are discussed
under an undirected fixed communication graph. In
Section 5, simulations are given to validate the
theoretical results. The conclusion is given in Section 6.

2. Graph theory notions

Using graph theory, we can model the communication
among agents in a multi-agent system. A directed
graph G consists of a pair (V, E), where V is a finite
nonempty set of nodes and E 2V�V is a set of ordered
pairs of nodes. An edge (vi, vj) denotes that node vj
can obtain information from vi, but not necessarily
vice versa. All neighbours of node vi are denoted as
Ni :¼ {vjj(vj, vi)2E}. An undirected graph G is defined
such that (vj, vi)2E implies (vi, vj)2E.

A directed path is a sequence of edges in a directed
graph of the form (vi1, vi2), (vi2, vi3), . . . . An undirected
path in an undirected graph is defined analogously.
A directed graph has a directed spanning tree if there
exists at least one node having a directed path to all
other nodes. An undirected graph is connected if there
is an undirected path between every pair of
distinct nodes.

The adjacency matrix A¼ [aij]2R
n�n associated

with G is defined such that aij is a positive value if
(vj, vi)2E while aij¼ 0 otherwise. The (nonsymmetric)
Laplacian matrix L¼ [lij]2R

n�n associated with A is
defined as lii¼

P
j6¼iaij and lij¼�aij, where i 6¼ j. In

addition, L has a simple zero eigenvalue with an
eigenvector of 1n, where 1n is the n� 1 all-one vector,
and all other eigenvalues have positive real parts, if and
only if G has a directed spanning tree (Agaev and
Chebotarev 2000).

3. Continuous-time case

In this section, we first study the single-agent case with
a complex control gain because the eigenvalues of the
Laplacian matrix L associated with a directed graph
may be complex. Then the single-agent case is extended
to the multi-agent case under the directed fixed and
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dynamic communication graphs. The conditions on the
communication graph and the outdated state informa-
tion are given such that the consensus algorithm with
both the current and outdated states can achieve
consensus with a faster convergence speed than that
using the standard one without increasing the maxi-
mum control effort.

3.1 Single-agent case

For a single-agent system with single-integrator kine-
matics given by

_’ðtÞ ¼ uðtÞ, ð1Þ

where ’2C is the state and u2C is the control input,
we study two different control algorithms as follows:

uðtÞ ¼ 2ðaþ jbÞ’ðtÞ, ð2aÞ

uðtÞ ¼ ðaþ jbÞ½’ðtÞ þ ’ðt� �Þ�, ð2bÞ

where a50, b2R, j denotes the imaginary unit and
’(t� �) is the outdated state with �40 characterising
how old the state is. Here (2a) uses only the current
state while (2b) uses both the current and outdated
states. We assume that ’(t� �) :¼ ’(t) for 0� t5�. We
know that system (1) using control (2a) is always stable
if a50. Moreover, the convergence speed is determined
by 2jaj. Regarding the stability and the convergence
speed for system (1) using control (2b), we have the
following result.

Lemma 3.1: If � is chosen satisfying � 2 (0, �s), where
�s ¼ 1

2jbj arc cosð
b2�a2

a2þb2
Þ, system (1) using control (2b) is

always stable. Assume that argðaþ jbÞ 2 ð34�,��
S

ð��, � 3
4�Þ, where arg(�) denotes the argument of a

complex number. There always exists �� such that when
� 2 (0, ��), system (1) using control (2b) has a faster
convergence speed than that using control (2a), where ��

is the minimum positive real number satisfying

min
j¼1,2

��j cos½ðbþ �j Þ�
�� ¼
½a2 � b2 þ bðbþ �j Þ�e

2a��

a2 þ b2

� �
,

ð3Þ

where �1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ e�4a�

�
a2 þ e�4a�

�
b2

p
and �2¼��1.

Proof: For the first statement, note that the
closed-loop poles of system (1) using (2b) satisfy

s ¼ ð1þ e�s�Þðaþ jbÞ: ð4Þ

Letting s¼ xþ jy, it follows that

x ¼ a½1þ e��x cosð y�Þ� þ be��x sinð y�Þ, ð5aÞ

y ¼ b½1þ e��x cosð y�Þ� � ae��x sinð y�Þ: ð5bÞ

When �¼ 0, we can obtain x¼ 2a and y¼ 2b. Because s

is continuous with respect to �, there exists �s such that

s is always in the open left-half plane when � 2 (0, �s).
To find �s, let s¼ j!1. Substituting s¼ j!1 into

s¼ (1þ e�s�)(aþ jb) gives

j!1 ¼ ð1þ e�j!1�
s

Þðaþ jbÞ, ð6Þ

which implies �aþ j(!1� b)¼ e�j!1�s(aþ jb). After

some manipulations, we can obtain !1¼ 2b. After

separating the real and imaginary parts of (6) and some

manipulations, we can obtain �s ¼ 1
2jbj arc cosð

b2�a2

a2þb2
Þ.

