
International Journal of Control
Vol. 82, No. 11, November 2009, 2137–2149
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This article proposes and analyses distributed, leaderless, model-independent consensus algorithms for
networked Euler–Lagrange systems. We propose a fundamental consensus algorithm, a consensus algorithm
accounting for actuator saturation, and a consensus algorithm accounting for unavailability of measurements of
generalised coordinate derivatives, for systems modelled by Euler–Lagrange equations. Due to the fact that the
closed-loop interconnected Euler–Lagrange equations using these algorithms are non-autonomous, Matrosov’s
theorem is used for convergence analysis. It is shown that consensus is reached on the generalised coordinates and
their derivatives of the networked Euler–Lagrange systems as long as the undirected communication topology is
connected. Simulation results show the effectiveness of the proposed algorithms.
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1. Introduction

Consensus problems study how a team of agents can
reach an agreement on a common value by negotiating
with their neighbours and have received significant
attention in the area of cooperative control recently.
Current consensus algorithms primarily focus on
vehicles with single-integrator kinematics (see Ren,
Beard, and Atkins (2007), Olfati-Saber, Fax, and
Murray (2007) and references therein), double-inte-
grator dynamics (e.g. Lafferriere, Williams,
Caughman, and Veerman 2005; Veerman, Lafferriere,
Caughman, and Williams 2005; Olfati-Saber 2006; Lee
and Spong 2007; Tanner, Jadbabaie, and Pappas 2007;
Ren and Atkins 2007; Xie and Wang 2007) and rigid-
body attitude dynamics with attitudes represented by
Euler parameters (e.g. Ren 2007).

Euler–Lagrange equations can be used to model
a class of mechanical systems including robotic
manipulators and rigid bodies. A related problem to
consensus is synchronisation of Euler–Lagrange sys-
tems (e.g. Krogstad and Gravdahl 2006; Su, Sun, Ren,
and Mills 2006; Sun, Shao, and Feng 2007; Chung and
Slotine 2007) or general passive systems (Chopra and
Spong 2006). In Krogstad and Gravdahl (2006),
a synchronisation scheme is developed for formation-
flying spacecraft. The results in Krogstad and
Gravdahl (2006) rely on an all-to-all communication
topology. In Su et al. (2006) and Sun et al. (2007),
position synchronisation of multi-axis motions is
addressed via a cross-coupling technique. Chung and
Slotine (2007) use contraction analysis to study

synchronisation of Lagrangian systems. The results in
Su et al. (2006), Sun et al. (2007) and Chung and
Slotine (2007) rely on a bidirectional or unidirectional
ring communication topology. In Chopra and Spong
(2006), output synchronisation is studied under
a passivity-based framework. Chopra and Spong
(2006) address both fixed and switching communica-
tion topologies and unify several existing results on
consensus or synchronisation in the literature. To use
the passivity property, the control law on synchroni-
sation of Euler–Lagrange systems derived in Chopra
and Spong (2006) is model dependent in the sense that
it requires the knowledge of the inertial matrix and
the Coriolis and centrifugal torques. In addition, the
control law requires measurements of generalised
coordinate derivatives.

1.1 Motivation of the current article

The objective of the current article is to propose
and analyse distributed, leaderless, model-independent
consensus algorithms for networked Euler–Lagrange
systems. We are motivated to derive distributed,
leaderless, model-independent consensus algorithms
that guarantee that the networked Euler–Lagrange
systems reach consensus on their states when the
systems have only local interaction with their neigh-
bours, none of them has the knowledge of the group
reference trajectory (i.e. none of them is a leader), and
the models of the systems are not accurately known.
The distributed feature of the algorithms makes them
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scalable to a large number of systems while the model-
independent feature of the algorithms makes them
not to rely on accurate knowledge of the systems.
The leaderless feature of the algorithms makes them
suitable for applications where the particular consen-
sus equilibrium is not what is important, but rather
that each system in the team converges to an identical
state. While there are many applications where there
exists a group reference trajectory (i.e. leader-following
case), there are also numerous applications where
leaderless algorithms are important. Examples include
rendezvous, flocking, and attitude synchronisation.
For example, the proposed algorithms have potential
applications in automated rendezvous and docking. In
addition, rigid-body attitude dynamics can be written
in the form of Euler–Lagrange equations. The
proposed algorithms can be used for attitude synchro-
nisation of multiple spacecraft with local interaction.
Furthermore, when there is a team of networked
mobile vehicles equipped with robotic arms that hold
sensors (e.g. iRobot PackBot Explorer), the robotic
arms on each mobile vehicle can be modelled by
Euler–Lagrange equations. The proposed algorithms
can be used to synchronise the robotic arms and the
sensors equipped on different mobile vehicles so that
a team of mobile vehicles can scan an area coopera-
tively. For Euler–Lagrange systems, there exists actu-
ator saturation. Also it is often the case that only
measurements of generalised coordinates instead of
generalised coordinate derivatives are available.
Unfortunately, these constraints are often neglected
in the existing results for networked Euler–Lagrange
systems. We are therefore motivated to also derive
distributed, leaderless, model-independent consensus
algorithms that account for actuator saturation or
unavailability of measurements of generalised coordi-
nate derivatives.

