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ABSTRACT—In this paper, we study the problem of consensus building in multi-robot systems 
with information feedback. We show how information feedback can be incorporated into the 
consensus building process so as to improve the robustness and situational awareness of the whole 
team. We detail the strategies of introducing feedback to the consensus building process through 
information flow, time-varying weights, external feedback terms, and reference states, and perform 
simulations and experimental studies of these strategies. 
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1.  INTRODUCTION 
Autonomous robotic vehicles are expected to find potential applications in military operations, search 

and rescue, environment monitoring, commercial cleaning, material handling, and homeland security. 
While single robots performing solo missions can yield some benefits, greater benefits will come from the 
cooperation of teams of robots. 

As an inherently distributed strategy for multi-robot coordination, consensus algorithms have recently 
been studied extensively in the context of cooperative control of multi-robot systems [1-9]. In fact, these 
algorithms have a historic perspective in [10-12]. The consensus algorithms require only local neighbor-to-
neighbor information exchange among the robots. The basic idea for consensus is that each robot updates 
its information state based on the information states of its local, possibly time-varying neighbors in such a 
way that the final information state of each robot converges to a common value. This basic idea can be 
extended to deal with the case that each robot's information states converge to desired relative deviations or 
to incorporate different group behaviors into the consensus building process. Consensus algorithms have 
applications in multi-robot rendezvous [13, 14], formation control [1, 15], flocking [16, 17], attitude 
alignment [18, 19], decentralized task assignment [20], sensor networks [21-23], etc. 

Most consensus algorithms studied in the literature do not take into account robot performance and 
situational states in the consensus building process. For example, in some formation control problems, 
where the formation is moving through space, the information states of each robot might be dynamically 
evolving over time according to some inherent dynamics. Also in most cooperative control problems, the 
information states of each robot might be affected by robot performance, environmental information, or 
sensor measurement. As a result, it is essential to incorporate robot performance and situational states into 
the consensus building process as a form of feedback. 

The main contribution of this paper is to study how information feedback can be incorporated into the 
consensus building process so as to improve the robustness and situational awareness of the whole team. 
We overview strategies of introducing information feedback to the consensus building process through 
information flow, time-varying weights, external feedback terms, and reference states. All of the strategies 
will be demonstrated in simulations or on a wheeled mobile robot experimental platform. 
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2.  BACKGROUND AND PRELIMINARIES 
It is natural to model information exchange among robots by directed or undirected graphs. A directed 

graph consists of a pair ( , )N E , where N  is a finite nonempty set of nodes, and E N N∈ ×  is a set of 
ordered pairs of nodes, called edges. An edge ( , )i j  in a directed graph denotes that robot j  can obtain 
information from robot i , but not necessarily vice versa. In contrast, the pairs of nodes in an undirected 
graph are unordered, where an edge ( , )i j  denotes that robots i  and j  can obtain information from one 
another. An undirected graph can be considered a special case of a directed graph, where an edge ( , )i j  in 
the undirected graph corresponds to edges ( , )i j  and ( , )j i  in the directed graph. In a directed graph, if 
there is an edge from node i  to node j , then i  is defined as the parent node, and j  is defined as the  
child node.  

A directed path is a sequence of edges in a directed graph of the form 1 2 2 3( , ), ( , ),...,i i i i  where 

ji N∈ . An undirected path in an undirected graph is defined analogously. In a directed graph, a cycle is a 

path that starts and ends at the same node. A directed graph is strongly connected if there is a directed path 
from every node to every other node. An undirected graph is connected if there is a path between every 
distinct pair of nodes. A directed tree is a directed graph, where every node has exactly one parent except 
for one node, called the root, which has no parent, and the root has a directed path to every other node. In a 
directed tree, each edge has a natural orientation away from the root, and no cycle exists. In the case of 
undirected graphs, a tree is a graph in which every pair of nodes is connected by exactly one path. 

A directed spanning tree of a directed graph is a directed tree formed by graph edges that connect all 
of the nodes of the graph. An undirected spanning tree in an undirected graph is defined analogously. A 
graph has a directed spanning tree if a directed spanning tree is a subset of the graph. A directed graph has 
a directed spanning tree if and only if there exists at least one node having a directed path to all of the other 
nodes. In the case of undirected graphs, having an undirected spanning tree is equivalent to being 
connected. However, in the case of directed graphs, having a directed spanning tree is a weaker condition 
than being strongly connected. The union of a group of graphs is a graph with nodes given by the union of 
the node sets and edges given by the union of the edge sets of the group of graphs. 

