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a b s t r a c t

This paper dealswith the distributed discrete-time coordinated tracking problem formulti-agent systems
with Markovian switching topologies. In the multi-agent team, only some of the agents can obtain the
leader’s state directly. The leader’s state considered is time varying. We present necessary and sufficient
conditions for boundedness of the tracking error system and show the ultimate bound of the tracking
errors. A linear matrix inequality approach is developed to determine the allowable sampling period and
the feasible control gain. A simulation example is given to illustrate the effectiveness of the results.
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1. Introduction

During the past decade, distributed coordination ofmulti-agent
systems has received increasing attention. This is largely due
to the wide applications of multi-agent systems in engineering,
such as networked autonomous vehicles, automated highway
systems, formation control, and distributed sensor networks. As
an important example of distributed control, there has been
significant progress in the study of the consensus problem.
Many methods have been developed to solve the consensus
problem including algebra graph theory [1–4], linear system
theory [5,6], and convex optimization method [7]. In particular,
switching topologies were considered in [1–4] in a deterministic
framework.

In practice, a stochastic switching model can be used to
describemany dynamical systems such asmanufacturing systems,
communication systems, fault-tolerant systems, and multi-agent
systems subject to abrupt changes. In multi-agent systems, the
stochastic switching model can be used to describe the interaction
topology among the agents. When the topology is stochastically
switching, the distributed coordination problem will become very
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difficult. Very recently, some results on multi-agent systems
with Markovian switching topologies have been given in [8–11].
In [8], the authors considered static stabilization of a decentralized
discrete-time single-integrator networkwithMarkovian switching
topologies. In [9] the mean square consentability problem was
studied for a network of double-integrator agents with Markovian
switching topologies. In [10,11], the consensus problem was
studied for a network of single-integrator agents with Markovian
switching topologies in the case of, respectively, undirected
information flows and directed information flows. It should be
pointed out that there is no leader in the problems studied in
[8–11].

When there is a leader or a reference state in the multi-
agent team, the consensus problem becomes a coordinated
tracking problem or a leader-following consensus problem. The
coordinated tracking problem becomes more challenging when
the leader is dynamic and only some agents have access to the
leader. In [12], the coordination tracking problems with both
a time-varying reference state and a constant reference state
were studied, where only a subset of the agents has access to
the reference state. In [13], a variable structure approach was
employed to study a distributed coordinated tracking problem,
where only partial measurements of the states of the leader and
the followers are available. In [14], the leader-following consensus
problem for a multi-agent system with measurement noises and a
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directed interaction topologywas studied,where a neighbor-based
control scheme with distributed estimators was developed. The
leader-following consensus problem for higher-order multi-agent
systems with both fixed and switching topologies was studied
in [15]. In [16], a coordinated tracking problemwas considered for
a multi-agent system with variable undirected topologies. In [17],
a PD-like discrete-time algorithm was proposed to address the
coordinated tracking problem under a fixed topology. However,
to the best of the authors’ knowledge, few results on coordinated
tracking with Markovian switching topologies are available in the
existing literature. In this paper, we will extend the coordinated
tracking results in [17] to the case of Markovian switching
topologies.

The main purpose of this paper is to present a necessary and
sufficient condition for the boundedness of the tracking error
system. It is assumed that the leader’s state is time varying and only
some agents can obtain the leader’s state. The results presented
are mainly based on algebra graph theory and Markovian jump
linear system theory. A linearmatrix inequality (LMI) approachwill
be used to derive the allowable sampling period and the feasible
control gain. A preliminary version of the current paper has been
presented in [18].

Notation. Let R and N denote, respectively, the real number set
and the nonnegative integer set. Suppose that A, B ∈ Rp×p. Let
A ≽ B (respectively, A ≻ B) denote that A−B is symmetric positive
semi-definite (respectively, symmetric positive definite). Let ρ(M)
denote the spectral radius of the matrix M . Let diag(A1, . . . , An)
denote the diagonal matrix with diagonal block Ai, i = 1, . . . , n.
Given X(k) ∈ Rp, define ∥X(k)∥E , ∥E[X(k)XT (k)]∥2, where E[·]

is the mathematical expectation. Let |A| denote the determinant
of the matrix A. Let ⊗ represent the Kronecker product of
matrices. Let 1n denote the n × 1 column vector. Let In and 0m×n
denote, respectively, the n × n identity matrix and m × n zero
matrix.