1.2 Contributions of the current article

The current article complements some results in
existing consensus algorithms for single-integrator,
double-integrator, and rigid-body attitude dynamics
and synchronisation approaches for Euler–Lagrange
systems or general passive systems in the following
aspects. First, we propose and analyse a fundamental
distributed, leaderless, model-independent consensus
algorithm for Euler–Lagrange systems. Second, we
propose and analyse a distributed, leaderless, model-
independent consensus algorithm for Euler–Lagrange
systems that accounts for actuator saturation. Third,
we propose and analyse a distributed, leaderless,
model-independent consensus algorithm for Euler–
Lagrange systems that accounts for unavailability of

measurements of generalised coordinate derivatives.
In our prior work (Ren 2007, 2008), LaSalle’s
invariance principle combined with algebraic graph
theory and Lyapunov theory is used to analyse
consensus algorithms for double-integrator dynamics
and rigid-body attitude dynamics with attitudes
represented by Euler parameters. However, the
closed-loop interconnected Euler–Lagrange equations
using the proposed algorithms are non-autonomous,
implying that LaSalle’s invariance principle is no
longer applicable and the convergence analysis is
more challenging in this case. Instead, we resort to
the interplay of tools from algebraic graph theory,
Lyapupov theory and Matrosov’s theorem for conver-
gence analysis of the proposed algorithms. While each
tool can be used in some contexts, the interplay of
these tools poses significant theoretical challenges.
The analysis techniques that we use in this article
themselves are novel and will offer insights for stability
analysis of other interconnected systems.

1.3 Comparison with the existing results

The novelty of the proposed algorithms in this article
compared with those reported in the existing literature
includes (i) study of distributed, leaderless consensus
algorithms for non-linear Euler–Lagrange equations,
(ii) independence on the knowledge of system models,
(iii) explicit consideration of actuator saturation, and
(iv) reduced requirement on communication/sensing.
In particular, in contrast to existing consensus algo-
rithms (e.g. Olfati-Saber et al. (2007), Ren et al. (2007)
and references therein), the algorithms proposed in this
article take into account more challenging non-linear
Euler–Lagrange equations. In contrast to existing
synchronisation approaches for Euler–Lagrange sys-
tems (e.g. Krogstad and Gravdahl 2006; Su et al. 2006;
Sun et al. 2007; Chung and Slotine 2007), the
algorithms proposed in this article are leaderless in
the sense that there does not exist a group reference
trajectory for each system. In addition, the proposed
algorithms do not rely on restrictive all-to-all or ring
communication topologies but allow for arbitrary
undirected connected communication topologies. In
contrast to the passivity-based approach for output
synchronisation (Chopra and Spong 2006), the algo-
rithms proposed in this article do not rely on the
passivity property of the systems and are model
independent in the sense that the algorithms do not
require the knowledge of the inertial matrix and the
Coriolis and centrifugal torques. In contrast to existing
synchronisation approaches for Euler–Lagrange sys-
tems (e.g. Krogstad and Gravdahl 2006; Su et al. 2006;
Sun et al. 2007; Chung and Slotine 2007), our second
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algorithm explicitly accounts for actuator saturation
by introduction of bounded non-linear functions. In
contrast to all the above-mentioned references in
synchronisation of Euler–Lagrange systems or general
passive systems, our third algorithm does not require
measurements of generalised coordinate derivatives,
which reduces communication/sensing.

2. Problem statement and background

Euler–Lagrange systems are represented by

MiðqiÞ €qi þ Ciðqi, _qiÞ _qi ¼ �i, i ¼ 1, . . . , n, ð1Þ

where qi2R
p is the vector of generalised coordinates,

Mi(qi)2R
p�p is the symmetric positive-definite inertia

matrix, Ciðqi, _qiÞ _qi 2 R
p is the vector of Coriolis

and centrifugal torques and �i is the vector of
torques produced by the actuators associated with
the i-th system. Here we have omitted the vector of
gravitational torques for simplicity. However, this term
can be compensated straightforwardly when designing
�i. We further assume that 05 km � kMiðqiÞk � k �m,
kCiðqi, _qiÞk � kck _qik, where kc4 0, and that _MiðqiÞ �
2Ciðqi, _qiÞ is skew symmetric (i.e. yT½ _MiðqiÞ �
2Ciðqi, _qiÞ�y ¼ 0 for all y2R