For the second statement, note that

dx

d�
j�¼0 ¼ �ae

��x

�
�
dy

d�
þ y

�
sinð y�Þj�¼0

þ ae��x
�
� �

dx

d�
� x

�
cosð y�Þj�¼0

þ be��x
�
�
dy

d�
þ y

�
cosð y�Þj�¼0

þ be��x
�
� �

dx

d�
� x

�
sinð y�Þj�¼0

¼ �axþ by ¼ �2a2 þ 2b2:

Thus, argðaþ jbÞ 2 ð34�,��
S
ð��, � 3

4�Þ implies
dx
d� j�¼0 5 0. Based on the continuity of dx

d� with respect

to �, there must exist a neighbourhood � 2 (0, �v) such
that x decreases as � increases. Therefore, there exists a
positive �� satisfying x(��)¼ 2a such that x52a for

� 2 (0, ��). In order to find ��, let s¼ 2aþ j!.
Substituting s¼ 2aþ j! into s¼ (1þ e�s�)(aþ jb) gives

2aþ j! ¼ ð1þ e�ð2aþj!Þ�
�

Þðaþ jbÞ, ð7Þ

which implies aþ j(!� b)¼ e�2a�
�

e�j!�
�

(aþ jb). From

(7), we can get that a2þ (!� b)2¼ e�4a�
�

(a2þ b2). It

follows that

! ¼ b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 þ e�4a�

�
a2 þ e�4a�

�
b2

p
: ð8Þ

After separating the real and imaginary parts of (7)

and after some manipulations, we can obtain

cosð!��Þ ¼
ða2 þ !b� b2Þe2a�

�

a2 þ b2
: ð9Þ

Substituting (8) into (9), we can see that �� is the

minimum positive real number satisfying (3), system

(1) using control (2b) has a faster convergence speed

than that using control (2a) when � 2 (0, ��). œ

Remark 1: Lemma 3.1 in Cao and Ren (2009) is a

direct result of Lemma 3.1 by noting that the argument

of a negative real number is always equal to �.
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3.2 Multi-agent consensus with both the current and
outdated states under a fixed directed graph

In this section, we extend the results in Section 3.1 to

the multi-agent consensus problem. Consider a

multi-agent system with single-integrator kinematics

given by

_"iðtÞ ¼ uiðtÞ, i ¼ 1, . . . , n, ð10Þ

where "i(t) and ui(t) denote, respectively, the state and

the control input of the i-th agent. Consider consensus

algorithms using, respectively, only the current states

and both the current and outdated states as

uiðtÞ ¼ �2
Xn
j¼1

aij½"iðtÞ � "j ðtÞ�, ð11aÞ

uiðtÞ ¼ �
Xn
j¼1

aijf½"iðtÞ � "j ðtÞ� þ ½"iðt� �Þ � "j ðt� �Þ�g,

ð11bÞ

where aij is the (i, j)-th entry of the adjacency matrix A,

and "i(t� �), i¼ 1, . . . , n is the outdated state with �40

characterising how old the state is. Similar to the

discussion in Cao and Ren (2009), we compare (11a)

and (11b) in terms of the convergence speed and

the maximal control effort. We assume that

"i(t� �)¼ "i(t), i¼ 1, . . . , n for 0� t5�. System (10)

using (11a) can be written in matrix form as

_�ðtÞ ¼ �2L�ðtÞ, ð12Þ

where �¼ ["1, "2, . . . , "n]
T and L is the Laplacian matrix

defined in Section 2. Let �i¼ aiþ jbi be the i-th

eigenvalue of L, where ai, bi2R. Suppose that the

directed communication graph has a directed spanning

tree. Without loss of generality, we label �i by the

magnitudes of the real parts as 0¼ a15a2� � � � � an.

We know that system (10) using control (11a) achieves

consensus with a convergence speed 2ja2j. We have the

following result for (10) using (11b).

Theorem 3.2: If � is chosen satisfying � 2 (0, �s), where

�s ¼ mini¼2,..., nf�
s
i g and �si ¼

1
2jbij

arc cosð
b2i �a

2
i

a2
i
þb2

i

Þ, system

(10) using control (11b) achieves consensus. Assume

that argð�iÞ 2 ð�
1
4�,

1
4�Þ, 8i¼ 2, 3, . . . , n, holds. There

always exists �� such that when � 2 (0, ��), system (10)

using (11b) achieves consensus with a faster convergence

speed than that using (11a), where ��¼mini¼2,. . .,n{�i},
and �i is the minimal positive number satisfying

min
j¼1,2

�
�ijcos½ð�biþ�ijÞ�i�¼

½a2i �b
2
i �bið�biþ�ijÞ�e

�2ai�i

a2i þb
2
i

�
,

where �i1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2i þ e4ai�i a2i þ e4ai�i b2i

p
and �i2¼��i1. In

addition, the maximum control effort using (11b) is

equal to that using (11a). In particular, we can get that
maximaxt	0 jui(t)j ¼maxi jui(0)j.

