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a b s t r a c t

This paper studies synchronization of coupled second-order linear harmonic oscillators with local
interaction.We analyze convergence conditions over, respectively, directed fixed and switching network
topologies by using tools from algebraic graph theory,matrix theory, and nonsmooth analysis. It is shown
that the coupled harmonic oscillators can be synchronized under mild network connectivity conditions.
Examples are given to validate the convergence conditions. The theoretical result is also applied to
synchronized motion coordination of multi-agent systems as a proof of concept.
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1. Introduction

When two objects of mass m are connected by a damper with
coefficient b and are each attached to fixed supports by identical
springs with spring constants k, they can be represented by

mẍ1 + kx1 + b(ẋ1 − ẋ2) = 0 (1a)
mẍ2 + kx2 + b(ẋ2 − ẋ1) = 0, (1b)

where xi ∈ R denotes the position of the ith object. Motivated
by (1), we study in this paper n coupled harmonic oscillators with
local interaction of the form

ẍi + α(t)xi +
n∑
j=1

aij(t)(ẋi − ẋj) = 0, i = 1, . . . , n, (2)

where xi ∈ R is the position of the ith oscillator, α(t) is a
positive gain at time t , and aij(t) characterizes interaction between
oscillators i and j at time t (i.e., aij(t) > 0 if oscillator i can obtain
the velocity of oscillator j at time t and aij(t) = 0 otherwise).
While (2) conceptually represents a systemwhere n virtual masses
are connected by virtual dampers, the purpose of this paper is
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to adopt (2) as a distributed algorithm for synchronization of the
positions and velocities of n networked point-mass agents.
Synchronization phenomena are common in nature (see Ni-

jmeijer and Rodriguez-Angeles (2003) and references therein). An
important avenue of study in synchronization focuses on cou-
pled oscillators. One classical example is the Kuramotomodel (Ku-
ramoto, 1984), which assumes full connectivity of the network.
Recent works generalize the Kuramoto model to nearest neigh-
bor interaction (see e.g., Chopra and Spong (2005), Jadbabaie, Mo-
tee, and Barahona (2004) and Papachristodoulou and Jadbabaie
(2005)). In the context of multi-agent systems, Paley, Leonard, and
Sepulchre (2005, 2006) study connections between phase mod-
els of coupled oscillators and kinematic models of self-propelled
particle groups and provide feedback control laws that stabi-
lize symmetric formations of multiple, unit speed particles on
closed curves. In Chopra and Spong (2006), output synchroniza-
tion is studied for general passive systems, which unifies sev-
eral existing results in the literature. In contrast to Chopra and
Spong (2005, 2006), Jadbabaie et al. (2004), Paley et al. (2005),
Papachristodoulou and Jadbabaie (2005) and Paley et al. (2006),
algorithm (2) describes coupled second-order linear harmonic os-
cillators. In particular, the oscillators studied in Paley et al. (2005,
2006) are modeled as points on a torus, whereas the oscillator
models studied in this paper are represented by points on a real
line. In addition, the linear structure of (2) allows us to derive
a milder convergence condition than that in Chopra and Spong
(2006) and explicitly show the final trajectories to which each os-
cillator converges over directed fixed network topologies.
Related to synchronization are consensus problems in multi-

agent systems. Consensus means that a team of agents reaches an
agreement on a common value by negotiatingwith their neighbors
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(see Olfati-Saber, Fax, and Murray (2007) and Ren, Beard, and
Atkins (2007) for recent surveys). In particular, (2) is related to
the second-order consensus-type algorithms studied in Ren and
Atkins (2007), Tanner, Jadbabaie, and Pappas (2007) and Xie and
Wang (2007). In Tanner et al. (2007), flocking behavior is analyzed
using nonsmooth analysis over undirected fixed and switching
network topologies. Ren and Atkins (2007) proposes and analyzes
consensus algorithms for double-integrator dynamics and shows
that unlike the single-integrator case, both the network topology
and the coupling strength of relative velocities between neighbors
affect the convergence result in the general case of directed
interaction. In addition, Xie and Wang (2007) studies a consensus
algorithm for double-integrator dynamics where a damping term
for the velocities is introduced and analyzes the algorithm over
an undirected network topology. However, in contrast to the
algorithms in Ren and Atkins (2007), Tanner et al. (2007) and
Xie and Wang (2007), where the consensus equilibrium for the
velocities is a nonzero constant or zero, the positions and velocities
using (2) are synchronized to achieve oscillatory motions.
The objective of the current paper is to analyze convergence