p).
Weighted undirected graph G is used to model

communication among the n systems. Graph G consists
of a node set V ¼ {1, . . . , n}, an edge set E �V �V and
a weighted adjacency matrix C¼ [cij]2R

n�n. Weighted
adjacency matrix C is defined such that cij¼ cji is
a positive weight if ( j, i)2E, while cij¼ 0 if ( j, i) =2E.
Note that C is symmetric. Let Laplacian matrix
L¼ [‘ij]2R

n�n associated with C be defined as ‘ii ¼Pn
j¼1, j6¼i cij and ‘ij¼�cij, where i 6¼ j. Note that L is

symmetric positive semidefinite. In addition, 0 is
a simple eigenvalue of L with the associated eigenvector
1n, where 1n is the n� 1 column vector of all ones, and
all other eigenvalues of L are positive if and only if
graph G is connected (Merris 1994). Accordingly, if G is
connected, then (L� Ip)x¼ 0 or xT (L� Ip)x¼ 0 if and
only if xi¼ xj, where xi2R

p, x ¼ ½xT1 , . . . , xTn �
T, �

denotes the Kronecker product and Ip denotes the
p� p identity matrix. Note that (L� Ip)x is a column
stack vector of all

Pn
j¼1 cijðxi � xjÞ, i¼ 1, . . . , n. Also

note that xTðL � IpÞx ¼
1
2

Pn
i¼1

Pn
j¼1 cijkxi � xjk

2.
The objective of the current article is to design

distributed, leaderless, model-independent consensus
algorithms for (1) such that qi(t)! qj(t) and _qiðtÞ ! 0
as t!1. Before moving on, we need the following
theorem and lemmas:

Theorem 2.1 (Matrosov’s theorem restated in Paden
and Panja (1988) and Krogstad and Gravdahl
(2006): Given the system

_x ¼ f ðt, xÞ, ð2Þ

where f(t, 0)� 0 and f is such that solutions exist and

are unique. Let V(x, t) and W(x, t) be continuous
functions on domain D and satisfy the following four
conditions:

(1) V(x, t) is positive definite and decrescent.
(2) _Vðx, tÞ � UðxÞ � 0, where U(x) is continuous.
(3) jW(x, t)j is bounded.
(4) maxðdðx,MÞ, j _Wðx, tÞjÞ 	 �ðkxkÞ, where M¼

{xjU(x)¼ 0}, d(x,M) denotes the distance from
x to set M, and �(
) is a class K function.

Then the equilibrium of (2) is uniformly asymptotically

stable on D.

Lemma 2.2 Paden and Panja (1988): Condition 4 in
Theorem 2.1 is satisfied if the following two conditions
are satisfied:

(1) The function _Wðx, tÞ is continuous in both
arguments and _Wðx, tÞ ¼ gðx,�ðtÞÞ, where g is
continuous in both arguments and �(t) is contin-
uous and bounded.

(2) There exists a class K function, �, such that
j _Wðx, tÞj 	 �ðkxkÞ for all x2M, where M is the
set defined in Theorem 2.1.

Lemma 2.3 Graham (1981): Suppose that U2R
p�p,

V2R
q�q, X2R

p�p and Y2R
q�q. The following

arguments are valid:

(i) (U�V )(X�Y)¼UX�VY, (ii) Suppose that U

and V are invertible. Then (U�V )�1¼U�1�V�1,
(iii) If U and V are symmetric, so is U�V and (iv)
If U and V are symmetric positive definite, so is U�V.

Lemma 2.4Ren (2008): Suppose that &i2R
m, ’i2R

m,
K2R

m�m and D¼ [dij]2R
n�n. If D is symmetric, then

1
2

Pn
i¼1

Pn
j¼1

dijð&i � &jÞ
T tanh½Kð’i � ’jÞ�

¼
Xn
i¼1

Xn
j¼1

dij&
T
i tanh½Kð’i � ’jÞ�:

3. Distributed, leaderless, model-independent

consensus algorithms for networked

Euler–Lagrange systems

We consider three distributed, leaderless, model-
independent consensus algorithms for networked
Euler–Lagrange systems. Sections 3.1, 3.2, and 3.3

introduce, respectively, a fundamental algorithm, an
algorithm accounting for actuator saturation, and an
algorithm accounting for unavailability of measure-
ments of generalised coordinate derivatives.
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3.1 Fundamental algorithm

In this section, we consider a fundamental consensus
algorithm as

�i ¼ �
Xn
j¼1

aijðqi � qjÞ �
Xn
j¼1

bijð _qi � _qjÞ � Ki _qi, ð3Þ

where i¼ 1, . . . , n, aij is the (i, j) entry of weighted
adjacency matrix A2R

n�n associated with graph GA
for qi, bij is the (i, j ) entry of weighted adjacency matrix
B 2R

n�n associated with graph GB for _qi and Ki2R
p�p

is symmetric positive definite. Note that here GA and
GB are allowed to be different.