Proof: For the first statement, note that system (10)
using (11b) can be written in matrix form as

_�ðtÞ ¼ �L�ðtÞ � L�ðt� �Þ: ð13Þ

By applying the Laplace transform to both sides
of (13), it follows that

ðsIn þ Lþ e�s�LÞ�ðsÞ ¼ �ð0Þ:

Thus the closed-loop poles of system (10)
using (11b) satisfy

det½ðsIn þ ð1þ e�s�ÞL� ¼ 0:

Noting that �i is the i-th eigenvalue of L, it follows
that the closed-loop poles of system (10) using (11b)
satisfy

sþ ð1þ e�s�Þ�i ¼ 0, i ¼ 1, 2, . . . , n: ð14Þ

Because �1¼ 0, it follows from (14) that s¼ 0.
Because �ai50, i¼ 2, . . . , n, by letting ��i play the
role of aþ jb in (4), it follows that the closed-loop poles
of (14) corresponding to ��i, i¼ 2, . . . , n, are always in
the open left-half plane if � 2 ð0, �si Þ, i¼ 2, . . . , n.
Noting that the eigenvector associated with s¼ 0 is
1n, it then follows that (10) using control (11b) achieves
consensus if � is chosen satisfying � 2 (0, �s).

For the second statement, if � 2 (0, ��), where
��� �i, i¼ 2, . . . , n, the closed-loop poles of (14)
corresponding to ��i, i¼ 2, . . . , n are always on the
left-hand side of ��i. It follows that if � 2 (0, �

�) system
(10) using control (11b) achieve consensus with a faster
convergence speed than that using (11a).

For the third statement, the proof of the maximum
control effort is similar to that of Lemma 3.4 in Cao
and Ren (2009) by noting that e�2Lt is also a (row)
stochastic matrix if L is associated with a directed
graph (Ren and Beard 2005). œ

Remark 2: Note that the distribution of the eigenva-
lues of a nonsymmetric Laplacian matrix associated
with a directed graph is related to the number of agents
in the directed graph (Agaev and Chebotarev 2005).
In particular, �ð�2 �

�
nÞ � argð�iÞ �

�
2 �

�
n , i ¼ 1, 2 . . . , n.

If the number of agents in the communication graph is
less than 4, argð�iÞ 2 ð�

1
4�,

1
4�Þ is satisfied. However, if

the number of agents is equal to or more than 4, we
should first check the eigenvalues of the corresponding
Laplacian matrix to ensure that they satisfy
argð�iÞ 2 ð�

1
4�,

1
4�Þ. In contrast to the directed graph

case, all eigenvalues of the Laplacian matrix associated
with an undirected graph are real numbers, thus
satisfying argð�iÞ 2 ð�

1
4�,

1
4�Þ. Therefore, when the

fixed graph is undirected, there always exists �� such
that for arbitrary number of agents, system (10) using
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control (11b) can achieve consensus with a faster
convergence speed than that using (11a) when � 2 (0, ��).

Remark 3 : The proposed consensus algorithm using
both the current and outdated states can achieve a
faster convergence speed than the standard one with-
out increasing the maximal control effort. The tradeoff
is that each agent needs more memory room to store
the outdated states from its neighbours over a past
period of time. The time period is generally small and
adjustable. In real applications, it is sufficient to store
the outdated states at a certain frequency over a small
period of time. Because memory chips become cheaper
and more cost-efficient, the proposed consensus algo-
rithm using both the current and outdated states
provides an option to applications where the conver-
gence speed plays a more important role than the
available memory room.

Remark 4: Note that here the bound for � depends on
the global information, that is, the eigenvalues of the
Laplacian matrix. In this article, we assume that
the bound can be computed offline before running
the algorithm. In fact, it is quite common that the
bounds of the control parameters depend on the
eigenvalues of the Laplacian matrix in the current
literature on distributed control (see e.g. Ren, Beard,
and Atkins 2007; Ren and Atkins 2007). However, the
distributed nature of the algorithm lies in the fact that
each agent only interacts with its neighbours to reach
consensus. How to obtain the eigenvalues of the
Laplacian matrix (and hence the bound for �) in a
distributed manner is still an open challenging question
that deserves further investigation.