2. Background and preliminaries

2.1. Graph theory notions

Suppose that there exist n followers, labeled as agents 1 to n,
and one leader, labeled as agent n+1. Let Ḡ , (V̄, Ē) be a directed
graph of order n+1 used tomodel the interaction topology among
the n followers and the leader, where V̄ , {1, . . . , n + 1} and
Ē ⊆ V̄ × V̄ represent, respectively, the node set and the edge set.
An edge (i, j) ∈ Ē if agent j can obtain information from agent i.
Here, agent i is a neighbor of agent j. A directed path is a sequence of
edges in a directed graph in the form of (i1, i2), (i2, i3), . . . , where
ik ∈ V̄ . The union of graphs G1 and G2 is the graph G1


G2 with

the vertex set V(G1)


V(G2) and the edge set E(G1)


E(G2). Let
Ā = [aij] ∈ R(n+1)×(n+1) be the adjacency matrix associated with
Ḡ. Here aij > 0 if agent i can obtain information from agent j and
aij = 0 otherwise. We assume that there is no self loop in the
graph, which implies that aii = 0. We also assume that the leader
does not receive information from the followers, which implies
that a(n+1)j = 0, j = 1, . . . , n. Let G , (V, E) be a directed graph
of order n used to model the interaction topology among the n
followers. Note that G is a subgraph of Ḡ. Also let A ∈ Rn×n be
the adjacency matrix associated with G.

In this paper we assume that the interaction topologies are
Markovian switching. Let m be a given positive integer. Let θ(k)
be a homogeneous, finite-state, discrete-time Markov chain that
takes values in the set S , {1, . . . ,m}, with a probability transition
matrix Π = [πij] ∈ Rm×m. In addition, we suppose that the
Markov chain is ergodic throughout this paper. Consider a set of
directed graphs G , {Ḡ1, . . . , Ḡm
}, where Ḡi is a directed graph

of order n + 1 defined as above. By a discrete-time Markovian
stochastic graph we understand a map G from S to G such
that G[θ(k)] = Ḡθ [k] for all k ∈ N. Accordingly, Gθ [k] is the
interaction topology among the n followers that is a subgraph
of Ḡθ [k].

2.2. Distributed discrete-time coordinated tracking algorithms

Suppose the dynamics of the ith follower is given by

ξ̇i(t) = ui(t), i = 1, . . . , n, (1)
where ξi(t) ∈ R is the state and ui(t) ∈ R is the control input.With
zero-order hold ui(t) = ui(kT ), kT ≤ t < (k + 1)T , where k is the
discrete-time index, and T is the sampling period, the discretized
dynamics of (1) is
ξi[k + 1] = ξi[k] + Tui[k], (2)
where ξi[k] and ui[k] represent, respectively, the state and the
control input of the ith follower at t = kT .

Let the time-varying leader’s state, also called the reference
state, be ξn+1[k] ≡ ξ r

[k]. We consider the discrete-time coordi-
nated tracking algorithm adapted from that proposed in [17] as
ui[k]

=
1

n+1
j=1

aθ [k]
ij

n
j=1

aθ [k]
ij


ξj[k] − ξj[k − 1]

T
− γ (ξi[k] − ξj[k])



+
aθ [k]
i(n+1)

n+1
j=1

aθ [k]
ij


ξ r

[k] − ξ r
[k − 1]

T
− γ (ξi[k] − ξ r

[k])


