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Abstract—In this brief, consensus algorithms are experimen-
tally implemented and validated on a mobile actuator and sensor
network platform under directed, possibly switching interaction
topologies to explore issues and challenges in distributed mul-
tivehicle cooperative control. Distributed consensus algorithms
are applied to two target applications including rendezvous and
axial alignment. In the rendezvous application, multiple mobile
robots simultaneously arrive at a common a priori unknown
target location determined through team negotiation. In the axial
alignment application, multiple mobile robots collectively align
their final positions along a line. The experimental results show
the effectiveness and robustness of the consensus algorithms
even in the presence of platform physical limitations, packet loss,
information delay, etc. These experimental results validate the
corresponding theoretical results.

Index Terms—Axial alignment, cooperative control, consensus
algorithm, mobile actuator and sensor network, multivehicle sys-
tems, rendezvous.

I. INTRODUCTION

AUTONOMOUS vehicle systems are expected to find
potential applications in military operations, search and

rescue, environment monitoring, commercial cleaning, mate-
rial handling, and homeland security. While single vehicles
performing solo missions have yielded some benefits, greater
benefits will come from the cooperation of teams of vehicles.

In cooperative control systems, a centralized coordination
scheme often relies on the assumption that each member of the
team has the ability to communicate to a central location or
share information via a fully connected network. As a result,
the centralized scheme does not scale well with the number of
vehicles. A central location may also result in a catastrophic
failure for the overall system due to its single point of failure.
In addition, real-world communication topologies are usually
not fully connected. In many cases, they depend on the relative
position of the vehicles and on other environmental factors and
are, therefore, dynamically changing in time. In addition, wire-
less communication channels are subject to multipath, fading,
and dropout. Therefore, decentralized schemes are superior to
centralized schemes in terms of robustness and scalability.
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As an inherently distributed strategy that only requires local
neighbor-to-neighbor interaction among vehicles, information
consensus has received significant attention in the cooperative
control community recently. The basic idea for information con-
sensus is that each vehicle updates its information state based on
the information states of its local, possibly time-varying neigh-
bors in such a way that the final information state of each vehicle
converges to a common value. This basic idea can be extended
to a variety of different scenarios that incorporate group behav-
iors and dynamics.

Theoretical aspects of consensus algorithms have recently
been studied extensively in the literature using algebraic graph
theory (e.g., [1]–[7]) and nonlinear mathematical tools (e.g.,
[8]–[10]). Optimality issues in consensus algorithms are also
considered in the literature (e.g., [11]). In addition, informa-
tion consensus is studied in the context of random networks
[12] and asynchronous communication [13]. The consensus al-
gorithms might be applied in the context of cooperative estima-
tion [14]–[16].

Consensus algorithms have applications in rendezvous
[17]–[20], formation control [21]–[23], flocking [24]–[26], at-
titude alignment [27], [28], decentralized task assignment [29],
sensor fusion [30]–[32], etc., However, in the current literature,
most of the research activities in information consensus have
focused on theoretical aspects, and most of the applications
are demonstrated by means of simulations. Recent efforts in
experimental implementation of multirobot flocking and cyclic
pursuit are reported, respectively, in [33] and [34], where
flocking assumes undirected interaction and the interaction
topology for cyclic pursuit forms a unidirectional ring. Infusion
of general consensus algorithms into hardware platforms tasked
with realistic missions is feasible and systematic experimental
implementation and validation of consensus algorithms under
a general (possibly directed switching) interaction topologies
play an important role in enabling robust coordinated control
for the vast array of emerging networked systems.