3.3 Multi-agent consensus with both the current and
outdated states under dynamic directed graphs

In this section, we extend the result in Section 3.2 to the
case of dynamic interaction. In this case, (11a) and
(11b) can be rewritten as

uiðtÞ ¼ �2
Xn
j¼1

aijðtÞ½"iðtÞ � "j ðtÞ� ð15aÞ

uiðtÞ ¼�
Xn
j¼1

aijðtÞ
�
½"iðtÞ� "j ðtÞ�þ ½"iðt� �Þ� "j ðt� �Þ�

�
,

ð15bÞ

where aij(t) is time-varying. Here, we apply the dwell
time to the continuous-time algorithms (11a) and (11b),
which means that the communication graphs are
constrained to switch only at discrete-time instants,
i.e. L(t) is piecewise constant. Assume that the
communication graph remains constant for

t2 [�k, �kþ1), k¼ 0, 1, . . . and switches at t¼ �k, k¼

0, 1, . . . , where �k4�k�1. Here, we also assume that

�kþ1� �k4�, k¼ 0, 1, . . . . Define "i(t� �)¼ "i(t) for

t2 [�k, �kþ �). It has been shown in Ren and Beard

(2005) that if the directed graph has a directed spanning
tree at every time interval, system (10) using (15a) can

achieve consensus. For system (10) using (15b), we have

the following result.

Theorem 3.3: Let G½k� 2 G be a switching communica-

tion graph at time t¼ �k, k¼ 0, 1, . . . , where G denotes

the set of directed graphs that have a directed spanning

tree. Assume that argð�iðG½k�ÞÞ 2 ð�
1
4�,

1
4�Þ, i¼

2, 3, . . . , n, holds, 8G½k� 2 G. If � satisfies � 2 (0, ��),
where �� ¼ min

G
mini¼2,..., nf�ig and �i is defined in

Theorem 3.2. Then system (10) using (15b) can achieve

consensus with a faster convergence speed than that
using (15a).

Proof: Wedefine a positive-definite discrete Lyapunov

function candidate V(�(�k))¼maxi{"i(�k)}�
mini{"i(�k)} with respect to the desired equilibrium set

{"1¼ � � � ¼ "n}, where �(t) was defined in (12). We next

show that V(�(�kþ1))5V(�(�k)), 8k¼ 0, 1, . . . .
Considering the time interval t2 [�k, �kþ1), we

separate this time interval into two parts
½�k, �k þ �Þ

S
½�k þ �, �kþ1Þ. For t2 [�k, �kþ �), we

define a continuous function V0(�(t))¼maxi{"i(t)}�
mini{"i(t)}. Because system (10) using (15b) is the same

as that using (15a) for t2 [�k, �kþ �), we can obtain
that V0(�(�k))4limt!�kþ�

V0(�(t))¼V0(�(�kþ �)) using a

similar analysis to that in Moreau (2004a) by noting

that the directed graph G always has a directed

spanning tree for t2 [�k, �kþ �). Then by following a

similar analysis to that in the proof of Lemma 3.4 in
Cao and Ren (2009), it is easy to verify that k�(t)k1�
k�(�kþ �)k1 for t2 [�kþ �, �kþ1), which implies that

max
i
f"ið�kþ1Þg ¼ lim

t!�kþ1
max

i
f"iðtÞg � max

i
f"ið�k þ �Þg:

Similarly, we can also get that

min
i
f"ið�kþ1Þg ¼ lim

t!�kþ1
min

i
f"iðtÞg 	 min

i
f"ið�k þ �Þg:

Thus, it follows that V0(�(�kþ �))	V0(�(�kþ1)).
Combining the previous arguments shows that
V0(�(�k))4V0(�(�kþ1)). Noting that V(�(�k))¼V0(�(�k))
and V(�(�kþ1))¼V0(�(�kþ1)), it follows that

V(�(�k))4V(�(�kþ1)), 8k¼ 0, 1, . . . . Therefore, it

follows that V(�(�k))! 0 as k!1, which means
that consensus is achieved.

For the convergence speed, when t2 [�k, �kþ1),
k¼ 0, 1, . . . , by following a similar analysis to that in

Theorem 3.2, the convergence speed using (15b) is

faster than that using (15a). Thus, based on the con-
tinuity of the state along time, system (10) using (15b)
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can achieve consensus with a faster convergence speed
than that using (15a). œ

4. Discrete-time case

In this section, we study a discrete-time consensus
algorithm with both the current and outdated states.
We first discuss the stability and convergence condition
in the single-agent case and then extend the
single-agent case to the multi-agent case.

4.1 Single-agent case

The discrete-time case of (1) can be written as

�ðkþ 1Þ � �ðkÞ

T
¼ uðkÞ, ð16Þ

where k is the discrete-time index, T is the sampling
period, ø(k)¼ ø(kT ), and u(k)¼ u(kT ). We study two
different algorithms using, respectively, only the cur-
rent state and both the current and outdated states as

uðkÞ ¼ �2��ðkÞ ð17aÞ

uðkÞ ¼ ���ðkÞ � ��ðk�NÞ, ð17bÞ

where ø(k�N) is the outdated state with N40
characterising how old the state is. We assume that
ø(k�N) :¼ ø(k) when 0� k5N. Using (17a) for
system (16), we can get that ø(kþ 1)¼ (1� 2�T )ø(k).
When j1� 2�Tj51, i.e. 05�T51, system (16) using
(17a) is stable. Moveover, the convergence speed is
determined by j1� 2�Tj. For system (16) using (17b),
we have the following result.