conditions for (2) over, respectively, directed fixed and switching
network topologies. The convergence analysis will be conducted
by using tools from algebraic graph theory, matrix theory, and
nonsmooth analysis. The theoretical result is also applied to
synchronized motion coordination of multi-agent systems as a
proof of concept.

2. Background

To analyze the convergence conditions for coupled harmonic
oscillators over directed fixed and switching network topologies,
we use directed graph G = (V, E), where V = {1, . . . , n} is the
node set and E ⊆ V × V is the edge set, to model interaction
among n oscillators. Let A = [aij] ∈ Rn×n be the adjacency matrix
associated with G. Adjacency matrix A is defined such that aij is
a positive weight if (j, i) ∈ E , while aij = 0 if (j, i) 6∈ E . Note
that for directed graphs,A is not necessarily symmetric. Also note
that aij(t) in (2) is the (i, j) entry ofA at time t . Let (nonsymmetric)
Laplacian matrixL = [`ij] ∈ Rn×n associated with G be defined as
`ii =

∑n
j=1,j6=i aij and `ij = −aij, where i 6= j.

A directed path of G is a sequence of edges of the form
(i1, i2), (i2, i3), . . ., where ij ∈ V . A directed graph is strongly
connected if there is a directed path from every node to every other
node. A directed graph has a directed spanning tree if there exists at
least one node having a directed path to all other nodes. A directed
graph is balanced if

∑n
j=1 aij =

∑n
j=1 aji, for all i.

Let ri = xi and vi = ẋi. Eq. (2) can be written as

ṙi = vi,

v̇i = −α(t)ri −
n∑
j=1

aij(t)(vi − vj), i = 1, . . . , n. (3)

Let r = [r1, . . . , rn]T and v = [v1, . . . , vn]T. Eq. (3) can be written
in matrix form as[
ṙ
v̇

]
=

[
0n In

−α(t)In −L(t)

]
︸ ︷︷ ︸

Q

[
r
v

]
, (4)

where 0n denotes the n×n zeromatrix, In denotes the n×n identity
matrix, and L(t) ∈ Rn×n is the (nonsymmetric) Laplacian matrix
associated with directed graph G at time t .
3. Convergence over directed fixed network topologies

In this section, we consider the convergence of (3) over directed
fixed network topologies. Here we assume that both α andL in (4)
are constant. Both leaderless and leader-following cases will be
addressed. We need the following lemmas for our main result.

Lemma 3.1 (Ren & Beard, 2005). Let L be the (nonsymmetric)
Laplacian matrix associated with G. Then L has a simple zero
eigenvalue and all its other eigenvalues have positive real parts if and
only if G has a directed spanning tree. In addition, there exist 1n,
where 1n is an n × 1 column vector of all ones, satisfying L1n = 0
and p ∈ Rn satisfying p ≥ 0, pTL = 0, and pT1n = 1.1

Lemma 3.2. Let µi ∈ C be the ith eigenvalue of −L. Also let χri ∈
Cn and χ`i ∈ Cn be, respectively, the right and left eigenvectors of
−L associated with µi. Then the eigenvalues of Q defined in (4)

are given by λi± =
µi±

√
µ2i −4α

2 with associated right eigenvectors
ϕri± = [χ

T
i , λi±χ

T
i ]
T and left eigenvector ϕ`i± = [χT`i,−

λi±
α
χT`i]

T.