The main purpose of the current brief is to experimentally
implement and validate consensus algorithms under directed,
possibly switching interaction topologies to explore issues and
challenges in distributed multivehicle cooperative control. The
experimental results are expected to provide a preliminary ef-
fort toward bridging part of the gap between theory and appli-
cation in the research of consensus algorithms. In particular,
distributed consensus algorithms are applied to two target ap-
plications including rendezvous and axial alignment. In the ren-
dezvous application, multiple robots are required to simultane-
ously arrive at a common a priori unknown target location de-
termined through team negotiation. The rendezvous case is di-
rectly relevant to unmanned aerial vehicle (UAV) cooperative
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timing missions, where multiple UAVs are controlled to con-
verge on the boundary of a radar detection area simultaneously
to maximize the element of surprise. In the axial alignment ap-
plication, multiple robots are required to be evenly distributed
on a line with given separation distance through team negotia-
tion. The axial alignment case is directly relevant to sensor de-
ployment and satellite attitude alignment applications. The two
target applications are validated on a low-cost mobile actuator
and sensor network platform. The experimental results show the
effectiveness and robustness of consensus algorithms even in the
presence of platform physical limitations, packet loss, informa-
tion delay, etc. These experimental results validate the corre-
sponding theoretical results.

II. BACKGROUND AND PRELIMINARIES

It is natural to model interaction among vehicles by directed/
undirected graphs. A directed graph consists of a pair ,
where is a finite nonempty set of nodes and is
a set of ordered pairs of nodes, called edges. An edge in
a directed graph denotes that vehicle can obtain information
from vehicle , but not necessarily vice versa. In contrast, the
pairs of nodes in an undirected graph are unordered, where an
edge denotes that vehicles and can obtain information
from one another. Note that an undirected graph can be consid-
ered a special case of a directed graph, where an edge in
the undirected graph corresponds to edges and in the
directed graph. If there is an edge from node to node in a
directed graph, then is the parent node and is the child node.

A directed path is a sequence of edges in a directed graph of
the form , where . An undirected path
in an undirected graph is defined analogously. A directed graph
is strongly connected if there is a directed path from every node
to every other node. An undirected graph is connected if there is
a path between every distinct pair of nodes. A directed tree is a
directed graph, where every node has exactly one parent except
for one node, called the root, which has no parent, and the root
has a directed path to every other node. In the case of undirected
graphs, a tree is a graph in which any two nodes are connected
by exactly one path.

A (rooted) directed spanning tree of a directed graph is a di-
rected tree formed by graph edges that connect all of the nodes
of the directed graph. A directed graph has or contains a di-
rected spanning tree if there exists a directed spanning tree as a
subset of the directed graph. Note that the condition that a di-
rected graph has a directed spanning tree is equivalent to the case
where there exists at least one node having a directed path to all
of the other nodes. In the case of undirected graphs, having an
undirected spanning tree is equivalent to being connected. How-
ever, in the case of directed graphs, having a directed spanning
tree is a weaker condition than being strongly connected. The
union of a group of graphs is a graph with nodes given by the
union of the node sets and edges given by the union of the edge
sets of the group of graphs.

Suppose that there are vehicles in the team. The adjacency
matrix of a weighted directed graph is de-
fined as and if , where . The

adjacency matrix of a weighted undirected graph is defined anal-
ogously except that , since im-
plies . Let matrix be defined as

and , where . The matrix
satisfies the following conditions:

(1)

For an undirected graph, is called the Laplacian matrix, which
has the property that it is symmetric positive semidefinite. How-
ever, for a directed graph does not have this property. In both
the undirected and directed cases, 0 is an eigenvalue of with
the associated eigenvector 1, where 1 is a column vector of all
ones. In the case of undirected graphs, all of the nonzero eigen-
values of are positive. In the case of directed graphs, all of the
nonzero eigenvalues of have positive real parts from Gersh-
gorin disc theorem [35]. In the case of undirected graphs, 0 is
a simple eigenvalue of if and only if the undirected graph is
connected [36]. In addition, the second smallest eigenvalue of
is known as the algebraic connectivity of the undirected graph.
In the case of directed graphs, 0 is a simple eigenvalue of if
and only if the directed graph contains a directed spanning tree
[37].