Lemma 4.1: When 05�T51, system (16) using (17b)
is always stable, 8N40.

Proof: Using (17b), (16) can be written in matrix
form as

�ðkþ 1Þ ¼ P�ðkÞ,

where �(k)¼ [ø(k), . . . , ø(k�N)]T2R
Nþ1, and

P ¼

1� �T 0 � � � ��T

1 0 � � � 0

0 . .
.

0 0

..

.
0 1 0

2
66664

3
77775: ð18Þ

We next show that all eigenvalues of P are within
the unit circle if 05�T51. Note that the characteristic
polynomial of P is given by det(	INþ1�P)¼ 0, which
is equal to

	Nþ1 � ð1� �TÞ	N þ �T ¼ 0: ð19Þ

Based on the Gershgorin disc theorem (Horn and

Johnson 1985), if 05�T51, the eigenvalues 	 of P

must be within or on the unit circle. We next prove that

the eigenvalues of P cannot be on the unit circle by

contradiction. Substituting 	¼ ej
 into characteristic

polynomial (19), we get that

eðNþ1Þj
 � ð1� �TÞeNj
 þ �T ¼ 0: ð20Þ

By separating the real and imaginary parts of (20),

we can obtain

cos½ðNþ 1Þ
� � ð1� �TÞ cosðN
Þ þ �T ¼ 0, ð21aÞ

sin½ðNþ 1Þ
� � ð1� �TÞ sinðN
Þ ¼ 0: ð21bÞ

By combining (21a) and (21b), after some manip-

ulations, we can obtain cos(N
)¼�1, which implies

N
¼ (2pþ 1)�, p2Z, where Z denotes the integer set.

Substituting cos(N
)¼�1 into (21a) gives that

cos(Nþ 1)
¼�1, which implies that (Nþ 1)
¼
(2qþ 1)�, q2Z. Then we can get that 
¼ 2(p� q)�,
which implies that cos(N
)¼ 0. This contradicts the

fact that cos(N
)¼�1. Thus all eigenvalues of P are

within the unit circle, which implies that system (16)

using (17b) is stable if 05�T51. œ

Lemma 4.2: For any positive integer number N, there

always exists � such that when �T2 (0, �), system (16)

using (17b) has a faster convergence speed than that

using (17a), where � is the minimum positive number

satisfying

ð1� 2�ÞNþ1 sinðNþ 1Þ
 ¼ ð1� �Þð1� 2�ÞN sinðN
Þ,

ð22Þ

where 
 is given by


 ¼
1

N
arc cos

ð1� 2�Þ2Nð3�2 � 2�Þ � �2

2�ð1� �Þð1� 2�ÞN

	 

: ð23Þ

Proof: First, we show the existence of � for any N.

Denote � :¼ 1� 2�T as the eigenvalue of system (16)

using (17a). We can obtain that �j�T¼0¼ 1 and
d�

d ð�TÞ j�T¼0 ¼ �2. When �T¼ 0, system (16) using

(17b) has exactly one eigenvalue equal to 1 and N

zero eigenvalues. Then differentiating (19) with respect

to �T gives

ðNþ1Þ	N d	

dð�TÞ
� ð1��TÞN	N�1 d	

d ð�TÞ
þ	Nþ1¼ 0:

ð24Þ

It follows that d	
dð�TÞ j�T¼0,	¼1¼�2, which is equal to

d�
dð�TÞ j�T¼0. We next compare d2�

d2ð�TÞ
j�T¼0 with

d2	

d2ð�TÞ
j�T¼0,	¼1. Note that d2�

d2ð�TÞ
j�T¼0¼ 0.
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Differentiating (24) with respect to �T gives that

ðNþ 1ÞN	N�1

�
d	

dð�TÞ

�2

þ ðNþ 1Þ	N d2	

d2ð�TÞ
þN	N�1

�
d	

dð�TÞ
� ð1� �TÞNðN� 1Þ	N�2

�
d	

dð�TÞ

�2

� ð1� �TÞN	N�1 d2	

d2ð�TÞ
þN	N�1 d	

dð�TÞ
¼ 0: ð25Þ

It follows that d2	

d2ð�TÞ
j�T¼0,	¼1 ¼ �4N5 0, which

implies that d2	

d2ð�TÞ
j�T¼0,	¼1 5

d2�

d2ð�TÞ
j�T¼0. Based on the

continuity of � and 	 with respect to �T, there always
exists a positive � such that when �T2 (0, �), all

eigenvalues of P have modules smaller than j1� 2�Tj,
which implies that system (16) using (17b) has a faster

convergence speed than that using (17a).
Next, we show how to obtain �. We know that as

�T increases from 0 continuously, � can be obtained

when j	j first approaches (1� 2�T ). Letting

	¼ (1� 2�)ej
, it follows that (19) can be written as

the following two equations when considering the real

and imaginary parts separately:

ð1� 2�ÞNþ1 cosðNþ 1Þ
 � ð1� �Þð1� 2�ÞN

� cosðN
Þ þ � ¼ 0,

ð1�2�ÞNþ1 sinðNþ1Þ
�ð1��Þð1�2�ÞN sinðN
Þ ¼ 0:

Combining the above two equations, after some

manipulations, we can obtain (23). Thus � is the

minimum positive number satisfying (22), where 
 is

given in (23). œ

Remark 5: If we let N¼ 1, it is easy to verify that

system (16) using (17b) has a faster convergence than

that using (17a) if 05�T5 1
4.