Theorem 3.1: Using (3) for (1), qi(t)! qj(t) and
_qiðtÞ ! 0 as t!1 if graph GA is undirected connected
and graph GB is undirected.

Proof: Let q ¼ ½qT1 , . . . , qTn �
T and _q ¼ ½ _qT1 , . . . , _qTn �

T.
Let LA and LB be, respectively, the Laplacian matrix
associated with A and B. Note that both LA and LB are
symmetric positive semidefinite because both GA and
GB are undirected. Given square matrices A1–Am,
let diag(A1, . . . ,Am) denotes a block diagonal matrix
with diagonal blocks A1–Am. Let M(q)¼
diag[M1(q1), . . . ,Mn(qn)], Cðq, _qÞ ¼ diag½C1ðq1, _q1Þ, . . . ,
Cnðqn, _qnÞ� and K¼diag(K1, . . . ,Kn). Using (3), (1) can
be written in vector form as

MðqÞ €q ¼ �Cðq, _qÞ _q� ðLA � IpÞq� ðLB � IpÞ _q� K _q:

ð4Þ

Using (3), (1) can also be written as

d

dt
ðqi � qjÞ ¼ _qi � _qj

d

dt
_qi ¼ �M

�1
i ðqiÞ

�
Ciðqi, _qiÞ _qi þ

Xn
j¼1

aijðqi � qjÞ

þ
Xn
j¼1

bijð _qi � _qjÞ þ Ki _qi

�
:

ð5Þ

Let ~q be a column stack vector of all qi� qj, where i5 j
and aij 6¼ 0 (i.e. (i, j)2E). Consider the Lyapunov
function candidate for (5) as

V ¼
1

2
qTðLA � IpÞqþ

1

2
_qTMðqÞ _q:

Because graph GA is undirected, it follows that
qTðLA � IpÞq ¼

1
2

Pn
i¼1

Pn
j¼1 aijkqi � qjk

2 as shown
in Section 2. It thus follows that V is positive definite
and decrescent with respect to ~q and _q. Note that system
(5) with states qi� qj and _qi is non-autonomous due to
the dependence ofMi andCi on qi. As a result, LaSalle’s

invariance principle is no longer applicable for (5).
Instead, we apply Theorem 2.1 to prove the theorem.
Note that Condition 1 in Theorem 2.1 is satisfied.

The derivative of V is given by

_V¼ _qTðLA� IpÞqþ
1

2
€qTMðqÞ _qþ

1

2
_qT _MðqÞ _qþ

1

2
_qTMðqÞ €q

¼ _qTðLA� IpÞqþ _qTMðqÞ €qþ
1

2
_qT _MðqÞ _q,

where we have used the fact that M(q) is symmetric.
Note that _MðqÞ � 2Cðq, _qÞ is skew symmetric. By
applying (4), the derivative of V can be written as

_V ¼ � _qTðLB � IpÞ _q� _qTK _q � 0, ð6Þ

where we have used the fact that � _qTðLB � IpÞ _q � 0
because graph GB is undirected. Therefore, Condition 2
in Theorem 2.1 is satisfied.

Let W ¼ _qTMðqÞðLA � IpÞq. It follows that jWj �
k _qkkMðqÞðLA � IpÞqk � k _qkkMðqÞkkðLA � IpÞqk. Note
that kM(q)k is bounded. Also note that (6) implies that
V(t)�V(0), 8t	 0, which in turn implies that k ~qk and
k _qk are bounded. Noting that (LA� Ip)q is a column
stack vector of all

Pn
j¼1 aijðqi � qjÞ, i¼ 1, . . . , n, it

follows that k(LA� Ip)qk is also bounded. It thus
follows that jWj is bounded along the solution
trajectory, implying that Condition 3 in Theorem 2.1
is satisfied.