Proof. Let λ be an eigenvalue ofQ and ϕr = [xTr , y
T
r ]
T
∈ C2n be an

associated right eigenvector. Then we get that[
0n In
−αIn −L

] [
xr
yr

]
= λ

[
xr
yr

]
. (5)

It follows from (5) that

yr = λxr , (6a)
−αxr −Lyr = λyr , (6b)

Combining (6a) and (6b), gives −Lxr = λ2+α
λ
xr . Suppose that µ

is an eigenvalue of −L with an associated right eigenvector χr , it
follows that λ

2
+α
λ
= µ and xr = χr . Therefore, it follows that λ

satisfies

λ2 − µλ+ α = 0 (7)

and ϕr = [χTr , λχ
T
r ]
T according to (6a). Noting that µi is the

ith eigenvalue of −L with an associated right eigenvector χri, it
follows from (7) that the eigenvalues of Q are given by λi± =
µi±

√
µ2i −4α

2 with associated right eigenvectors ϕri± = [χTri, λi±χ
T
ri]
T.

Similarly, let ϕ` = [xT`, y
T
`]
T
∈ C2n be a left eigenvector of Q

associated with eigenvalue λ. Then we get that

[xT`, y
T
`]

[
0n In
−αIn −L

]
= λ[xT`, y

T
`]. (8)

It follows from (8) that

yT` = −
λ

α
xT`, (9a)

xT` − y
T
`L = λy

T
`. (9b)

Combining (9a) and (9b), gives −xT`L =
λ2+α
λ
xT` . A similar

argument to that of the right eigenvectors shows that the left
eigenvectors of Q associated with λi± are ϕ`i± = [χT`i,−

λi±
α
χT`i]

T.
�

In the leaderless case, we have the following theorem.

1 That is, 1n and p are, respectively, right and left eigenvectors of L associated
with the zero eigenvalue.
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Theorem 3.1. Let p be defined as in Lemma 3.1. Let µi, λi±, ϕri±,
and ϕ`i± be defined as in Lemma 3.2. Suppose that directed graph G
has a directed spanning tree. Using (3), ri(t) → cos(

√
αt)pTr(0) +

1
√
α
sin(
√
αt)pTv(0) and vi(t) → −

√
α sin(

√
αt)pTr(0) +

cos(
√
αt)pTv(0) for large t.

Proof. Note that directed graph G has a directed spanning tree.
It follows from Lemma 3.1 that −L has a simple zero eigenvalue
with an associated right eigenvector 1n and left eigenvector p
that satisfies p ≥ 0, pTL = 0, and pT1n = 1. In addition, all
other eigenvalues of −L have negative real parts. Without loss
of generality, let µ1 = 0 and then we get that Re(µi) < 0,
i = 2, . . . , n, where Re(·) denotes the real part of a number.
Accordingly, it follows from Lemma 3.2 that λ1± = ±

√
αj with

associated right and left eigenvectors given by

ϕr1± = [1Tn,±
√
αj1Tn]

T, ϕ`1± =

[
pT,±

1
√
αj

pT
]T
, (10)

where j is the imaginary unit. Because Re(µi) < 0, i = 2, . . . , n,

it follows that Re(λi−) = Re(
µi−

√
µ2i −4α

2 ) < 0, i = 2, . . . , n.
Noting that λi+λi− = α, i = 2, . . . , n, it follows that arg(λi+) =
−arg(λi−), where arg(·) denotes the phase of a number. Therefore,
it follows that Re(λi+) < 0, i = 2, . . . , n.
Note thatQ an be written in Jordan canonical form as

Q = [w1, . . . , w2n]︸ ︷︷ ︸
P

 √
αj 0 01×(2n−2)
0 −

√
αj 01×(2n−2)

0(2n−2)×1 0(2n−2)×1 J̄


 ν

T
1
.
.
.