4.2 Multi-agent case

In this section, we extend the single-agent case in

Section 4.1 to the multi-agent case. For a multi-agent

system with discrete-time single-integrator kinematics

given by

&iðkþ 1Þ � &iðkÞ

T
¼ uiðkÞ, i ¼ 1, 2, . . . , n, ð26Þ

where k is the discrete-time index, T is the sampling

period, &i(k)¼ &i(kT ) and ui(k)¼ ui(kT ), we study the

consensus algorithms using, respectively, only the

current states and both the current and outdated

states as

uiðkÞ ¼ �2
Xn
j¼1

aij½&iðkÞ � &j ðkÞ�, ð27aÞ

uiðkÞ ¼ �
Xn
j¼1

aij½&iðkÞ � &j ðkÞ�

�
Xn
j¼1

aij½&iðk�NÞ � &j ðk�NÞ�, ð27bÞ

where aij is the (i, j)-th entry of the adjacency matrix A
associated with an undirected graph G, and &i(k�N) is
the outdated state with N40 characterising how old
the state is. We here assume that &i(k�N) :¼ &i(k)
when 0� k5N. We rewrite system (26) using (27a) and
system (26) using (27b) in matrix forms as


ðkþ 1Þ ¼ ðIn � 2TLÞ
ðkÞ, ð28aÞ


ðkþ 1Þ ¼ ðIn � TLÞ
ðkÞ � TL
ðk�NÞ, ð28bÞ

where 
(k)¼ [&1(k), &2(k), . . . , &n(k)]
T, In denotes the

n� n identity matrix, and L is the Laplacian matrix
associated with A.

Let �i, i¼ 1, 2,. . . n, be the eigenvalues of L. When
the undirected graph G is connected, we know that L
has a simple zero eigenvalue and all other eigenvalues
are positive (Agaev and Chebotarev 2000). Without
loss of generality, we label �i as 0¼ �15�2� � � � � �n.
Let �i denote the i-th eigenvalue of (I� 2TL). Note
that �i¼ 1� 2T�i. When �1¼ 0, �1¼ 1. Also note
(I� 2TL)1n¼ 1n from the fact that L1n¼ 0. When
T5 1

�n
, it follows that j�ij51, i¼ 2, . . . , n. Therefore,

(28a) achieves consensus if T5 1
�n
.

Note that (28b) can be rewritten as

�ðkþ 1Þ ¼ F�ðkÞ, ð29Þ

where �(k)¼ [
(k),
(k), . . . ,
(k�N)]2R
n(Nþ1)�1 and

F2R
n(Nþ1)�n(Nþ1) is given by

F ¼

In � TL 0 . . . 0 �TL

In 0 . . . 0 0

0 In 0 . . . 0

..

.
0 . .

.
0 0

0 0 0 In 0

0
BBBBBBB@

1
CCCCCCCA
:

We next study the stability and the convergence
speed of system (26) using (27b).

Theorem 4.3: For any positive integer N, system (26)
using (27b) achieves consensus if T5 1

�n
. Moreover,

there always exists T � such that when T2 (0,T�), system
(26) using (27b) has a faster convergence speed than that
using (27a), where T �¼mini¼2,3, . . . ,n {Ti} and Ti is the
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minimum positive number satisfying (22) with �iTi

replacing � in (22) and (23). The maximum control

effort using (27b) is equal to that using (27a). In

particular, we can get that maximaxk	0jui(k)j ¼

maxijui(0)j.

Proof: Because L is a symmetrical matrix, it follows

that L can be written as L :¼MT�M, where

�¼diag(�1, . . . , �n). Then F can be transformed to

F 0, where F 0 becomes

F 0 ¼MF M
T
¼

In � T� 0 . . . 0 �T�
In 0 . . . 0 0
0 In 0 . . . 0

..

.
0 . .

.
0 0

0 0 0 In 0

0
BBBBB@

1
CCCCCA
,

where

M ¼

M 0 . . . 0

0 M . . . 0

..

.
0 . .

. ..
.

