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The paper by H. Yang, X. Zhu, and S. Zhang studied
a second-order leader-following consensus algo-
rithm in multi-agent systems with directed network
topologies and heterogeneous input delays, which
generalized the previous work [1] from the case of
symmetric coupling weights to that of asymmetric
coupling weights. Some sufficient conditions for
reaching second-order consensus in a leader-following
context were derived by utilizing the Gershgorin disc
theorem and the curvature theory. It was shown that
to ensure leader-following consensus, the input delays
should be less than some critical values determined by
the network topology and the control gains.

Consensus algorithms in multi-agent systems have
been extensively studied in the literature. Existing
works have different focuses and might be categorized
in a variety of ways. In particular, different consensus
algorithms can be designed and analyzed for different
system models, among which the most studied models
are single-integrator dynamics [2], [3], [4], [5] and
double-integrator dynamics [6], [7], [8], [9]. In addi-
tion, besides leaderless consensus algorithms, it is
often of interest to study leader-following consensus
algorithms, i.e., consensus in the presence of a leader
or a reference [10], [11]. This paper discussed a leader-
following consensus algorithm for double-integrator
dynamics when the leader has a constant velocity. The
limitation of the algorithm (i.e., its incapability of
tracking a leader with a time-varying velocity) has
been commented by the authors in Remark 1.

There usually exist delays in networked systems
due to the finite speed of information transmission
and processing. In order to discuss the influence of
the delays, one needs to first model the delays, which
are usually classified as input delays and commun-
ication delays. The input delays can be caused by
information processing while the communication
delays can be caused by information propagation
from one agent to another. Consensus in the presence
of input delays and communication delays are
considered in [5], [7], [12], [13] and [14], [15], [16],
respectively. Consensus in the presence of both input
and communication delays is considered in [17].
While it is usually assumed that the delays are uni-
formly fixed [5], the extension to the case of multiple
(non-uniform or diverse) time-varying delays is also
discussed [18], [19], which take into account a more
general case. In this paper, delays were modeled as
multiple fixed input delays.

When studying the influence of the delays on
consensus algorithms, it is desirable to find some
sufficient conditions to guarantee the stability of the
closed-loop system. Two approaches are generally
adopted for the analysis, i.e., the frequency-domain
approach and the time-domain approach. The fre-
quency-domain approach is the Nyquist stability
criterion [1], [17] while the time-domain approach
is the Lyapunov-Krasovskii Theorem [13], [18] or
the Lyapunov-Razumikhin Theorem [20]. The fre-
quency-domain approach is often only applicable to
particular problems while the time-domain approach
is more general. For example, the frequency-domain
approach might not be feasible when the network�
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topologies are switching or the delays are time-
varying while the time-domain approach is still
applicable in this case [18]. On the other hand, the
stability conditions derived by the time-domain
approach are often related to some linear matrix
inequality (LMI) conditions, which might not be
straightforward to directly reveal the relationship
between the network structure and the bound of
the delays in the stability conditions. In contrast,
the stability conditions derived by the frequency-
domain approach can usually explicitly show the
feasible bound of the delays in relation to the net-
work structure and are hence easy to understand
and implement in real applications. This paper
adopted the frequency-domain approach as its
analysis tool.

Although much work has been done on consensus
algorithms in the presence of delays, there are still
several interesting directions worthy of further inves-
tigations. For example, in a leader-following context,
assume that the leader evolves according to the fol-
lowing dynamics

_x0ðtÞ ¼ v0ðtÞ
_v0ðtÞ ¼ fðx0ðtÞ; v0ðtÞ; tÞ;

ð1Þ

where x0 2 Rm and v0 2 Rm are, respectively, the
position and velocity of the leader, and f is a non-
linear function. Then, consider the follower
dynamics modeled by

_xiðtÞ ¼ viðtÞ
_viðtÞ ¼ fðxiðtÞ; viðtÞ; tÞ þ uiðt� TiðtÞÞ;

ð2Þ

where xi 2 Rm and vi 2 Rm are, respectively, the
position and velocity of agent i, ui is the control input,
and TiðtÞ is the time-varying input delay,
i ¼ 1; 2; . . . ; n.