νT2n


︸ ︷︷ ︸
P−1

, (11)

where wi ∈ R2n, i = 1, . . . , 2n, can be chosen to be the right
eigenvectors or generalized eigenvectors of Q, νi ∈ R2n, i =
1, . . . , 2n, can be chosen to be the left eigenvectors or generalized
eigenvectors ofQ, and J̄ is the Jordan upper diagonal block matrix
corresponding to eigenvalues λi+ and λi−, i = 2, . . . , n. Because
P−1P = I2n, wi and νi must satisfy that νTi wi = 1 and ν

T
i wk = 0,

where i 6= k. Accordingly, we let w1 = ϕr1+, w2 = ϕr1−, ν1 =
1
2ϕ`1+, and ν2 =

1
2ϕ`1−, where ϕr1± and ϕ`± are defined in (10).

Note that limt→∞ eJ̄ t → 0. For large t , eQt = PeJtP−1
approaches

e
√
αjt
[

1n√
αj1n

] [
1
2
pT,

1
2
√
αj

pT
]

+ e−
√
αjt
[

1n
−
√
αj1n

] [
1
2
pT,−

1
2
√
αj

pT
]

=

 cos(
√
αt)1npT

1
√
α
sin(
√
αt)1npT

−
√
α sin(

√
αt)1npT cos(

√
αt)1npT

 .
The solution to (4) is given by

[
r(t)
v(t)

]
= eQt

[
r(0)
v(0)

]
. Therefore, it

follows that ri(t) → cos(
√
αt)pTr(0) + 1

√
α
sin(
√
αt)pTv(0) and

vi(t)→−
√
α sin(

√
αt)pTr(0)+ cos(

√
αt)pTv(0) for large t . �

Under the condition of Theorem3.1, all ri converge to a common
oscillatory trajectory, so do all vi. That is, the n coupled harmonic
oscillators are synchronized. We next consider the case where
there exists a virtual leader, labeled as oscillator 0 with states r0
and v0.
Suppose that r0 and v0 satisfy

ṙ0 = v0, v̇0 = −αr0. (12)
Fig. 1. Directed graph G in the case of directed fixed network topologies.

In this case, we study the algorithm

ṙi = vi,

v̇i = −αri −
n∑
j=1

aij(vi − vj)− ai0(vi − v0), (13)

where i = 1, . . . , n and ai0 is a positive constant if v0 is available
to oscillator i and ai0 = 0 otherwise.

Corollary 3.2. Suppose that the virtual leader has a directed path to
all oscillators. Using algorithm (13), ri(t)→ r0(t) and vi(t)→ v0(t)
for large t, where r0(t) = cos(

√
αt)r0(0) + 1

α
sin(
√
αt)v0(0) and

v0(t) = −
√
α sin(

√
αt)r0(0)+ cos(

√
αt)v0(0).

Proof. It is straightforward to show that the solution to (12) is
given by r0(t) = cos(

√
αt)r0(0) + 1

α
sin(
√
αt)v0(0) and v0(t) =

−
√
α sin(

√
αt)r0(0) + cos(

√
αt)v0(0). Consider that the team

consists of n + 1 oscillators (oscillators 1–n and oscillator 0). The
proof is a direct application of that of Theorem 3.1. �

Wealso consider the casewhere there exist deviations between
oscillator states. In this case, we study the algorithm

ṙi = vi,

v̇i = −α(ri − δi)−
n∑
j=1

aij(vi − vj)− ai0(vi − v0), (14)

where i = 1, . . . , n and δi is a constant.

Corollary 3.3. Suppose that the virtual leader has a directed path to
all oscillators. Using (14), ri(t) → r0(t) + δi and vi(t) → v0(t) for
large t, where r0(t) and v0(t) are defined in Corollary 3.2.