The derivative of W along the solution trajectory
of (4) is

_W ¼ €qTMðqÞðLA � IpÞqþ _qT _MðqÞðLA � IpÞq

þ _qTMðqÞðLA � IpÞ _q

¼ � _qTCTðq, _qÞðLA � IpÞq

� qTðL2A � IpÞq� _qTðLBLA � IpÞq

þ _qT _MðqÞðLA � IpÞqþ _qTMðqÞðLA � IpÞ _q,

where we have used Lemma 2.3. Note that _V ¼ 0,
implies that _q ¼ 0. On set fð ~q, _qÞj _V ¼ 0g, _W, becomes

_W ¼ �qTðL2A � IpÞq � 0:

Note that j _Wj ¼ kðLA � IpÞqk
2 is positive definite with

respect to ~q. It follows from Khalil (1996, Lemma 3.5)
that there exists a class K function, �, such that
j _Wj 	 �ðk ~qkÞ. Also note that j _Wj does not explicitly
depend on t. It follows from Lemma 2.2 that Condition
4 in Theorem 2.1 is satisfied. We conclude from
Theorem 2.1 that the equilibrium of system (5) (i.e.
~q ¼ 0 and _q ¼ 0) is uniformly asymptotically stable,
which implies that qi(t)! qj(t) and _qiðtÞ ! 0 as t!1
because graph GA is undirected connected. œ
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3.2 Algorithm accounting for actuator saturation

In this section, we consider a consensus algorithm that
explicitly accounts for actuator saturation as

�i ¼ �
Xn
j¼1

aij tanh½Kqðqi � qjÞ�

�
Xn
j¼1

bij tanh½K _qð _qi � _qjÞ� � Ki tanhðKdi _qiÞ, ð7Þ

where i¼ 1, . . . , n, aij and bij are defined as in (3), Kq,
K _q, Ki and Kdi are p� p positive-definite diagonal
matrices, and tanh(
) is defined component-wise for
a vector.

Remark 1: In contrast to (3), bounded functions are
introduced in (7) to explicitly account for actuator
saturation. Using (7), it follows that k�i(t)k1� �max for
all t, where �max

�
¼
Pn

j¼1ðaij þ bijÞ þ kKik1. Note that
�max is independent of the initial conditions of qi and _qi.
In contrast, using (3), k�i(t)k1 is dependent on the
initial conditions of qi and _qi.

Theorem 3.2: Using (7) for system (1), qi(t)! qj(t)
and _qiðtÞ ! 0 as t!1 if graph GA is undirected
connected and graph GB is undirected.

Proof: Similar to the proof of Theorem 3.1, using (7),
(1) can be written as a non-autonomous system with
states qi� qj and _qi. We apply Theorem 2.1 to prove
the theorem. Let ~q and _q be defined as in the proof of
Theorem 3.1. Consider the Lyapunov function
candidate

V ¼
1

2

Xn
i¼1

Xn
j¼1

aij1
T
pK
�1
q logfcosh½Kqðqi � qjÞ�g

þ
1

2

Xn
i¼1

_qTi MiðqiÞ _qi,

where log(
) and cosh(
) are defined component-
wise for a vector. Note that V is positive definite
with respect to ~q and _q. Therefore, Condition 1 in
Theorem 2.1 is satisfied.

The derivative of V is given by

_V ¼
1

2

Xn
i¼1

Xn
j¼1

aijð _qi � _qjÞ
T tanh½Kqðqi � qjÞ�

þ
1

2

Xn
i¼1

½ €qTi MiðqiÞ _qi þ _qTi
_MiðqiÞ _qi þ _qTi MiðqiÞ €qi�:

Using (7), (1) can be written as

MiðqiÞ €qi ¼ �Ciðqi, _qiÞ _qi �
Xn
j¼1

aij tanh½Kqðqi � qjÞ�

�
Xn
j¼1

bij tanh½K _qð _qi � _qjÞ� � Ki tanhðKdi _qiÞ:

ð8Þ

Because graph GA is undirected, it follows from Lemma
2.4 that 1

2

Pn
i¼1

Pn
j¼1 aijð _qi � _qjÞ

T tanh½Kqðqi � qjÞ� ¼Pn
i¼1 _qTi f

Pn
j¼1 aij tanh½Kqðqi � qjÞ�g. Also note that

Mi(qi) is symmetric and that _MiðqiÞ � 2Ciðqi, _qiÞ is
skew symmetric. By applying (8), it follows that

_V¼�
Xn
i¼1

_qTi

Xn
j¼1

bij tanh½K _qð _qi � _qjÞ� þKi tanhðKdi _qiÞ

( )
:

By noting that graph GB is undirected and applying
Lemma 2.4 again, it follows that the derivative of V
becomes

_V ¼ �
1

2

Xn
i¼1

Xn
j¼1

bijð _qi � _qjÞ
T tanh½K _qð _qi � _qjÞ�

�
Xn
i¼1

_qTi Ki tanhðKdi _qiÞ:

Given a vector x and positive-definite diagonal matri-
ces K1 and K2, x and K1 tanh(K2x) have the same signs
for each component. Therefore, it follows that _V � 0,
which implies that Condition 2 in Theorem 2.1 is
satisfied.