In this discussion, we consider the following general
consensus algorithm

uiðtÞ ¼ �
Xn
j¼1

aijðtÞf½xiðtÞ � xjðt� TijðtÞÞ�

þ �½viðtÞ � vjðt� TijðtÞÞ�g
� biðtÞf½xiðtÞ � x0ðt� TijðtÞÞ�
þ �½viðtÞ � v0ðt� TijðtÞÞ�g;

ð3Þ

where aijðtÞ is the ði; jÞth entry of the adjacency matrix
associated with the n followers at time t, biðtÞ is the
linking weight from the leader to agent i at time t,
TijðtÞ is the time-varying communication delay, and �
is the coupling strength.

For the leaderless consensus problem, if there are
no communication delays (Tij ¼ 0), the input delays
are uniformly fixed (TiðtÞ ¼ T), the network topology
is static (aijðtÞ ¼ aij and biðtÞ ¼ bi,
8i 6¼ j;¼ 1; 2; . . . ; n), and the system is linear (f ¼ 0), a
necessary and sufficient condition for reaching
second-order consensus has been established in [7].
This work was then extended in [YuSMCB] to the
nonlinear case where fðxi; vi; tÞ is a general nonlinear
function that determines the final asymptotic velocity,
and some sufficient conditions for reaching second-
order consensus were derived. The approaches used
in the linear [7] and nonlinear [8] cases are, respect-
ively, eigenvalue analysis and Lyapunov functions.
Recently, [9] has extended the results in [7] to the case
of switching network topologies and derived some
sufficient conditions for reaching second-order con-
sensus based on the Lyapunov-Razumikhin theorem.
It is worthwhile to mention that most approaches used
to study the leaderless consensus problem can be
directly applied to study the leader-following con-
sensus problem. Here, the problem described by (1)-
(3) is very general in the sense that it takes into
account the time-varying communication and input
delays, switching network topologies, and nonlinear
dynamics. Therefore, the delay model used in this
paper can be viewed as a special case of the model in
this discussion.

In particular, we will extend the delay model in this
paper to a more general one. As in this paper, we
use double-integrator dynamics to describe the
system model and study a fixed network topology.
However, we consider the case where there exist both
multiple fixed input delays and multiple fixed com-
munication delays. Then, equation (6) in this paper is
extended to

_xiðtÞ ¼ viðtÞ

_viðtÞ ¼ �
Xn
j¼1

aijf½xiðt� TiÞ � xjðt� Ti � TijÞ�

þ �½viðt� TiÞ � vjðt� Ti � TijÞ�g
� bif½xiðt� TiÞ � x0ðt� Ti � TijÞ�
þ �½viðt� TiÞ � v0ðt� Ti � TijÞ�g;

ð4Þ

where Ti and Tij are, respectively, the fixed input and
communication delays. Here we have let ki ¼ �i ¼ 1
and �i ¼ �, 8i. By doing so, we will not lose the
generality because we assume that aij might not
be equal to aji. Define �xiðtÞ ¼ xiðtÞ � x0ðtÞ
and �viðtÞ ¼ viðtÞ � v0ðtÞ. Equation (4) can be written
as
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� _xiðtÞ ¼ �viðtÞ

� _viðtÞ ¼ �
Xn
j¼1

aijf½�xiðt� TiÞ � �xjðt� Ti � TijÞ�

þ �½�viðt� TiÞ � �vjðt� Ti � TijÞ�g
� bi½�xiðt� TiÞ þ ��viðt� TiÞ�:

ð5Þ
Here we have assumed that v0 ¼ 0 and hence x0
is a constant. This implies that x0ðt� TiÞ ¼
x0ðt� Ti � TijÞ. The analysis on the case when v0 is a
non-zero constant is almost the same except that we
can only get xi � x0 ! e as t ! 1 due to the existence
of the communication delays, where e is a non-zero
constant determined by the values of the commun-
ication delays and v0. Equation (5) can be written in
matrix form as

� _xðtÞ
� _vðtÞ

� �
¼

0n�n In

0n�n 0n�n

� �
�xðtÞ
�vðtÞ

� �

þ
Xn
k¼1

0n�n 0n�n

�Dk ��Dk

� �
�xðt� �kÞ
�vðt� �kÞ

� �

þ
Xn

k¼nþ1

0n�n 0n�n

Ak �Ak

� �
�xðt� �kÞ
�vðt� �kÞ

� �
;

ð6Þ

where 0n�n is the n� n matrix with all zero entries,

In is the n� n identity matrix, �x ¼ ½�x1; . . . ; �xn�T,
�v ¼ ½�v1; . . . ; �vn�T, �k ¼ Ti, i ¼ 1; . . . ; n, �k ¼ Ti þ Tij,

k ¼ nþ 1; . . . ; r, i; j ¼ 1; . . . ; n, r ¼ nðnþ1Þ
2 , and Dk ¼

½Dkij� and Ak ¼ ½Akij� are the corresponding

coefficient matrices associated with the delay

�k, whereDkij ¼
Pn

j¼1 aij; i ¼ j �k ¼ Ti

0 otherwise

�
, Akij ¼

aij; i 6¼ j �k ¼ Ti þ Tij
0; otherwise

:

�
Define �X ¼ ½�xT; �vT�T,

A0 ¼
0n�n In
0n�n 0n�n

� �
, Ak ¼

0n�n 0n�n

�Dk ��Dk

� �
, k ¼

1; . . . ; n, and Ak ¼
0n�n 0n�n

Ak ��Ak

� �
, k ¼ nþ 1; . . . ; r.

Note here
Pr

r¼0 Ak ¼
0n�n In

�ðLþ BÞ ��ðLþ BÞ

� �
,

where L is the Laplacian matrix corresponding to
the adjacency matrix associated with the directed
graph for the n followers, and B ¼ diagfbig. Also
note that it is easy to show that all eigenvalues

of
0n�n In

�ðLþ BÞ ��ðLþ BÞ

� �
are on the open left half

plane if the leader is a globally reachable node and � >

maxf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imð�iÞ2

Reð�iÞj�ij2
g

r
[21], where �i is the ith eigenvalue of

Lþ B. Then, consider the following Lyapunov func-
tion candidate

V ¼ ½�Xþ
Xr
k¼1

Ak

Z 0

��k

�Xðtþ �Þd��T P½�X

þ
Xr
k¼1

Ak

Z 0

��k

�Xðtþ 0Þd��

þ
Xr
k¼1

Z 0

��k

Z t

tþ�

�Xð�ÞTSk�Xð�Þ@�d��;

where P and Sk are symmetric positive-definite mat-
rices. By following a similar analysis to that in [22], the
stability of the closed-loop system (6) can be guaran-
teed under proper LMI conditions. Note that the
condition that all eigenvalues of

Pr
r¼0 Ak are on the

open left half plane implies that there exists a P to
ensure that ð

Pr
r¼0 AkÞTPþ Pð

Pr
r¼0 AkÞ is negative-

definite and further implies the existence of the LMI
conditions.