III. CONSENSUS ALGORITHMS

Consider vehicles with single-integrator dynamics given by

(2)

where is the information state of the th vehicle, and
is the control input. A consensus algorithm is proposed

in [1]–[4] and [21] as

(3)

where represents the set of vehicles whose information
states are available to vehicle at time , and is a positive
weighting factor at time . The objective of (3) is to drive the
information state of each vehicle toward the states of its local
neighbors. For (3), consensus is reached asymptotically among
the vehicles if , as for all .

Let be defined as

(4)

Note that satisfies (1). Also note that with (3), (2) can be
written in matrix form as , where

denotes the Kronecker product, and is the
identity matrix.

Note that information in this brief is defined differently than
in [38]. When applying the consensus algorithm (3) in practice,

might be an estimate of the system state. In addition, in prac-
tice, there may exist a perturbation term in (3) due to uncertain-
ties and external disturbances. As a result, the consensus algo-
rithm (3) becomes

(5)
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where denotes the perturbation term.
The following two lemmas hold for (5) under time-invariant

and switching interaction topologies, respectively.
Lemma 3.1: Suppose that the interaction topology is time in-

variant and are constant. Under the condition that
, consensus is reached asymptotically with (5) if and only

if the directed interaction topology contains a directed span-
ning tree. Furthermore, if , and the directed inter-
action topology contains a directed spanning tree, then

, where is a nonnegative
left eigenvector of , given by (4), associated with the zero
eigenvalue, and satisfies the condition that if vehicle
has a directed path to every other vehicle and , otherwise,
and . In addition, under the condition that the di-
rected interaction topology contains a directed spanning tree, if

is uniformly bounded, so is .
Proof: The first two arguments follow [37] directly. For the

third argument, let and . Also let
and . Note

that . With (5), (2) can be written as

(6)

where is constant. Note that the first argu-
ment of the lemma shows that under the condition that

, and the directed interaction topology contains a directed
spanning tree, consensus is reached asymptotically, which im-
plies that asymptotically as . It thus follows
that (6) is asymptotically stable under the same condition by
noting that , implies . Because (6)
is a linear time-invariant system, asymptotical stability implies
bounded input bounded state. That is, if is uniformly bounded,
so is . Equivalently, if is uniformly bounded, so is

.
Lemma 3.2: Suppose that , where and

are positive constants. Also suppose that the directed interaction
topologies are switching but there exist infinitely many consec-
utive uniformly bounded time intervals such that the union of
the directed interaction topologies across each time interval has
a directed spanning tree. With (5), consensus is reached asymp-
totically under the condition . Furthermore, if
is uniformly bounded, so is .

Proof: The first argument follows [4] directly. For the second
argument, assume that and for simplicity. How-
ever, the proof holds for and by introducing
the Kronecker product. Let

, and . With
(5), (2) can be written as

(7)

where is switching with time. The first
argument of the lemma shows that uniformly in as

when . However, unlike the proof of Lemma 3.1,
for a linear time-varying system like (7), asymptotical stability
does not necessarily imply bounded input bounded state. The
next statement will show that (7) is in fact uniformly asymptot-
ically stable under the condition that . With (3), (2) can
be written in matrix form as

(8)

where and given by (4) is switching
with time. The solution to (8) is given by ,
where the transition matrix is a row sto-
chastic matrix as shown in [39, Lemma 3.3]. As a re-
sult, it follows that , where

and . Therefore, it follows
that and ,
which in turn implies that

(9)

Let and . Note that

(10)

Combining (9) and (10) gives
, which implies

, when . Therefore, (7) is uniformly stable when
. Combing the previous arguments, it follows that (7)

is uniformly asymptotically stable when , which in
turn implies that (7) is uniformly exponentially stable [40, Th.
6.13]. According to [40, Lemma 12.4], it follows that if
is uniformly bounded, so is . Equivalently, it follows that if

is uniformly bounded, so is .
Note that (3) represents the fundamental form of a consensus

algorithm. The algorithm can be extended to achieve different
convergence results. For example, (3) can be extended to guar-
antee that the differences of the information states converge to
desired values, i.e., , where denotes the
desired (time-varying) separation between and . The fol-
lowing algorithm is applied for relative separations:

(11)
where , denotes the desired separation between
the information states. Note that with appropriate choices of

, the differences of the information states are guar-
anteed to converge to desired values. The algorithm (11) has ap-
plications in formation control, where the team forms a certain
formation shape by maintaining relative positions among vehi-
cles. Also note that (3) corresponds to the case where

.
The following corollary holds for relative separations.
Corollary: Under the conditions that are constant and

the interaction topology is time invariant,
asymptotically with (11) if and only if the directed interaction
topology has a directed spanning tree. In addition, under di-
rected switching interaction topologies, asymp-
totically under the conditions of Lemma 3.2.

Proof: With (11), (2) can be written as
, where .

The rest of the proof then follows the fact that is
equivalent to .
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Fig. 1. MASnet experimental platform. (a) MASmote testbed. (b) MASmote robot hardware.

Note that Lemmas 3.1 and 3.2 have shown that the consensus
algorithm (3) is robust to perturbations. Also note that similar
proofs to those in Lemmas 3.1 and 3.2 can also show that (11) is
robust to perturbations. The robustness of the consensus algo-
rithms (3) and (11) to asynchronous communication and time
delays is shown in theory in [13] (see, also, [41] for other ref-
erences). The objective of the next section is to experimentally
validate these theoretical results.

IV. EXPERIMENTAL VALIDATION OF CONSENSUS ALGORITHMS

FOR COOPERATIVE CONTROL

In this section, the consensus algorithms are experimentally
validated via two cooperative control applications including ren-
dezvous and axial alignment. The experimental platform, imple-
mentation of the two applications, and experimental results will
be described in detail.

A. Experimental Platform

The mobile actuator and sensor network (MASnet) platform
in the Center for Self-Organizing and Intelligent Systems
(CSOIS), Utah State University, Logan, combines wireless
sensor networks with mobility (see [42] and references therein).
That is, a large number of robots can serve both as actuators and
sensors. Although each robot has limited sensing, computation,
and communication ability, they can coordinate with each other
as a team to achieve challenging cooperative control tasks such
as formation keeping and environment monitoring.

The MASnet platform comprises MASmotes, an overhead
camera, and a base station personal computer (PC) as shown in
Fig. 1. MASmotes are actually two-wheel differentially steered
robots that can carry sensors and actuators wireless networked
via Micaz from Crossbow. The functionality of MASmotes in-
cludes intermote and mote to base station communication, data
collecting, pulsewidth modulation (PWM) signal generation,
and encoder counting. An overhead charge-coupled device
(CCD) camera is used to identify each robot and determine its
position and orientation [i.e., pseudo-global positioning system
(GPS) information]. Images from the camera are processed by
the base station. The functionality of the base station includes
image processing, serial to programming board communi-
cation, pseudo-GPS information broadcasting, and decision
making. The base station communicates with a gateway mote
mounted on a programming board through a serial port. The
gateway mote then communicates with all of the MASmotes

over a 2.4-GHz wireless mesh network. Note that the gateway
mote serves as a gateway between wireless communication and
serial port communication, and its only purpose is to forward
all messages between the serial port and the radio-frequency
(RF) port. Through communication the base station can send
commands and pseudo-GPS information to each MASmote.
All of the MASmotes can also communicate with each other
over the 2.4-GHz wireless mesh network.

B. Implementation of Two Target Applications on MASnet
Platform

Because both intermote and mote to base station communi-
cation are available, the MASnet platform can be used to ex-
perimentally test both centralized and decentralized cooperative
control schemes. For a centralized scheme, each MASmote is
only responsible for its low-level motor control while the base
station, served as a centralized station, broadcasts pseudo-GPS
information to each MASmote robot, implements cooperative
control algorithms, and sends control commands based on the
information gathered from the whole team. For a decentralized
cooperative control scheme, each MASmote implements its own
cooperative control algorithm based on the pseudo-GPS infor-
mation provided by the base station.