0 . . . 0 M

0
BBBB@

1
CCCCA:

Note that F 0 has a similar structure to P in (18) and

the eigenvalues of F are the same as those of F 0. By

mimicking a similar analysis to that of (18), it

follows that

detðsIðNþ1Þn�F 0Þ ¼ detð½sIn�ðIn�T�Þ�sN

þð�1ÞNþ2ð�1ÞNT�Þ

¼ detðsNþ1In�ðIn�T�ÞsNþT�Þ ¼ 0:

Thus the eigenvalues of F, denoted by 	i, satisfy

	Nþ1
i � ð1� T�iÞ	

N
i þ T�i ¼ 0: Note that each eigen-

value of L, �i, corresponds to Nþ 1 eigenvalues of F,

denoted as 	ij
, j¼ 1, 2, . . . ,Nþ 1, for i¼ 1, 2, . . . , n.

When �1¼ 0, 	11
¼ 1 and 	1j

¼ 0, j¼ 2, . . . ,Nþ 1.

Therefore, F has one eigenvalue equal to one with a

corresponding eigenvector 1n(Nþ1). Based on the

analysis in Lemma 4.1, if 05�iT51, i¼ 2, . . . , n, all

eigenvalues j	ij
j51, j¼ 1, . . . ,Nþ 1. Therefore, system

(29) achieves consensus if T5 1
�n
.

For the convergence speed, by replacing � with

�iTi, i¼ 2, 3, . . . , n in Lemma 4.2, when T ��Ti,

i¼ 2, . . . , n, it follows that j	ij
j5j1� 2T�ij, 8j¼

1, 2, . . . ,Nþ 1, for each i¼ 2, 3, . . . , n, where 1� 2T�i,
i¼ 2 , . . . , n, are the corresponding eigenvalues of (28a).

Therefore, it follows that system (26) using (27b) can

achieve a faster convergence speed than that using

(27a) when T2 (0,T �).
For the maximum control effort, we rewrite (27a)

in matrix form as U(k)¼�2L
(k) and U(0)¼

�2L
(0), where U(k)¼ [u1(k), . . . , un(k)]2R
n. It

follows from (28a) that 
(k)¼ (I� 2TL)k
(0).

Therefore, we can obtain that U(k)¼ (I� 2TL)kU(0)
from the fact that L(I� 2TL)¼ (I� 2TL)L. It then
follows that kU(k)k1�k(I� 2TL)kk1kU(0)k1¼
kU(0)k1 by noting that (I� 2TL)k is a (row) stochastic
matrix. Thus the maximum control effort using (27a) is
maxijui(0)j. For (28b), when 0� k5N, (27b) is identical
to (27a). Thus we know that kU(k)k1�kU(0)k1 for
0� k5N. When k¼N, kU(k)k1¼k�L
(0)�
L
(N)k1¼k�L
(0)�L(I� 2TL)N
(0)k1�kIþ (I�
2TL)Nk1kL
(0)k1�kU(0)k1. When k4N, by noting
that (28b) achieves consensus, we can obtain that
kU(k)k1�kU(N)k1 for k4N by following a similar
analysis to that in the proof of Lemma 3.4 in Cao and
Ren (2009). Therefore, we know that kU(k)k1�
kU(0)k1 for k4N. In summary, we have that
kU(k)k1�kU(0)k1 for k	 0 and the maximal control
effort using (27b) is maxijui(0)j. Combining the previous
arguments shows that themaximum control effort using
(27b) is equal to that using (27a). In particular, we get
that maximaxk	0 jui(k)j ¼maxijui(0)j. œ

Remark 6: Similar to the continuous-time case, the
proposed discrete-time consensus algorithm using both
the current and outdated states requires more memory
room to store the outdated states.

Remark 7: Note that the algorithm proposed in this
section actually extends the accelerated algorithm
proposed in Ghosh et al. (1998) from the case where
the time-delayed information must be exactly the last
sample before the current one to the case where the
time-delayed information can be arbitrarily outdated.

5. Simulation

In this section, we compare the consensus algorithms
using both the current and outdated states with the
standard ones in both the continuous-time and
discrete-time settings. For control (11a) and control
(11b), we choose �¼ 0.2 s and

L ¼

2 �1 �1 0 0 0

�1 1 0 0 0 0

�1 0 2 �1 0 0

0 0 �1 1 0 0

0 �1 �1 �1 3 0

0 0 0 0 �1 1

0
BBBBBBBB@

1
CCCCCCCCA
:

Figures 1 and 2 show the convergence results and
control efforts of system (10) using, respectively, (11a)
and (11b) while Table 1 shows the convergence time
using (11a) and (11b). We can see that the convergence
speed of multi-agent consensus with both the current
and outdated states is improved if � is chosen properly
under a directed fixed communication graph. Also, the
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maximum control effort for the consensus algorithm
using both the current and outdated states is identical
to that for the standard one.