Until now, it is still quite difficult to solve the con-
sensus problem described by (1)–(3). While we have
only focused on one simple direction in this discussion,
there are several interesting possibilities deserving fur-
ther investigations. For example, it might be interesting
to consider the case of leader-following consensus in
the presence of a leader with a time-varying velocity
available to only a portion of the followers when there
exist both communication and input delays. It might
also be appealing to analyze the stability conditions on
nonlinear consensus algorithms in the presence of
multiple time-varying delays. The research on the
comparison between the influence of nonuniform time-
varying delays and uniform fixed delays on consensus
algorithms might also lead to some interesting results.
In addition, instead of considering delays as a disad-
vantage, it might be possible to consider delays as an
advantage. That is, some performance of the closed-
loop system (such as the convergence speed) might be
improved if delayed information is introduced to the
consensus algorithms intentionally.
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Final Comments by the Authors
H.-Y. Yang, X.-L. Zho, S.-Y. Zhang

In the paper [1], we studied a second-order leader-fol-
lowing consensus algorithm inmulti-agent systems with
directed network topologies and heterogeneous input
delays, which generalized the previous work [2] from
the case of symmetric coupling weights to that of
asymmetric coupling weights. By applying the gen-
eralized Nyquist criterion of the frequency domain, the
consensus algorithm with heterogeneous input delays
was analyzed. By utilizing the Greshgorin’s disc the-
orem and curvature theory, the consensus motion of
delayed multiple-agent algorithm with leader-following
was studied, and decentralized consensus conditions for
the multi-agent systems with asymmetric coupling
weights were obtained, where sufficient conditions for
reaching consensus use only local information of each
agent.

In the paper ‘‘Discussion on: ‘‘Consensus of
Second-Order Delayed Multi-Agent Systems with
Leader-Following’’’’ written by Meng, Yu and Ren, a

second-order leader-following consensus algorithm
with diverse input delays and diverse communication
delays was considered by applying the Lyapunov-
Krasovskii Theorem of the time-domain approach
that is different from the Nyquist stability criterion of
the frequency-domain approach in [1].

Consensus means that a team of agents reaches an
agreement on a common value by negotiating with
their neighbors. Recently, consensus algorithms in
multi-agent systems have been extensively studied in
the literature ([1] and its references). In the current
studies of the agent related problems, leader-follow-
ing consensus algorithm under a leader or a reference
has become one of the main research topic. In the
paper [1], we studied a leader-following consensus
algorithm for double-integrator dynamics when the
leader has a constant velocity. In the discussion
paper written by Meng, Yu and Ren, a leader-fol-
lowing consensus algorithm is considered when the
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leader’s velocity is zero i.e., the position of the leader
is fixed.

In leader-following multi-agent systems, suppose
the dynamics of the leader is determined by

_x0ðtÞ ¼ v0ðtÞ; ð1Þ

where x0 2 Rm and v0 2 Rm are the position and the
velocity of the leader, respectively. Then, a consensus
protocol of multi-agent systems for the follower can
be modeled by

_xiðtÞ ¼ viðtÞ;
_viðtÞ ¼ uiðtÞ; i ¼ 1; :::; n;

ð2Þ

where xi 2 Rm, vi 2 Rm, and ui 2 Rm, are the position,
velocity and acceleration, respectively, of agent i. The
control input uiðtÞ is designed in [1] as, for all i 2 I,

uiðtÞ ¼ �ki
Xn
j¼1

aij½�iðxiðtÞ � xjðtÞÞ
 

þ �iðviðtÞ � vjðtÞÞ�þbi½�iðxiðtÞ � x0ðtÞÞ þ �iðviðtÞ � v0ðtÞÞ�
�
;

ð3Þ

where control parameters ki > 0, �i > 0 and �i > 0, bi
is the linking weight from agent i to the leader. Note
that bi > 0 if there is a directed edge from agent i to the
leader; otherwise, bi ¼ 0.

Due to the finite speeds of transmission and
spreading as well as traffic congestions, there are usu-
ally time delays in spreading and communication in
reality. Therefore, it is very important to study the
delay effect on convergence of consensus protocols. In
order to discuss the influence of the delays, one needs to
first model the delays, which are usually classified as
input delays and communication delays. The input
delays can be caused by information processing while
the communication delays can be caused by informa-
tion propagation from one agent to another. In the
paper [1], consensus algorithm for double-integrator
dynamics (3) with heterogenous input delays is studied.