+
η − 1
T

ξi[k], (3)

where aθ [k]
ij , i = 1, . . . , n, j = 1, . . . , n + 1, is the (i, j)th en-

try of the adjacency matrix Āθ [k] associated with Ḡθ [k], and γ and
η are positive constants. To ensure that the algorithm (3) is well
defined, we assume that

n+1
j=1 aθ [k]

ij ≠ 0, i = 1, . . . , n. That
is, each follower has at least one neighbor.1 Using (3), (2) can be
written as
ξi[k + 1]

= ηξi[k] +
T

n+1
j=1

aθ [k]
ij

n
j=1

aθ [k]
ij

×


ξj[k] − ξj[k − 1]

T
− γ (ξi[k] − ξj[k])



+
Taθ [k]

i(n+1)
n+1
j=1

aθ [k]
ij


ξ r

[k] − ξ r
[k − 1]

T
− γ (ξi[k] − ξ r

[k])


. (4)

Define the tracking error for follower i as zi[k] , ξi[k] − ξ r
[k]. De-

note Z[k] , [z1[k], . . . , zn[k]]T and ζ [k+1] = [ZT
[k+1], ηZT

[k]]T ,
respectively. It follows that

ζ [k + 1] = Cθ [k]ζ [k] + WX r
[k], (5)

1 Due to the tracking nature of the problem (That is, the leaders state is always
time varying and only a subset of the followers has access to the leader), it is in
general impossible for a group of followers to track the leader under the assumption
that some followers might break off from the network even in the deterministic
case.
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where
Cθ [k]

,


(η − Tγ )In + (1 + Tγ )Dθ [k]Aθ [k]

−Dθ [k]Aθ [k]

ηIn 0n×n


,

Dθ [k] , diag

 1
n+1
j=1

aθ [k]
1j

, . . . ,
1

n+1
j=1

aθ [k]
nj

 ,

W ,


In

0n×n


,

X r
[k] , 1n(ξr [k] + ηξr [k] − ξr [k + 1] − ξr [k − 1]),

and Aθ [k] is the adjacency matrix associated with Gθ [k]. According
to [19], we know that {ζ [k], k ∈ N} is not a Markov process, but
the joint process {ζ [k], θ(k)} is. Here we assume that the reference
trajectory is a deterministic signal, and not a random process. The
initial state of the joint process is denoted by {ζ0, θ0}.

Remark 2.1. Because node j may be not the neighbor of node i at
(k− 1)T , we assume that the each node has the memory function.
It can store its state information at (k − 1)T , and it will send its
state information at (k − 1)T and kT to his neighbor at kT .

Remark 2.2. In contrast to [17], where the interaction topology
is fixed, the interaction topology considered in this paper is
Markovian switching. In this case, the coordinated tracking
problem becomes more complicated.

3. Convergence analysis

In this section, we analyze (5). When the interaction topology is
Markovian switching, the problem becomes very difficult to deal
with. We consider a special case, where the interaction topology
switches to each graph inG with an equal probability. In this case
the transition probability matrix is Π =

1
m1m1T

m. In addition,
we assume that 0 < η < 1. Denote by Ḡu (respectively, Gu)
the union of Ḡ1, . . . , Ḡm (respectively, G1, . . . , Gm). Let Āu

=

[auij] ∈ R(n+1)×(n+1) (respectively, Au
= [auij] ∈ Rn×n) be the

adjacencymatrix associatedwith Ḡu (respectively,Gu). DefineDu ,
diag( 1n+1

j=1 au1j
, . . . , 1n+1

j=1 aunj
). Before presenting our main result, we

need the following lemmas.

Lemma 3.1 ([17, Lemma 3.1]). Suppose that the leader has directed
paths to all followers 1 to n in Ḡu. ThenDuAu has all eigenvalueswithin
the unit circle.