In the case of dynamic directed interaction, we
choose �¼ 0.2 s. We assume that L(t) switches among
{L1,L2,L3,L4}, where

L1 ¼

2 �1 �1 0 0 0
�1 1 0 0 0 0
�1 0 2 �1 0 0
0 0 �1 1 0 0
0 �1 �1 �1 3 0
0 0 0 0 �1 1

0
BBBBBB@

1
CCCCCCA
,

L2 ¼

3 �1:5 �1:5 0 0 0
�2 2 0 0 0 0
�1:5 0 4 �1 0 �1:5
0 �1 0 1 0 0
0 �1 �1:5 0 3 �0:5
0 0 0 �1 0 1

0
BBBBBB@

1
CCCCCCA
,

L3 ¼

4 �4 0 0 0 0
�1 2 0 �1 0 0
�1 0 3 �1 0 �1
0 0 �1 2 �1 0
0 �1 0 0 1:5 �0:5
0 0 �1 �1 0 2

0
BBBBBB@

1
CCCCCCA
,

L4 ¼

3 �1 0 0 �2 0
�1 1:5 0 0 �0:5 0
�1:5 0 2 0 �0:5 0
0 0 0 1 0 �1
0 �0:5 �1:5 0 2 0
0 �1 �1 0 �1 3

0
BBBBBB@

1
CCCCCCA
,

at time instants �i¼ 0.5i s, i¼ 1, 2, . . . . Figures 3 and 4

show the convergence results and control efforts of
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Figure 3. Convergence results using (15a) and (15b) under
dynamic directed interaction.
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Figure 1. Convergence results using (11a) and (11b) under
fixed directed interaction.
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Figure 2. Control efforts using (11a) and (11b) under fixed
directed interaction.

Table 1. Convergence time comparison in the continuous-
time case under fixed directed interaction.

Within 5%
of final

equilibrium

Within 2%
of final

equilibrium

System (10) using (11a) 4.42 s 5.07 s
System (10) using (11b) 3.74 s 4.29 s
Convergence time

improvement percentage
15.4 15.4
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system (10) using, respectively, (15a) and (15b) under
dynamic directed interaction while Table 2 shows the
convergence time using (15a) and (15b). Similar to the
fixed communication graph case, the convergence
speed of multi-agent consensus with both the current
and outdated states is improved if � is chosen properly.

In the discrete-time setting, for system (26) using
(27a) and (27b), we choose T¼ 0.05 s, N¼ 4 and

L ¼

2 �1 �1 0 0 0
�1 1 0 0 0 0
�1 0 3 �1 �1 0
0 0 �1 2 �1 0
0 0 �1 �1 3 �1
0 0 0 0 �1 1

0
BBBBBB@

1
CCCCCCA
:

Figures 5 and 6 show the convergence results and
control efforts of system (26) using, respectively, (27a)
and (27b) while Table 3 shows the convergence time
using (27a) and (27b). We can see that the convergence
speed of discrete-time multi-agent consensus with both
the current and outdated states is improved if T and N

are chosen properly under an undirected fixed com-

munication graph. Also, the maximum control effort

for the consensus algorithm with both the current and

outdated states is identical to that for the standard one.

Table 3. Convergence time comparison in the discrete-time
case.

Within 5%
of final

equilibrium

Within 2%
of final

equilibrium

System (26) using (27a) 5.91 s 6.46 s
System (26) using (27b) 4.91 s 5.41 s
Convergence time

improvement percentage
16.2 16.3
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Figure 4. Control efforts using (15a) and (15b) under
dynamic directed interaction.
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Figure 6. Control efforts using (27a) and (27b).
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Figure 5. Convergence results using (27a) and (27b).

Table 2. Convergence time comparison in the continuous-
time case under dynamic directed interaction.

Within 5%
of final

equilibrium

Within 2%
of final

equilibrium

System (10) using (15a) 2.26 s 2.87 s
System (10) using (15b) 2.19 s 2.62 s
Convergence time

improvement percentage
3 8.7
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6. Concluding remarks and future work

This article studied consensus algorithms using both
the current and outdated states for continuous-time
and discrete-time multi-agent systems. In the
continuous-time case, we showed that the algorithm
with both the current and outdated states can achieve a
faster convergence speed than that using the standard
one under the directed fixed or dynamic communica-
tion graphs. Unlike the undirected graph, the distri-
bution of eigenvalues of the Laplacian matrix
associated with a directed graph will play an important
role for the algorithm with both the current and
outdated states under directed communication graphs.
In the discrete-time case, the algorithm with both the
current and outdated states was shown to achieve
consensus with a faster convergence speed than that
using the standard one if the sampling period and
the outdated state information are chosen properly
under the undirected fixed communication graphs.
Simulation results supported the effectiveness of the
algorithms. One interesting future direction is the
robustness analysis of the proposed consensus algo-
rithms with both the current and outdated states in the
presence of real information delays. Another interest-
ing future direction is the study of consensus with
information reuse under nonlinear couplings. Of
course, in the case of nonlinear couplings, the analysis
tools and the definition of the convergence speed used
in this article are no longer valid. We expect that a
Lyapunov approach combined with a more general
definition of the convergence speed might be
promising.
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