Proof. Let r̃i = ri − δi. Noting that ˙̃r i = vi, it follows from
Corollary 3.2 that r̃i(t)→ r0(t) and vi(t)→ v0(t) for large t with
r̃i playing the role of ri in (13). �

Example 3.4. To illustrate, we show simulation results involving
four coupled harmonic oscillators using (3) over directed fixed
network topologyG as shown in Fig. 1. Note thatG in this case has a
directed spanning tree, implying that the condition of Theorem 3.1
is satisfied. We assume that aij = 1 if (j, i) ∈ E and aij = 0
otherwise. Figs. 2 and 3 show, respectively, the evolution of the
oscillator states with α = 1 and α = 4. Note that the oscillator
states are synchronized for both α = 1 and α = 4. However,
the value of α has an effect on the magnitude and frequency of the
synchronized states.

4. Convergence over directed switching network topologies

In this section, we consider the convergence of (3) over directed
switching network topologies. We consider two cases, namely, (i)
directed graph G(t) is strongly connected and balanced at each
time instant; and (ii) directed graph G(t) has a directed spanning
tree at each time instant.
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Fig. 2. Evolution of oscillator states over directed fixed network topologies with
α = 1 and G shown in Fig. 1.

Fig. 3. Evolution of oscillator states over directed fixed network topologies with
α = 4 and G shown in Fig. 1.

Let P denote a set indexing the class of all possible directed
graphs Gp, where p ∈ P , defined on n nodes. Note thatP is a finite
set by definition. Suppose that (3) can be written as[
ṙ
v̇

]
=

[
0n In

−ασ(t)In −Lσ(t)

]
︸ ︷︷ ︸

Qσ(t)

[
r
v

]
, (15)

where σ : [0,∞) → P is a piecewise constant switching signal
with switching times t0, t1, . . . , ασ(t) is a positive gain associated
with directed graph Gσ(t), and Lσ(t) is the (nonsymmetric)
Laplacian matrix associated with directed graph Gσ(t).

Theorem 4.1. Suppose that σ(t) ∈ Psb, where Psb ⊂ P denotes
the set indexing the class of all possible directed graphs defined on
n nodes that are strongly connected and balanced. Also suppose that
ασ(t) ≡ αsb, where αsb is a positive scalar. Using (3), ri(t) → rj(t)
and vi(t)→ vj(t) as t →∞.

Proof. The proof is motivated by that of Theorem 1 in Tanner
et al. (2007), which relies on differential inclusions and nonsmooth
analysis. We only sketch the main steps of the proof. Consider the
Lyapunov function candidate

V =
1
2
αsbrTr +

1
2
vTv. (16)

Noting that v̇ is discontinuous due to switches of network
topologies, we let v̇ ∈a.e K [−Lσ(t)v] − αsbr , where K [·] is a
differential inclusion and a.e denotes ‘‘almost everywhere’’. The
generalized derivative of V is given by V ◦ = αsbv

Tr +
vT[−αsbr + φv] = vTφv , where φv is an arbitrary element of
K [−Lσ(t)v]. Note that directed graph Gσ(t) is strongly connected
and balanced. It follows from Olfati-Saber and Murray (2004) that
−vTLσ(t)v ≤ 0, which implies that maxφv∈K [−Lσ(t)v](v

Tφv) =

max co(−vTLσ(t)v) = 0. In particular, max co(−vTLσ(t)v) = 0
if and only if vi = vj, which in turn implies that v̇i = v̇j. Noting
that ασ(t) ≡ αsb, it follows from (15) (see also (3)) that ri = rj
when vi = vj and v̇i = v̇j. It thus follows from the invariance
principle for differential inclusions (Ryan, 1998) that ri(t)→ rj(t)
and vi(t)→ vj(t) as t →∞. �

Let rij = ri − rj and vij = vi − vj. Also let r̃ =
[r12, r23, . . . , r(n−1)n]T and ṽ = [v12, v23, . . . , v(n−1)n]T. Eq. (15)
can be rewritten as[
˙̃r
˙̃v

]
=

[
0n−1 In−1

−ασ(t)In−1 −Dσ(t)

]
︸ ︷︷ ︸

Rσ(t)

[
r̃
ṽ

]
, (17)

whereDσ(t) ∈ R(n−1)×(n−1) can be derived fromLσ(t).