Lemma 3.2. Suppose that the leader has directed paths to all
followers 1 to n in Ḡu. Then 1

m

m
i=1 D

iAi has all eigenvalues within
the unit circle.
Proof. Denote 1

m

m
i=1 D

iAi
= [d̄jl] and DuAu

= [djl]. By compar-
ing 1

m

m
i=1 D

iAi with DuAu, it is easy to see that (1) if djl = 1, then
0 < d̄jl ≤ 1; (2) if djl < 1, then d̄jl < 1; (3) if djl = 0, then d̄jl = 0;
(4) if

n
l=1 djl < 1, then

n
l=1 d̄jl < 1. Hence, by the same method

as the proof of Lemma 3.1 in [17], it follows that 1
m

m
i=1 D

iAi has
all eigenvalues within the unit circle. �

Lemma 3.3 ([19, Proposition 3.6]). Let S , (Π T
⊗ I4n2)diag(C

1

⊗ C1, . . . , Cm
⊗ Cm) and S̄ , (Π T

⊗ I2n)diag(C1, . . . , Cm), where
C i is defined in (5). If ρ(S) < 1, then ρ(S̄) < 1.

Lemma 3.4. Assume that max( supk |ξ r [k]−ξ r [k−1]|
T ,

supk |ξ r [k]−ηξ r [k−1]|
T )

≤ ξ̄ . Then ζ [k] is mean-square bounded, that is, ∥ζ [k]∥E < ∞,
for all initial ζ0 and θ0 if and only if ρ(S) < 1, where S is defined
in Lemma 3.3.
Proof. Becausemax(supk |ξ r
[k]−ξ r

[k−1]|, supk |ξ r
[k]−ηξ r

[k−

1]|) ≤ T ξ̄ , it follows from (5) that ∥X r
[k]∥ is bounded. This lemma

then directly follows from Theorem 3.34 in [19] and is hence
omitted here. �

Lemma 3.5. Let S be defined in Lemma 3.3. Suppose that 0 < η < 1.
For small enough Tγ , ρ(S) < 1 if and only if the leader has directed
paths to all followers 1 to n in Ḡu.

Proof (Sufficiency). If the leader has directed paths to all
followers in Ḡu, it follows from Lemma 3.2 that 1

m

m
i=1 D

iAi has
all eigenvalues within the unit circle. We will use perturbation
arguments to show thatρ(S) < 1. Note that C i in (5) can bewritten
as

C i
= M i

1 + TγM i
2, (6)

where

M i
1 ,


ηIn + DiAi

−DiAi

ηIn 0n×n


,

M i
2 ,


DiAi

− In 0n×n
0n×n 0n×n


.

Hence S can be written as

S = (Π T
⊗ I4n2)diag(C

1
⊗ C1, . . . , Cm

⊗ Cm)

= (Π T
⊗ I4n2)diag[(M

1
1 + TγM1

2 )

⊗(M1
1 + TγM1

2 ), . . . , (M
m
1 + TγMm

2 )

⊗(Mm
1 + TγMm

2 )]

= Q1 + TγQ2 + TγQ3 + (Tγ )2Q4, (7)

where

Q1 , (Π T
⊗ I4n2)diag(M

1
1 ⊗ M1

1 , . . . ,M
m
1 ⊗ Mm

1 ),

Q2 , (Π T
⊗ I4n2)diag(M

1
1 ⊗ M1

2 , . . . ,M
m
1 ⊗ Mm

2 ),

Q3 , (Π T
⊗ I4n2)diag(M

1
2 ⊗ M1

1 , . . . ,M
m
2 ⊗ Mm

1 ),

Q4 , (Π T
⊗ I4n2)diag(M

1
2 ⊗ M1

2 , . . . ,M
m
2 ⊗ Mm

2 ).

Note that in (7) the last three terms can be treated as small
perturbations to the first term when Tγ is small enough.

Now, we estimate the eigenvalues of Q1 by elementary
transformation. Because Π =

1
m1m1T

m, by simple calculation, we
get that

Q1 =
1
m

M1
1 ⊗ M1

1 M2
1 ⊗ M2

1 · · · Mm
1 ⊗ Mm

1
...

...
...

...

M1
1 ⊗ M1

1 M2
1 ⊗ M2

1 · · · Mm
1 ⊗ Mm

1

 . (8)

Denote the elementary transformation block matrices P1 ∈

R4mn2×4mn2 and P2 ∈ R4n2×4n2 as, respectively,

P1 ,


I4n2 02n×2n · · · I4n2

02n×2n I4n2 · · · I4n2
...