In the experiments, all of the control algorithms are imple-
mented on the MASmotes, and each MASmote only uses the
pseudo-GPS information of its own and its local neighbors even
if the pseudo-GPS information of all of the MASmotes is pro-
vided by the base station. By doing so, distributed cooperative
control algorithms involving only local neighbor-to-neighbor
interaction via communication or sensing can be tested for mul-
tivehicle systems. The feature of local interaction is important
in applications where communication or sensing topologies are
usually not fully connected, vehicles only have limited commu-
nication range and bandwidth, power consumption of the team
may be constrained, and the stealth of the team may need to be
increased. The two target applications are studied in the experi-
ments including rendezvous and axial alignment. In both appli-
cations, only local neighbor-to-neighbor interaction is allowed.

One challenge of applying the consensus algorithms to the
mobile robot platform comes from the fact that the robots
are nonholonomic while the consensus algorithms assume
single-integrator dynamics. Controlling the positions of the
robots overcomes this issue with the compromise that the robot
orientation information is lost when the robots reach their
desired positions.
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A consensus controller is applied to update the desired po-
sition of each MASmote robot at each time instant when the
robot receives the position and orientation information of its
own and its local neighbors from the pseudo-GPS. The update
period for the consensus controller depends on the pseudo-GPS
information update period, which is between 0.1 and 0.2 s on
average. A low-level PID position controller is also applied
to guarantee that each robot moves to its (time-varying) de-
sired position (see [42] and references therein for the position
controller). The position controller for each robot requires its
current position and orientation as well as its desired position
provided by its consensus controller. Each robot uses its en-
coders for position and orientation measurement in between the
pseudo-GPS updates. However, a pseudo-GPS update will over-
write the encoder-based position and orientation measurement
due to the inaccuracy of the encoders in the low-cost platform.

Let and denote, respectively,
the actual and desired position of robot . For rendezvous, mo-
tivated by (3), one strategy is to update as

(12)

Another strategy is to update as

(13)

Note that the desired team rendezvous with (12) is unaffected by
robot tracking performance, while the desired team rendezvous
with (13) is dependent on the actual positions of the robots.
The two strategies may be appropriate for different contexts de-
pending on the application scenarios. In the experiments, a dis-
crete-time version of (13) is used. In essence, the algorithm (13)
updates to be the average of its current position and the cur-
rent positions of its local neighbors at each sample time.

Note that (13) can be written as

where denotes the th robot’s tracking error. With
the low-level position controller, is bounded for all and

approaches zero as , which implies
that is bounded for all and approaches zero
as . Therefore, it follows that with (13)
is bounded for all and approaches zero as under the
conditions of Lemmas 3.1 and 3.2. In other words, the cascade
system composed of the consensus controller and the position
controller is stable, i.e., and
, asymptotically as .

For axial alignment, the following algorithm is applied to up-
date as:

(14)

where has been chosen to guarantee that the
robots align on a horizontal line with a separation distance of 24

Fig. 2. Interaction topologies among four robots for the rendezvous applica-
tion.

cm along the -axis between two adjacent neighboring robots.
The stability of (14) can be analyzed in a similar way to (13) by
following Corollary 3.1.

C. Experimental Results

In this section, experimental results are shown for rendezvous
and axial alignment on the MASnet platform.

1) Rendezvous: For the rendezvous application, rendezvous
of four MASmote robots is studied under directed, time-in-
variant, and dynamic interaction topologies, respectively. The
motivation for studying dynamic interaction topologies comes
from the following observation. In real-world applications, the
interaction topology among vehicles will likely be dynamic.
For instance, communication links between vehicles may be
unreliable due to disturbances, or they may be subject to com-
munication range limitations. Alternatively, if information is
exchanged via direct sensing, the visible neighbors of a vehicle
will likely change over time.