Theorem 4.2. Let Pst ⊂ P denote the set indexing the class of
all possible directed graphs defined on n nodes that have a directed
spanning tree. The following two statements hold:
(1)MatrixRp defined in (17) is stable for each p ∈ Pst .
(2) Let ap ≥ 0 and χp > 0, for which

∥∥eRpt∥∥ ≤ e(ap−χpt), t ≥ 0.
Suppose that σ(t) ∈ Pst . If tk+1− tk > supp∈Pst {

ap
χp
}, ∀k = 0, 1, . . .,

then using (3), ri(t)→ rj(t) and vi(t)→ vj(t) as t →∞.

Proof. For the first statement, note that Theorem 3.1 shows that
for each p ∈ Pst , ri(t)→ rj(t) and vi(t)→ vj(t) as t →∞, which
implies that r̃(t) → 0 and ṽ(t) → 0 as t → ∞. It thus follows
from (17) thatRp is stable for each p ∈ Pst .
For the second statement, under the condition of the theorem,

becauseRp is stable for each p ∈ Pst , it follows fromMorse (1996,
Lemma 2) that switched system (17) is globally exponentially
stable if tk+1 − tk > supp∈Pst {

ap
χp
}, ∀k = 0, 1, . . .. Equivalently,

it follows that under the same condition ri(t)→ rj(t) and vi(t)→
vj(t) as t →∞. �

Note that Theorem 4.2 imposes a bound on how fast the
network topology can switch while Theorem 4.1 does not. Also
note that the convergence condition in Theorem 4.2 is only a
sufficient condition.When there exists a virtual leader, the analysis
can follow a similar line to that of Theorems 4.1 and 4.2.

Example 4.3. To illustrate, we show simulation results involving
four coupled harmonic oscillators using (3) over directed switching
network topologies. We first let ασ(t) ≡ 1 and G(t) switches
randomly from {G1,G2,G3} as shown in Fig. 4. We assume that
aij = 1 if (j, i) ∈ E and aij = 0 otherwise. Here we let t0 = 0
s and choose tk randomly from (2k − 2, 2k) s, k = 1, 2, . . .. Note
thatG1–G3 shown in Fig. 4 are all strongly connected and balanced,
implying that the condition of Theorem4.1 is satisfied. Fig. 5 shows
the evolution of the oscillator states in this case. Note that all
oscillator states are synchronized.
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(a) G1 . (b) G2 . (c) G3 .

Fig. 4. Directed graphs G1–G3 . We assume that aij = 1 if (j, i) ∈ E and aij = 0
otherwise. All G1–G3 are strongly connected and balanced.

Fig. 5. Evolution of oscillator states over directed switching network topologies
when ασ(t) ≡ 1 and G(t) switches from {G1,G2,G3} as shown in Fig. 4.

(a) G1 . (b) G2 . (c) G3 .

Fig. 6. Directed graphs G1–G3 . All of them have a directed spanning tree.

We then let ασ(t) switch from {α1, α2, α3}, where

α1 = 1, α2 = 4, α3 = 9 (18)

and G(t) switches randomly from {G1,G2,G3} as shown in Fig. 6.
Here we again let t0 = 0 s and choose tk randomly from (2k −
2, 2k) s, k = 1, 2, . . .. Note that G1–G3 shown in Fig. 6 all have a
directed spanning tree, implying that the condition of Theorem 4.2
is satisfied. Fig. 7 shows the evolution of the oscillator states in this
case. In contrast to the previous case, the oscillator states do not
approach a uniform magnitude and frequency due to switching of
α values. However, all oscillator states are still synchronized.