In the discussion paper, suppose the system is linear,
the control gain ki ¼ 1, �i ¼ 1, �i ¼ �, and there are
diverse input delays Ti and diverse communication
delaysTij, the consensus algorithm of the system (3) with
asymmetric coupling weighted graph is described as

uiðtÞ ¼ �
Xn

j¼1
aij½ðxiðt� TiÞ � xjðt� Ti � TijÞÞ

þ �ðviðt� TiÞ � vjðt� Ti � TijÞÞ�
� bi½ðxiðt� TiÞ � x0ðt� Ti � Ti0ÞÞ
þ �ðviðt� TiÞ � v0ðt� Ti � Ti0ÞÞ�; i 2 I:

ð4Þ

By applying the Lyapunov-Krasovskii Theorem of the
time-domain approach, the consensus of the algo-
rithm (4) with the assumption that v0 ¼ 0 (hence x0 is
a constant) is analyzed.

Although the time-domain approach is more gen-
eral than the frequency-domain approach, the con-
sensus condition derived by the time-domain
approach is often related to some linear matrix
inequality (LMI) condition, which might not be
straightforward to directly reveal the relationship
between the network structure and the bound of the
delays. Moreover, the parameters of the LMI con-
sensus condition are coupled with that of other agents.
However, the consensus conditions in [1] obtained by
the frequency-domain approach are decentralized
consensus conditions for the multi-agent systems,
where the sufficient conditions for reaching consensus
use only local information of each agent.

We apply the frequency-domain analysis method in
[1] to study the consensus of the algorithm (4) with the
same assumption that v0 ¼ 0. Then, we can obtain the
consensus condition for the leader-following multi-
agent systems with diverse input delays and diverse
communication delays.

Theorem 1: Suppose the multi-agent systems (1, 2, 4)
are composed of n agents and a leader with a static
directed interconnection graph that has the leader as a
globally reachable node, and the interconnection graph
has asymmetric coupling weights. For each agent the
following preconditions are assumed, for all i 2 I

Ki < 0:4495;

!i0 � T�1
î
arctanð�!i0Þ;

ð5Þ

where Ki ¼ Ti=�, î ¼ argmaxi2I Ti and !i0 satisfies

!i0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3Ki�K2

i
þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Ki�K2

i
Þ2þ

p
8Kið1�KiÞ

2

r
Ti

ð6Þ

Thus, all the agents in the systems asymptotically
converge to the leader’s state, if

�Tið2gi þ biÞ < Fi sinðFiÞ; ð7Þ

where gi ¼
Pn

l¼1 ail, Fi ¼ !icTi, !ic is the critical fre-
quency of the Nyquist plot of function �Gi ¼ 1þj!�

j!
e�j!Ti

j! ,
satisfying

tanð!icTiÞ ¼ �!ic: ð8Þ

Remark 1: Theorem 1 gives a decentralized consensus
condition for multi-agent systems with diverse com-
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munication delays and diverse input delays, which uses
only local information of each agent. This condition is
consistent with that given in [1].

Remark 2: The consensus condition in Theorem 1 is
only dependent on input delays Ti, but independent of
communication delays Tij. Therefore, suppose the input
delays Ti ¼ 0 and Tij 6¼ 0, the consensus of the algo-
rithm (4) is reached.

Remark 3: The consensus condition obtained by LMI
in discussion paper can not have the features described
in Remark 1 and Remark 2.

References

1. Hong-Yong Y, Xun-Lin Z, Si-Ying Z. Consensus of
second-order delayed multi-agent systems with leader-
following. Eur J Control 2010;15:1–12.

2. Tian YP, Liu CL. Robust consensus of multi-agent
systems with diverse input delays and nonsymmetric
interconnection perturbations. Automatica 2009; 45:
1347–1353.

Discussion on: ‘‘Consensus of Delayed Multi-Agent Systems with Leader-Following’’ 205