Let W ¼
Pn

i¼1 _qTi MiðqiÞ�i, where

�i �
¼

Xn
j¼1

aij tanh½Kqðqi � qjÞ�:

Note that _V ¼ 0 implies that V(t)�V(0), 8t	 0, which
in turn implies that ~q and _q ¼ 0 are bounded. It thus
follows that k�ik is also bounded. Similar to the proof
of Theorem 3.1, it follows that jWj is bounded along
the solution trajectory, implying that Condition 3 in
Theorem 2.1 is satisfied.

The derivative of W along the solution trajectory
of (8) is

_W ¼ �
Xn
i¼1

_qTi C
T
i ðqi, _qiÞ�i �

Xn
i¼1

�Ti �i

�
Xn
i¼1

Xn
j¼1

bij tanh½K _qð _qi � _qjÞ�

( )T

�i

�
Xn
i¼1

½Ki tanhðKdi _qiÞ�
T�i

þ
Xn
i¼1

_qTi
_MiðqiÞ�i þ

Xn
i¼1

_qTi MiðqiÞ _�i:

Note that _V ¼ 0 implies that _q ¼ 0. On set
fð ~q, _qÞj _V ¼ 0g, _W becomes

_W ¼ �
Xn
i¼1

�Ti �i � 0:

If j _Wj ¼
Pn

i¼1 �
T
i �i is positive definite with respect to ~q,

then a similar argument to that in Theorem 3.1 implies

International Journal of Control 2141
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that Condition 4 in Theorem 2.1 is satisfied. Because
j _Wj ¼ 0, equivalently we only need to show that _W ¼ 0
implies that ~q ¼ 0. Suppose that j _Wj ¼ 0, which
implies that �i ¼

Pn
j¼1 aij tanhKqðqi � qjÞ ¼ 0. It thus

follows that
Pn

i¼1 q
T
i f
Pn

j¼1 aij tanh½Kqðqi � qjÞ�g ¼ 0,
which implies from Lemma 2.4 that
1
2

Pn
i¼1

Pn
j¼1 aijðqi� qjÞ

T tanh½Kqðqi � qjÞ� ¼ 0. Note that
graph GA is undirected and qi� qj and tanh [Kq(qi� qj)]
have the same signs for each component. It follows
that qi� qj¼ 0 for all aij 6¼ 0 (i.e. ~q¼ 0) when _W¼ 0.
Combining the above-mentioned arguments, we con-
clude from Theorem 2.1 that the equilibrium ~q¼ _q¼ 0
is uniformly asymptotically stable, which implies that
qi(t)! qj(t) and _qiðtÞ ! 0 as t!1 because graph GA is
undirected connected. œ

3.3 Algorithm accounting for unavailability of
measurements of generalised coordinate
derivatives

Note that (3) and (7) require measurements of _qi and
_qi � _qj, where bij 6¼ 0. In this section, we consider
a consensus algorithm that removes the requirement
for the measurements of _qi and _qi � _qj as

_̂xi ¼ �x̂i þ
Xn
j¼1

bijðqi � qjÞ þ �qi ð9aÞ

yi ¼ P �x̂i þ
Xn
j¼1

bijðqi � qjÞ þ �qi

" #
ð9bÞ

�i ¼ �
Xn
j¼1

aij tanh½Kqðqi � qjÞ� � yi ð9cÞ

where i¼ 1, . . . , n, �2R
p�p is Hurwitz, � is a positive

scalar, aij is the (i, j) entry of weighted adjacency matrix
A2R

n�n associated with graph GA for qi in (9c), bij is
the (i, j) entry of weighted adjacency matrix B2R

n�n

associated with graph GB for qi in (9a) and
P¼PT

2R
p�p is the positive-definite solution to the

Lyapunov equation �TPþP�¼�Q with Q¼QT
2

R
p�p being positive definite.

Theorem 3.3: Using (9) for system (1), qi(t)! qj(t)
and _qiðtÞ ! 0 as t!1 if graph GA is undirected
connected and graph GB is undirected.

Proof: Similar to the proofs of Theorems 3.1 and 3.2,
we apply Theorem 2.1 to prove the theorem. Consider
the Lyapunov function

V ¼
1

2

Xn
i¼1

Xn
j¼1

aij1
T
pK
�1
q logðcosh½Kqðqi � qjÞ�Þ

þ
1

2

Xn
i¼1

_qTi MiðqiÞ _qi þ
1

2
_̂xTð�� IpÞ

�1
ðIn � PÞ _̂x,

where x̂ ¼ ½x̂T1 , . . . , x̂Tn �
T, �¼LBþ �In. Note that LB is

symmetric positive semidefinite because graph GB is
undirected. It thus follows that � is symmetric positive
definite, so is ��1. From Lemma 2.3, note that
(�� Ip)

�1
¼ (��1� Ip). Also from Lemma 2.3 note

that (��1� Ip)(In�P)¼��1 In� IpP¼ In ��1�PIp¼
(In�P)(��1� Ip). That is, (�� Ip)

�1 and In�P
commute. Similarly, it is straightforward to show
that (�� Ip)

�1 and In��T also commute. Note that
��1 In� IpP is symmetric positive definite, so is
(��1� Ip)(In�P). Let ~q and _q be defined as in the
proof of Theorem 3.2. It follows that V is positive
definite with respect to ~q, _q, and _̂x. Therefore,
Condition 1 in Theorem 2.1 is satisfied.