5. Application to motion coordination of multi-agent systems

In this section, we apply algorithm (14) to motion coordination
of multi-agent systems. Suppose that there are four point-mass
agents in the team with dynamics give by ṗi = qi and q̇i = wi,
i = 1, . . . , 4, where pi = [xi, yi]T is the position, qi = [vxi, vyi]T

is the velocity, and wi = [wxi, wyi]T is the acceleration input.
Also suppose that there exists a virtual leader with position p0 =
[x0, y0]T and velocity q0 = [vx0, vy0]T, and p0 and q0 satisfy

ṗ0 = q0, q̇0 = −αp0, (19)
Fig. 7. Evolution of oscillator states over directed switching network topologies
when ασ(t) switches from (18) and G(t) switches from {G1,G2,G3} as shown in
Fig. 6.

Table 1
Parameters and initial conditions used in the simulation.

α = 1
δx1 = 0, δx2 = 4, δx3 = 0, δx4 = 4
δy1 = 0, δy2 = 0, δy3 = −4, δy4 = −4
x0(0) = 1, x1(0) = 1.2, x2(0) = 0.8, x3(0) = 1.4, x4(0) = 0.5
y0(0) = −1, y1(0) = −1.2, y2(0) = −0.8, y3(0) = −0.7, y4(0) = 1.5
vx0(0) = 1, vx1(0) = 0.2, vx2(0) = 0.3, vx3(0) = 0.4, vx4(0) = 0.5
vy0(0) = 1, vy1(0) = 0.4, vy2(0) = 0.6, vy3(0) = 0.8, vy4(0) = 1

Fig. 8. Network topology for the four agents and the virtual leader. An arrow from
node j to node i denotes that agent i can receive information from agent j. An arrow
from node L to node i denotes that agent i can receive information from the virtual
leader.

where α is a positive constant.We apply (14) to designwxi andwyi,
respectively, as

wxi = −α(xi − δxi)−
n∑
j=1

aij(vxi − vxj)− ai0(vxi − vx0)

wyi = −α(yi − δyi)−
n∑
j=1

aij(vyi − vyj)− ai0(vyi − vy0),

where δxi and δyi are constant.
Parameters and initial conditions used in the simulation are

shown in Table 1. By solving (19) with the initial conditions of the
virtual leader shown in Table 1, it is straightforward to show that
the trajectory of the virtual leader follows an elliptic orbit.
Fig. 8 shows the network topology for the four agents and the

virtual leader. We let aij = 1, i, j = 1, . . . , 4, if agent i can receive
information from agent j and aij = 0 otherwise.We also let ai0 = 1,
i = 1, . . . , 4, if agent i can receive information from the virtual
leader and ai0 = 0 otherwise.
Fig. 9 shows the complete trajectories and snapshots of the four

agents. Note that the four agents are able to synchronize their
motions and move on elliptic orbits.



3200 W. Ren / Automatica 44 (2008) 3195–3200
Fig. 9. Complete trajectories of the four agents. Circles show the snapshot at t = 0
s while squares show the snapshots at t = 5, 10, 15, 20 s.

6. Conclusion and future work

We have studied synchronization of coupled harmonic oscilla-
tors with local interaction. In the case of directed fixed network
topologies, we have shown that the coupled second-order lin-
ear harmonic oscillators are synchronized when the directed net-
work topology has a directed spanning tree. In the case of directed
switching network topologies, we have shown that the coupled
harmonic oscillators are synchronized when the directed network
topology is strongly connected and balanced at each time instant
or the directed network topology has a directed spanning tree at
each time instant and the dwell time between switchings is suf-
ficiently large. Examples have been given to validate the conver-
gence conditions. The theoretical result has also been applied to
synchronizedmotion coordination ofmulti-agent systems to show
the effectiveness of the proposed strategy. In future work, we will
apply the ideas in the current paper to cooperative scanning of an
area with multiple robotic vehicles in experiments.
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