...
...

...
02n×2n 02n×2n · · · I4n2

 ,

P2 ,


I2n2 02n2×2n2

I2n2 I2n2


.

Then the equation in Box I follows.
To study the roots of |λI2n −

1
mη
m

i=1 M
i
1|, note thatλI2n −

1
m

η

m
i=1

M i
1


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9)
|λI4mn2 − Q1| = |P −1
1 (λI4mn2 − Q1)P1|

= λ4(m−1)n2

λI4n2 −
1
m

m
i=1

(M i
1 ⊗ M i

1)


= λ4(m−1)n2


Ω1

1
m

m
i=1

(DiAi
⊗ M i

1)

−
1
m

ηIn ⊗

m
i=1

M i
1 λI2n2


= λ4(m−1)n2

P
−1
2


Ω1

1
m

m
i=1

(DiAi
⊗ M i

1)

−
1
m

ηIn ⊗

m
i=1

M i
1 λI2n2

P2


= λ4(m−1)n2


λI2n2 −

1
m

ηIn ⊗

m
i=1

M i
1

1
m

m
i=1

(DiAi
⊗ M i

1)

02n2×2n2 λI2n2 −
1
m

m
i=1

(DiAi
⊗ M i

1)


= λ4(m−1)n2

λI2n2 −
1
m

ηIn ⊗

m
i=1

M i
1


λI2n2 −

1
m

m
i=1

(DiAi
⊗ M i

1)


= λ4(m−1)n2

λI2n −
1
m

η

m
i=1

M i
1


n λI2n2 −

1
m

m
i=1

(DiAi
⊗ M i

1)

 , (

where

Ω1 , λI2n2 −
1
m

ηIn ⊗

m
i=1

M i
1 −

1
m

m
i=1

(DiAi
⊗ M i

1).

Box I.
=

(λ − η)In −
1
m

η

m
i=1

DiAi 1
m

η

m
i=1

DiAi

−ηIn λIn


= (λ − η)n

λIn −
1
m

η

m
i=1

DiAi

 . (10)

Because 0 < η < 1 and ρ( 1
m

m
i=1 D

iAi) < 1, all roots of (10) are
within the unit circle.

Next we show that the roots of |λI2n2 −
1
m

m
i=1(D

iAi
⊗M i

1)| are
within the unit circle (i.e., ρ[

1
m

m
i=1(D

iAi
⊗M i

1)] < 1) by showing
that lims→∞[

1
m

m
i=1(D

iAi
⊗M i

1)]
s
= 02n2×2n2 . DenoteD

iAi
= [dijl]

and 1
m

m
i=1 D

iAi
= [d̄jl]. We have the equation in Box II.

It is easy to see that 1
m

m
i=1 d

i
jl = d̄jl ≥ 0, j, l = 1, . . . , n.

We first let s = 2. By computation we find that the (j, l)th block
entry of [

1
m

m
i=1(D

iAi
⊗ M i

1)]
2 is

n
k=1[

1
m

m
i=1(d

i
jkM

i
1)][

1
m

m
i=1

(diklM
i
1)]. The sum of the coefficients of M i

1M
j
1, i, j = 1, . . . ,m,

is equal to
n

k=1(
1
m

m
i=1 d

i
jk)(

1
m

m
i=1 d

i
kl). We can find a matrixM =


In +DA −DA

In 0n×n


such that the maximum absolute value

of all entries of (M)2 is greater than or equal to that of M i
1M

j
1,

i, j = 1, . . . ,m. HereDA is defined analogously as DiAi and the
corresponding graph has the same vertex set as that ofDiAi. On the
other hand, we know that the coefficient of the (j, l)th block entry
(M)2 of [