Suppose that there are n  robots in the team. The adjacency matrix [ ] n n
ijA a R ×= ∈  of a directed 

graph is defined as 0iia =  and 0ija >  if ( , )j i E∈ , where i j≠ . The adjacency matrix of an 

undirected graph is defined analogously except that ij jia a= , for all i j≠ , since ( , )j i E∈  implies 

( , )i j E∈ . 

Let the matrix [ ] n n
ijL R ×= ∈l  be defined as ii ijj i

a
≠

= ∑l  and ij ija= −l , where i j≠ . The 

matrix L  satisfies the conditions 

 

1

0,   ,

0,   1,..., .

ij

n

ij
j

i j

i n
=

≤ ≠

= =∑

l

l
 (1) 

For an undirected graph the Laplacian matrix L  has the property of symmetric positive 
semidefiniteness [24]. However, the matrix L  for a directed graph does not have this property. For a 
directed graph, the matrix L  is sometimes called the directed graph Laplacian or nonsymmetric Laplacian 
in the literature. In the case of undirected graphs, all of the eigenvalues of L  are nonnegative. In the case 
of directed graphs, all of the eigenvalues of L  have nonnegative real parts. 

In both cases of directed graphs and undirected graphs, 0 is an eigenvalue of L  with an associated     
eigenvector 1, where 1 is an 1n×  column vector of all ones. In the case of undirected graphs, 0 is a simple 
eigenvalue of L  and all of the other eigenvalues are positive if and only if the undirected graph is 
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connected [25]. In the case of directed graphs, 0 is a simple eigenvalue of L  and all of the other 
eigenvalues have positive real parts if and only if the directed graph has a directed spanning tree [26]. 

Let nI  denote the n n×  identity matrix. Given a matrix [ ] n n
ijS s R ×= ∈ , the directed graph of S , 

denoted by ( )SΓ , is the directed graph with node set {1,..., }N n= such that there is an edge in ( )SΓ  

from j  to i  if and only if 0ijs ≠ [27, p. 357]. 

3.  FUNDAMENTAL CONSENSUS ALGORITHM 
Consider information states with dynamics given by  

 
.

,    1,...,i iu i nξ = =  (2) 

where m
i Rξ ∈ denotes the information state of the thi  robot and m

iu R∈  is the control input. For 
example, the information state might be robot position, velocity, oscillation phase, or decision variable. A 
consensus algorithm is proposed in [2-4, 7] as 

 
1

( ),
n

i ij ij i j
j

u g k ξ ξ
=

= − −∑  (3) 

where 0ijk > , 0iig � , and ijg  is 1 if information flows from robot j  to robot i  and 0; otherwise. Note 

that ijk  denotes the weight for the information-exchange link ( , )j i . 

By applying algorithm (3), (2) can be written in matrix form as 

 
.

( ) ,mL Iξ ξ= − ⊗  

where 1[ ,..., ]T T T
nξ ξ ξ= , ⊗ denotes the Kronecker product, and [ ] n n

ijL R ×= ∈l  is given as 

ii ij ijj i
g k

≠
=∑l  and ij ij ijg k= −l , i j∀ ≠ . Note that L  satisfies property (1). 

Consensus is achieved among the n  robots if ( ) ( )i jt tξ ξ→ , i j∀ ≠ , as t →∞ . With the 

consensus algorithm (3), the final consensus value is a weighted average of the robots' initial information 
states. Note that the final consensus value is generally a priori unknown and depends on the information-
exchange topologies as well as weights ijk . 

In this paper, we assume a directed information-exchange topology to take into account the case where 
sensors might have a limited field of view in the case of information exchange through local sensing. Note 
that undirected information exchange is a special case of directed information exchange. 

Under a fixed information-exchange topology, (3) achieves consensus asymptotically if and only if the 
information-exchange topology has a directed spanning tree [26]. Under switching information-exchange 
topologies, (3) achieves consensus asymptotically if there exist infinitely many consecutive, uniformly-
bounded time intervals such that the union of the information-exchange topologies across each time 
interval has a directed spanning tree [7]. 