Following the proof of Theorem 3.2, we derive the
derivative of V as

_V ¼ �
Xn
i¼1

_qTi yi þ
1

2
_̂xTðIn � �T Þð�� IpÞ

�1
ðIn � PÞ _̂x

þ
1

2
_qTð�� IpÞ

T
ð�� IpÞ

�1
ðIn � PÞ _̂x

þ
1

2
_̂xTð�� IpÞ

�1
ðIn � PÞðIn � �Þ _̂x

þ
1

2
_̂xTð�� IpÞ

�1
ðIn � PÞð�� IpÞ _q

¼ �
Xn
i¼1

_qTi yi þ
1

2
_̂xTð�� IpÞ

�1
½In � ð�

TPþ P�Þ� _̂x

þ _qTðIn � PÞ _̂x

¼ �
1

2
_̂xTð�� IpÞ

�1
ðIn �QÞ _̂x � 0,

where we have used the fact that

€̂x ¼ ðIn � �Þ _̂xþ ð�� IpÞ _q, ð10Þ

(�� Ip)
�1 and In��T commute, (�� Ip)

�1 and In�P
commute, �� Ip¼ (�� Ip)

T, y ¼ ðIn � PÞ _̂x with
y ¼ ½yT1 , . . . , yTn �

T and (�� Ip)
�1 (In�Q)¼��1In�

QIp is symmetric positive definite. Therefore,
Condition 2 in Theorem 2.1 is satisfied.

Let W and �i be defined as in the proof of Theorem
3.2. Similar to the proof of Theorem 3.2, it follows that
jWj is bounded along the solution trajectory, implying
that Condition 3 in Theorem 2.1 is satisfied.

The derivative ofW along the solution trajectory of
closed-loop system (1) using (9) is

_W ¼ �
Xn
i¼1

_qTi C
T
i ðqi, _qiÞ�i �

Xn
i¼1

�Ti �i �
Xn
i¼1

yTi �i

þ _qTi
_MiðqiÞ�i þ _qTi MiðqiÞ _�i:

Note that _V ¼ 0 implies that _̂x ¼ 0, which in turn
implies that ð�� IpÞ _q ¼ 0 according to (10) and yi¼ 0
by noting that yi ¼ P _̂xi according to (9b). Because
�� Ip is symmetric positive definite, it follows that
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_q ¼ 0. On set fð ~q, _q, _̂xÞj _V ¼ 0g, _W becomes

_W ¼ �
Xn
i¼1

�Ti �i � 0:

Therefore, similar to the proof of Theorem 3.2, we
conclude that qi(t)! qj(t) and _qiðtÞ ! 0 as t!1. œ

Remark 2: Note that without the terms
�
Pn

j¼1 bijð _qi � _qjÞ in (3) �
Pn

j¼1 bij tanhK _qð _qi � _qjÞ in
(7) and

Pn
j¼1 bijðqi � qjÞ in (9a) or equivalently bij� 0,

Theorems 3.1–3.3 are still valid as long as graph GA is
undirected connected. However, these terms introduce
relative damping between neighbouring systems.

4. Simulation results

In this section, we simulate a scenario where six two-
link revolute joint arms are synchronised through local
communication using, respectively, algorithms (3), (7)
and (9). For simplicity, we assume that each arm is
identical. The Euler–Lagrange equation of each two-
link revolute joint arm is given in Spong and
Vidyasagar (2006, pp. 259–262). In particular, we
assume that the masses of links 1 and 2 are,
respectively, 0.5 and 0.4 kg, the lengths of links 1 and
2 are, respectively, 0.4 and 0.3m, the distances from
the previous joint to the centre of mass of links 1 and 2
are, respectively, 0.2 and 0.15m and the moments
of inertia of links 1 and 2 are, respectively, 0.1 and
0.05 kgm2.