Fig. 2 shows three different time-invariant interaction topolo-
gies associated with cases I-III. In particular, case I corresponds
to an undirected connected graph, case II corresponds to an
undirected graph with separated subgroups, and case III corre-
sponds to a general directed graph containing a directed span-
ning tree.

Fig. 3 shows the experimental results of the rendezvous cap-
tured by the overhead camera for cases I–III, where the circles
denote the initial positions of the robots, and the colored dots
denote the actual trajectories of the robots identified by the over-
head camera. If the vision system fails to identify a robot during
a certain time period, no pseudo-GPS update is available to the
robot (equivalent to a pseudo-GPS packet loss), and therefore,
no colored dot is placed on the screen during that time period.
The trajectories of the robots are captured between and

s.
Fig. 3 shows that the four robots rendezvous in all cases

except in case II where only a subgroup rendezvous, which is
consistent with the first argument of Lemma 3.1 since only the
directed interaction graph of case II does not contain a directed
spanning tree. In the experiments, the computationally complex
task of processing the image, finding MASmote markers, and
extracting position and orientation information introduces a
delay of 0.1–0.2 s between image capture and position and
orientation information broadcast. In addition, the hardware
and software limitations of the vision system cause frequent
pseudo-GPS packet loss (roughly 2%–5%) and an average
position measurement error of 1.32 cm. When a robot is lost
from the view of the overhead camera due to glare or other
issues, the robot’s position and orientation information is no
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Fig. 3. Experimental results of rendezvous for cases I-III. (a) Case I (� � 11.58 s). (b) Case II (� � 6.93 s). (c) Case III (� � 18.89 s).

Fig. 4. Switching information topologies � �� and their union � for ren-
dezvous.

longer available to itself and its local neighbors, implying a
pseudo-GPS packet loss. Specifically, in case III, the upper
left robot does not receive pseudo-GPS update over several
sample periods as shown in Fig. 3(c). Despite the existence of
time delay and pseudo-GPS packet loss, the rendezvous ex-
periments achieve results as predicted by the theory described
in Section III. With the consensus controller (13), the desired
position for a robot simply remains constant during the time
period when the position of its own or its local neighbors is not
available. That is, the consensus algorithm (13) remains stable
with time delay or pseudo-GPS loss although the algorithm will
converge slower, which in turn results in slower rendezvous for
the team. With the low-level position controller, when there is
no pseudo-GPS update, a robot relies on encoder data to move
toward the desired position calculated at the previous sample
period, which provides a way to compensate for time delay and
pseudo-GPS loss.

In theory, if each robot has the same tracking performance,
the final rendezvous with (13) should be the average of the ini-
tial positions of those robots that have a directed path to all of the
other robots. In the experiments, due to the discrepancy among
the robots and inaccuracy caused by the vision system, the final
rendezvous is a weighted average of the initial positions of those
robots that have a directed path to all of the other robots as
shown in Fig. 3. The final rendezvous in case I is a weighted

average of all four robots’ initial positions. In contrast, the final
rendezvous in case III is a weighted average of the initial posi-
tions of robots 1, 2, and 3. This experimental result can be ex-
plained by noting that, in case I, each robot has a directed path
to every other robot, and in case III, every robot except robot 4
has a directed path to all of the other robots. In particular, in case
II, the final rendezvous for the upper two robots is not the center
of the two robots’ initial positions but closer to the starting posi-
tion of the upper left robot. It is observed in the experiment that
the upper left robot receives spurious orientation information
during the beginning period of the experiment, which causes
the robot to spin at its initial position without moving toward its
desired position during the first several seconds. However, the
upper right robot is able to move toward the upper left robot to
achieve rendezvous. The example demonstrates the robustness
of (13) even in the presence of incorrect output of the vision
system for a certain period of time. The robustness of (13) is
due to the fact that the desired position for each robot is dy-
namically determined according to its current position and the
current positions of its local neighbors.