4.  CONSENSUS BUILDING WITH INFORMATION FEEDBACK 
In this section, we show strategies that introduce information feedback to the consensus building 

process. The strategies include information flow, time-varying weights, external feedback terms, and 
reference states. All of the strategies will be demonstrated in simulations or on a wheeled mobile robot 
experimental platform. 
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4.1  Consensus Building with Information Feedback through Information Flow  
The most straightforward strategy to introduce feedback to the consensus building process is through 

information flow between local neighbors. Information flow among the robots has an effect on the final 
consensus value. With (3) under a fixed information-exchange topology, the final consensus value is given 

by 
1

(0)n
i ii

ξ α ξ∗
=

=∑ , where 1[ ,..., ]T
nα α α=  is a left eigenvector of L−  associated with the 

eigenvalue zero with 0iα ≥  and 
1

1n
ii

α
=

=∑  [26]. Note that 0iα >  if robot i  has a directed path to all 

of the other robots in the information-exchange topology and 0iα =  if there does not exist such a directed 
path [26]. As a result, if a robot wants to contribute to the final consensus value, its information needs to 
flow to all of the other robots in the team directly or indirectly. Information flow among the robots can also 
be applied to increase the redundancy and robustness of the whole team in the case of failures of certain 
information-exchange links. For example, if robot j  only receives data due to its station as strictly a child 
in the directed information-exchange topology or due to unreliable state data transmission, any disturbance 
to this robot will cause inaccuracy in the team performance. However, if robot j  is also a parent of 
another robot, then this disturbance feedback is propagated to the other robot and the other robot can adjust 
its motion relative to the robot being disturbed so as to mitigate the effect of the disturbance.  

Consider two information-exchange topologies shown in Figure 1. Case (a) corresponds to a leader-
follower topology where robot 1j +  follows robot j , 1, 2,3j = . Case (b) corresponds to a topology 
where feedback is introduced from followers to leaders through information flow. Note that the final 
consensus value with Case (a) is 1(0)ξ  while the final consensus value with Case(b) is a weighted average 

of 1(0)ξ , 2 (0)ξ , and 3 (0)ξ . Also note that in Case (a) if robot 3 is perturbed by disturbance, robots 1 
and 2 are unaware of this disturbance and their motions remain unaffected. However, in Case (b) if robot 3 
is perturbed by disturbance, robots 1 and 2 are able to adjust their motions according to the motion of robot 
3 so as to maintain better team performance due to the information flow from robot 3 to robots 1 and 2 
directly or indirectly. 

 

 

Figure 1. Information-exchange topologies among four robots. Figure 1(a) denotes a leader-follower 
topology while Figure 1(b) denotes a topology with information flow introduced from followers to 
leaders. 

To illustrate, we study the effect of information flow with the following simulation. The consensus 
algorithm (3) is applied to drive four mobile robots to achieve rendezvous under two different information-
exchange topologies. In our simulations, we choose 1ijk ≡ , which implies that the information-exchange 

links have equal weights. Figure 2 shows the two different time-invariant information-exchange topologies. 
In particular, Case (a) corresponds to an undirected connected graph while Case (b) corresponds to a 
directed spanning tree (i.e., a leader-follower topology). 

Figure 3 shows the simulation results of the rendezvous application for Cases (a) and (b). The four 
robots have initial positions at (0,3), (2,3), (2,1), (1,0) m. The trajectories of the four robots are shown in 
Figure 3. We can see from Figure 3 that the final rendezvous in Case (a) is a weighted average of all of the 
four robots’ initial positions. In contrast, the final rendezvous position in Case (b) is robot 1’s initial  
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Figure 2. Information-exchange topologies among four robots for the rendezvous application. 
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Figure 3. Simulation results of rendezvous for Cases (a) and (b). 

position. The simulation results demonstrate how information flow affects the final consensus value since 
in Case (a) each robot has a directed path to every other robot, but in Case (b) only robot 1 has a directed 
path to all of the other robots. With information feedback through information flow, the final consensus 
value can be determined accordingly. Therefore, this strategy can be used in determining final consensus 
value in related applications.  