For simplicity, we assume that graphs GA and GB
are identical. Figure 1 shows graph GA (equivalently,
GB) for the six two-link revolute joint arms. Table 1
shows the control parameters for each algorithm.
In simulation, we let qið0Þ ¼ ½

�
7 i,

�
8 i�

T rad and _qð0Þ ¼
½0:1i� 0:4,� 0:1iþ 0:5�T rad/s, where i¼ 1, . . . , 6.
In the following, we use a superscript ( j ) to denote
the j-th component of a vector.

Figures 2, 3 and 4 show, respectively, the joint
angles, their derivatives and the control torques of
arms 1, 3, and 5 using (3). Note that the joint angles
of all arms reach consensus while their derivatives
converge to zero.

Figures 5, 6 and 7 show, respectively, the joint
angles, their derivatives and the control torques of
arms 1, 3, and 5 using (7). Note that the joint angles of
all arms reach consensus while their derivatives
converge to zero. By comparing Figure 7 with
Figure 4, we can see that the maximum control
torque using (7) is much smaller than that using (3)
with the introduction of bounded functions in (7). As
a tradeoff, joint angles and their derivatives reach
consensus more slowly using (7) than using (3). In
addition, the upper bound for the control torque using

(7) is independent of the initial joint angles and their
derivatives.

Figures 8, 9 and 10 show, respectively, the joint
angles, their derivatives, and the control torques of
arms 1, 3, and 5 using (9). The initial conditions x̂ið0Þ
are chosen randomly. Note that the joint angles of all
arms reach consensus while their derivatives converge
to zero even without measurements of absolute and
relative joint angle derivatives.

We have shown simulation results where six-
networked Euler–Lagrange systems are synchronized
perfectly with zero final consensus errors. However, in
actual applications, there will exist measurement noise
when the systems measure the generalised coordinates
and/or their derivatives and time delay when the
systems communicate with their neighbours. It is
expected that the measurement noise and time delay
will cause imperfect final consensus. That is, the
systems might achieve only 	-consensus rather than
consensus, where there exist non-zero small final
consensus errors.

5. Conclusion and future work

We have proposed and analysed distributed, leaderless,
model-independent consensus algorithms for systems
modelled by Euler–Lagrange equations. In particular,
we have studied a fundamental algorithm, an algo-
rithm accounting for actuator saturation and an

1 2 3

4 5 6

Figure 1. Graph GA (equivalently, GB) for six two-link
revolute joint arms. The graph is connected.

Table 1. Control parameters for each algorithm.

Algorithm (3):
Ki¼ 0.1I2, aij¼ bij¼ 0.1 if ( j, i)2E

Algorithm (7):
Kq ¼ K _q ¼ Ki ¼ Kdi ¼ 0:1I2
aij¼ bij¼ 0.1 if ( j, i)2E

Algorithm (9):
�¼�I2, �¼ 0.2, P¼ 0.5I2, Kq¼ 0.2I2
aij¼ bij¼ 0.2 if ( j, i)2E
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Figure 2. Joint angles of arms 1, 3 and 5 using (3). qð jÞi denotes the j-th joint angle of arm i.
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Figure 3. Joint angle derivatives of arms 1, 3 and 5 using (3). _q
ð jÞ
i denotes the j-th joint angle derivative of arm i.
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Figure 5. Joint angles of arms 1, 3 and 5 using (7).
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Figure 4. Control torques of arms 1, 3 and 5 using (3). �ð jÞi denotes the j-th joint torque of arm i.
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Figure 6. Joint angle derivatives of arms 1, 3 and 5 using (7).
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Figure 7. Control torques of arms 1, 3 and 5 using (7).
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Figure 8. Joint angles of arms 1, 3 and 5 using (9).
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Figure 9. Joint angle derivatives of arms 1, 3 and 5 using (9).
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algorithm accounting for unavailability of measure-
ments of generalised coordinate derivatives.
Matrosov’s theorem has been used to show that all
algorithms converge as long as the undirected com-
munication topology is connected. The algorithms
have been used to synchronise six-networked two-link
revolute joint arms. While the current article comple-
ments some existing results in the literature, there are
some issues that need to addressed in future work. For
example, in the current article, we have shown that
consensus is reached for the networked Euler–
Lagrange systems without explicitly deriving the final
consensus equilibrium. It seems that the final consen-
sus equilibrium is dependent on three factors, namely,
the communication topology, the control gains and the
initial conditions of the systems. In future work, it will
be interesting to formally characterise the relationship
between the final consensus equilibrium and the three
factors. In addition, in the current article, we did not
consider the effects of time delay and time-varying
communication topologies. These effects play an
important role in real-world applications. In future
work, it will be interesting to derive convergence
conditions under which consensus can still be reached
in the presence of time delay and/or time-varying
communication topologies. Furthermore, in future

work, it will be interesting to experimentally implement
and validate the algorithms in this article on hardware
platforms.
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