To test rendezvous in the case of switching topologies, as-
sume that the interaction topologies for the four robots switch
randomly from the set as shown in
Fig. 4. Note that each directed graph in does not have a di-
rected spanning tree but that the union of these directed graphs
denoted by does have a directed spanning tree as shown in
Fig. 4. As the switching among graphs in is random, the con-
dition for consensus in Lemma 3.2 is generically satisfied.

Fig. 5(a) shows the experimental result of rendezvous
when the interaction topologies switch randomly from with
switching periods randomly chosen between 2.75 and 8 s, while
Fig. 5(b) shows the experimental result under the time-invariant
interaction topology . Note that the four robots rendezvous
even when the directed topologies switch randomly with time,
which validates the theory in Lemma 3.2 and demonstrates the
robustness of the consensus algorithm to switching topologies
as long as the minimum connectivity condition in Lemma 3.2
is satisfied. By comparing Fig. 5(a) and (b), it can be seen
that convergence in the case of switching topologies is slower
than in the time-invariant case due to the fact that the robots
simply stop when they do not receive information from their
local neighbors. Also, the switching topologies result in sudden
drastic changes in robot directions as shown in Fig. 5(a). In
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Fig. 5. Experimental results of rendezvous with topologies randomly switching from �� versus a time-invariant topology � . (a) Rendezvous with topologies
randomly switching from �� � �� � � � � �� � (� � 45 s). (b) Rendezvous with a time-invariant topology � �� � 24 s�.

Fig. 6. Interaction topology for axial alignment.

Fig. 7. Experimental result of axial alignment.

addition, in Fig. 5(a), when the lower left robot makes the
second turn, due to spurious pseudo-GPS data for several
sample periods, the robot starts to wander around as shown by
the concentrated dots. However, the inherent stability of the
cascade system composed of the consensus controller and the
position controller causes the robot to recover once the vision
system sends out correct position and orientation data.

2) Axial Alignment: For the axial alignment application, the
case where four robots are evenly distributed along a straight
line is studied under a time-invariant interaction topology.

Fig. 6 shows the undirected interaction topology among the
four robots. Fig. 7 shows the experimental result of the axial
alignment. In theory, although each robot starts at arbitrary ini-
tial positions, their final positions should be evenly distributed
along a horizontal line with a separation distance of 24 cm. Due
to hardware and software limitations of the vision system, some
robots move in the wrong direction for certain periods of time
until the vision system correctly identifies their orientations. In
addition, there exists a position tracking error with the low-level
position controller due to inaccurate position and orientation
measurement. Even with these limitations, the overall experi-
ment still achieves the goal of axial alignment with an average

error around 3 cm and further demonstrates the robustness of
the consensus algorithm.

V. CONCLUSION AND FUTURE WORK

Consensus algorithms have been applied to two cooperative
control problems including rendezvous and axial alignment.
The experimental results of both applications on the MASnet
platform have demonstrated the effectiveness and robustness
of the consensus algorithms to distributed cooperative control.
Consensus algorithms provide a promising method for dis-
tributed multivehicle cooperative control even in the presence
of robot physical limitations, packet loss, information delay,
etc.

Despite the success of the experiments, there are limitations.
One limitation is that the robots are very dependent on the vi-
sion system for position and orientation measurement over long
distance due to inaccuracy of the encoders in the low-cost plat-
form. When the vision system produces incorrect measurement
or fails to identify a robot during a certain period of time, a robot
may move toward a wrong direction. As the time or frequency
of vision failure increases, the overall team performance de-
grades dramatically. Another limitation is the pseudo-GPS up-
date delay. When the robots are moving slowly, the pseudo-GPS
update delay has little effect but at full speed the difference
between the actual and the broadcast position and orientation
can be quite large. This is most noticeable when a robot is ro-
tating. As a result, there is a need to improve the vision system
and encoder accuracy and develop a prediction model for posi-
tion and orientation estimate in the future. The combination of
pseudo-GPS data, encoder data, and mathematical model esti-
mates is expected to improve the accuracy of position and ori-
entation measurement. Future work will also introduce a col-
lision avoidance mechanism for formation maneuvering of the
robots.1
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