4.2  Consensus Building with Information Feedback through Time-varying Weights 
Information feedback can also be introduced to the consensus building process through time-varying 

weights. Consider the algorithm 

 
1

( ,{ | })( ),
n

i ij ij j i i j
j

u g k t j Nξ ξ ξ
=

= − ∈ −∑  (4) 

where iN  denotes the neighbor set of robot i , and (.,.)ijk  denotes the time-varying weights that 

introduce feedback to the thi  robot from its local neighbors. Note that (.,.)ijk  represents the coupling 

strength between robot i  and robot j . When 0ijg > , a larger ijk  implies that iξ  is driven toward jξ  

more heavily. The motivation behind (4) is that it may be desirable to weigh the information from different 
robots differently to represent the time-varying relative confidence of each robot’s information or time-
varying relative reliability of different communication or sensing links. 

Suppose that (.,.)ijk  is piecewise continuous and uniformly lower and upper bounded. If there exist 

infinitely many consecutive, uniformly-bounded time intervals such that the union of the information-
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exchange graphs across each time interval has a directed spanning tree, then ( ) ( )i jt tξ ξ→ , i j∀ ≠ , 

asynchronously as t →∞  [7]. 
In cooperative control systems, robots might move in or out of each other's communication or sensing 

range. As a result, the information-exchange links among the robots might be established or broken 
randomly. It is relevant to study how a given connectivity pattern among the robots can be maintained. The 
problem of preserving connectivity constraints has been discussed recently in [28, 29]. 

As a preliminary study, we will show how weights ijk  can be adjusted dynamically to guarantee that 

if the initial information-exchange topology is connected, the possibly switching information-exchange 
topologies stay connected for all time. For most work in consensus algorithms, weights have been either 
assumed to be constant or given consideration only so far as to identify that it may be required without 
actually developing a weighting algorithm for applications. 

To understand why the information-exchange links among the robots may be established or broken 
with the consensus algorithm (3), we analyze (3) by assuming that each robot has equal weights ijk  and a 

fixed information-exchange range. Figure 4 shows the initial positions of six robots, where R represents the 
information-exchange range of each robot.1 Here we assume that the robots can only move along the 
horizontal axis for simplicity. Note that the neighbors of robot 3 are robots 1, 2, and 4 while the neighbors 
of robot 4 are robots 3, 5, and 6. Also note that with the information-exchange range R, the initial 
information-exchange topology of the six robots is connected. With the consensus algorithm (3), robot 3 
will move to the left while robot 4 will move to the right. As a result, the information-exchange link 
between robots 3 and 4 will be broken and cause the team to fail to rendezvous.  While rendezvous is 
achievable in isolated groups, overall rendezvous of the team cannot be guaranteed. 

 

Figure 4. Initial positions of six robots with a limited information-exchange range. 

The problem of link breakage that arises with the constant weights ijk  comes when the number of 

neighboring robots on one side of a robot is larger than the number of the robots on the other side within 
the information-exchange range. Understanding the cause of the link breakage, we adjust the weights in (4) 
as follows: For simplicity, we consider the one-dimensional case. The multi-dimensional case can be dealt 
with similarly. Let p  and q  be the number of robots on either side of some center robot i  within the 

information-exchange range R with p q≥ . The weights ijk  are defined as /ijk q p=  if robot j  is on 

                                           
1 In other words, each robot can receive information from all of the robots that are within the disc of radius R centered 
at the robot. 
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the side with p  neighbors and 1ijk =  if robot j  is one the side with q  neighbors. The scaling of the 

weights prevents “weak link” breakage and ensures rendezvous with (4) given any number of robots in any 
initial configuration where the communication topology is initially connected. 

To illustrate, we apply (4) to drive multiple mobile robots to reach rendezvous with time-varying 
weights. It is assumed that each robot has the same limited information-exchange range of 7 meters, and 
the information-exchange topology is initially connected. 

Figure 5 shows the case that the weights 1ijk ≡ . Note that the connectivity of the information-

exchange topology cannot be maintained, and the robots form two separated subgroups. In contrast, Figure 
6 shows the case that the weights ijk  are adjusted dynamically according to /ijk q p=  as described 

above. Note that under the same initial conditions as in Figure 5 the connectivity among those robots is 
maintained, and the team reaches rendezvous. Therefore, consensus can be reached if the time-varying 
weights are chosen properly. 
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Figure 5. Rendezvous of seven robots with fixed weights 1ijk ≡ . 

4.3  Consensus Building with Information Feedback through External Feedback Terms 
Another strategy to introduce feedback to the consensus building process is through external feedback 

terms. Consider the algorithm 

 
1

( ) ( ,{ | },{ | })
n

i ij ij i j i j i i
j

u g k t x j N x Jξ ξ ρ
=

= − − + ∈ ∈∑ l l  (5) 
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Figure 6. Rendezvous of seven robots with time-varying weights. 

where xl  denotes the situational state of the thl  robot, iJ  denotes the set of robots whose situational 

states are available to robot i , and (.,.,.)iρ  denotes a feedback term introduced to the thi  robot from its 
local neighbors. As a result, the consensus building process of each robot will be affected by the 
performance of its local neighbors, which serves as a form of information feedback and therefore improves 
the robustness of the whole team. 

Suppose that ( ) 0ijk t >  is piecewise continuous and uniformly lower and upper bounded. Under the 

assumption that there exist infinitely many consecutive, uniformly-bounded time intervals such that the 
union of the information-exchange graph across each time interval has a  directed spanning tree, if 
|| ||i jρ ρ−  is bounded, so is || ||i jξ ξ− , i j∀ ≠ . Furthermore, if || || 0i jρ ρ− → , so is || ||i jξ ξ− , 

i j∀ ≠ . The proof of the above argument can be found in [30] and [31]. 
To illustrate, we consider an orientation alignment problem for wheeled multiple mobile robots. We 

experimentally validate the algorithm (5) on a multi-robot platform which is shown in Figure 7. The mobile 
robots can communicate with each other through ethernet with TCP/IP protocols. The robots rely on 
encoder data for their position and orientation information. 

In our experiments, we emulate limited inter-robot information exchange by simply disallowing the 
use of information obtained from certain members of the group although every robot can share information 
with every other robot. By doing so, we can test distributed cooperative control algorithms that involve 
only local neighbor-to-neighbor information exchange due to limited communication or sensing. Figure 8 
shows the local neighbor-to-neighbor information-exchange topology among four robots, where a link 
from j  to i  denotes that robot i  can receive information from robot j . 
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Figure 7. Multi-robot experimental platform at Utah State University. 

 

 

Figure 8. Information-exchange topology among four robots. 

Suppose that the orientation kinematics of the thi  robot is modeled by 

 
.

,i iθ ω=  (6) 

where iθ  is the orientation and iω  is the angular speed of the robot. We consider an orientation alignment 
algorithm as 

 
1

( ) ,   1,..., 4
n

d
i ij ij i j

j
g k iω θ θ ω

=

= − − + =∑  (7) 

where 0α > , and 7.2dω = deg/sec is the desired angular speed for the team of robots. In (7) the second 
term is the external feedback term. The objective of (7) is to guarantee that ( ) ( )i jt tθ θ→  and d

iω ω→  

as t →∞ . 
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Figures 9 and 10 show, respectively, the orientations and angular speeds of the four robots. Although 
the four robots have different initial orientations, they align their orientations with their adjacent neighbors 
asymptotically while spinning at the desired angular speed. As shown in Figure 10, the angular speeds of 
the robots converge to a value near 7.2 deg/sec.  
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Figure 9. Orientation of the four robots with an external feed term. 

4.4  Consensus Building with Information Feedback through Reference States 
Information feedback to the consensus building process can also be introduced through a reference 

state, which might be a function of robot/environmental dynamics. Let r mRξ ∈  be the reference state for 

the team. Suppose that rξ  satisfies the dynamics 

 
.

( , ),r rf tξ ξ=  (8) 

where (.,.)f  is piecewise continuous in t  and locally Lipschitz in rξ . When only a portion of the robots 

have access to rξ , we introduce the reference state to the consensus building process by the algorithm 

 
..

( 1)
1

1 1[ ( )] [ ( )]
n

r r
i ij ij j i i j i n i i i

ji i

u g k gξ γ ξ ξ α ξ γ ξ ξ
η η +

=

= − − + − −∑  (9) 
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Figure 10. Angular speeds of the four robots with an external feed term. 

where 0ijk > , 0iγ > , 0iα > , ijg  is 1 if information flows from robot j  to robot i  and 0 otherwise, 

( 1)i ng +  is 1 if robot i  has access to rξ  and 0 otherwise, and ( 1) 1

n
i i n i ij ijj

g g kη α+ =
= +∑ . The objective 

of (9) is to drive ( ) ( )r
i t tξ ξ→ , 1,...,i n= , as t →∞ . 

Let ( 1) ( 1)[ ] n n
ijG g + × += ∈�  be the adjacency matrix, where ijg , , 1,...,i j n∀ = , is 1 if information 

flows from robot j  to robot i  and 0 otherwise, ( 1)i ng +  is 1 if robot i  has access to rξ  and 0 otherwise, 

and ( 1)n kg + , 1,..., 1k n∀ = + . Note that (9) guarantees that ( ) ( )r
i t tξ ξ→  as t →∞  if and only if the 

directed graph of G  has a directed spanning tree.2 The proof of the above argument can be found in [32]. 
Note that with the consensus algorithm (3) consensus is reached on a constant value equal to the weighted 
average of the initial information states. In contrast, the algorithm (9) reaches consensus a time-varying 
reference state. 

To illustrate, we apply the following algorithm for orientation alignment 

 ( 1)
1

1 1[ ( )] [ ( )]
n

d d
i ij ij j i i j i n i i i

ji i

g k gω ω γ θ θ α ω γ θ θ
η η +

=

= − − + − −∑  (10) 

where dθ  and dω  denote the reference orientation and angular velocity for each robot. Here iθ , dθ  and 

dω  play the roles of iξ , rξ  and 
.
rξ  respectively in (9). 

                                           
2 Treat rξ  as a virtual robot with index 1n + . This condition is equivalent to the condition that rξ  is the only node 
that has a directed path to all of the robots in the team. 
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In our experiment, the reference angular velocity dω  is chosen as 7.2 deg/sec. Figure 11 shows the 
information-exchange topology among the four robots, where Li  denotes that robot i  has access to dθ  and 

dω . Figures 12 and 13 show, respectively, the orientations and angular speeds of the four robots. As shown 
in Figure 12, the four robots with different initial orientations can synchronize their orientations while 
following the reference orientation. As shown in Figure 13, the angular speeds of the robots converge to a 
value near 7.2 deg/sec. 

 

Figure 11. Inter-robot information exchange topology with a reference state. 
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Figure 12. Orientations of the four robots with a reference state. 

4.5  Discussion 
We have presented four strategies of introducing information feedback to the consensus building 

process. Each strategy might be appropriate and useful in a different context. The first two consensus 
feedback strategies through information flow and time-varying weights are internal feedback strategies.  In 
particular, the consensus feedback strategy through information flow can help to determine an appropriate 
information-exchange topology for a multi-robot team. The consensus strategy through time-varying 
weights can be used to preserve certain connectivity pattern for the information-exchange topology. The  
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Figure 13. Angular speeds of the four robots with a reference state. 

combination of these two strategies affects the final consensus equilibrium. The last two consensus 
feedback strategies through external feedback terms and reference states are external feedback strategies. 
In particular, the consensus feedback strategy through external feedback terms can be used for multi-robot 
formation control with collision avoidance capabilities. The external feedback terms can incorporate 
environment data to each robot. As a result, each robot can achieve collision avoidance with the obstacles 
or its neighbors. The consensus feedback strategy with reference states allows a group reference command 
or state to be injected to the team through only one or a portion of the robots. As a result, there is no need 
for all of the robots in the team to have access to the group reference command or state, which reduces 
information-exchange requirement. While the consensus feedback strategy with external feedback terms 
can incorporate different situational states to the team, the consensus strategy with reference states requires 
the existence of a common group reference for the team. In real applications, one strategy or a combination 
of multiple strategies can be applied. 

5.  CONCLUSION 
We have studied the problem of consensus building in multi-robot systems with information 

feedback. Four strategies of introducing feedback to the consensus building process have been presented 
including information flow, time-varying weights, external feedback terms, and reference states. 
Illustrative examples have also been demonstrated in simulation and an experimental platform as a proof 
of concept. Future work will apply the strategies to a multiple UAV formation flying problem. 
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