1
m

m
i=1(D

iAi
⊗ M)]2 = [( 1

m

m
i=1 D

iAi) ⊗ M]
2 is alson

k=1(
1
m

m
i=1 d

i
jk)(

1
m

m
i=1 d

i
kl). We thus have that the maximum

absolute value of all entries of [
1
m

m
i=1(D

iAi
⊗ M i

1)]
2 is less than

or equal to that of [ 1
m

m
i=1(D

iAi
⊗ M)]2. Using the same method,
we can find an M such that the same conclusion holds for s > 2.
By simple calculation we get that ρ(M) ≤ 1. In addition, note from
Lemma 3.2 that ρ( 1

m

m
i=1 D

iAi) < 1. It follows from the property
of the Kronecker product that ρ[( 1

m

m
i=1 D

iAi) ⊗ M] < 1. Hence,
lims→∞[

1
m (
m

i=1 D
iAi

⊗ M)]s = lims→∞[( 1
m

m
i=1 D

iAi) ⊗ M]
s
=

02n2×2n2 . Therefore, we conclude that lims→∞[
1
m

m
i=1(D

iAi
⊗

M i
1)]

s
= 02n2×2n2 , which implies that ρ[

1
m

m
i=1(D

iAi
⊗ M i

1)] < 1.
From the above discussion, we know that all eigenvalues of

Q1 are within the unit circle. For small enough Tγ , the last three
perturbation terms in (7) can be neglected. Hence it follows that
for small enough Tγ , ρ(S) < 1.

(Necessity). For necessity, we need to prove that ρ(S) ≥ 1
for any T > 0 and γ > 0 if the leader has no directed paths to all
followers. From Lemma 3.3, we only need to prove that ρ(S̄) ≥ 1
for any T > 0 and γ > 0, where S̄ is defined in Lemma 3.3.
If the leader has no directed paths to some followers in Ḡu, then
these followers receive information fromneither the leader nor the
other followers in each Ḡi, i = 1, . . . ,m. We assume that there are
l such followers. Each of these l followers must have at least one
neighbor due to the assumption mentioned after (3). Without loss
of generality, we assume that followers 1 to l are such l followers.
In this case, 1

m

m
i=1 D

iAi has the following form:
A11 0l×(n−l)
A21 A22


. (12)

Therefore, the eigenvalues of 1
m

m
i=1 D

iAi are those ofA11 together
with those of A22. According to the definition of 1

m

m
i=1 D

iAi, we
know that A11 is a row stochastic matrix. Hence 1 is an eigenvalue
of A11 with an associated right eigenvector 1l. Let µi be the ith
eigenvalue of 1

m

m
i=1 D

iAi. Without loss of generality, let µ1 = 1.
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1)

1
m

m
i=1

(DiAi
⊗ M i

1) =


02n×2n

1
m

m
i=1

(di12M
i
1) · · ·

1
m

m
i=1

(di1nM
i
1)

...
...

...
...

1
m

m
i=1

(din1M
i
1)

1
m

m
i=1

(din2M
i
1) · · · 02n×2n

 . (1

Box II.
Next we consider the eigenvalues of S̄. Denote the elementary
block matrix P̄ ∈ R2mn×2mn as

P̄ ,


I2n 02n×2n · · · I2n

02n×2n I2n · · · I2n
...

...
...

...
02n×2n 02n×2n · · · I2n

 .

Then, it can be computed that

|λI2mn − S̄|
= |λI2mn − P̄ −1S̄P̄ |

= λ2(m−1)n

λI2n −
1
m

m
i=1

C i


= λ2(m−1)n

 Ω
1
m

m
i=1

DiAi

−ηIn λIn


= λ2(m−1)n

n
i=1

{λ2
+ [Tγ − η − (1 + Tγ )µi]λ + ηµi},

where

Ω , λIn − (η − Tγ )In −
1 + Tγ

m

m
i=1

DiAi.

By some simple computation we have that λ1,2 = 1, η, when
µ1 = 1. It then follows from the above computation that ρ(S̄) ≥ 1
for any T > 0 and γ > 0. �

Remark 3.1. Lemma 3.5 provides a necessary and sufficient
condition for ρ(S) < 1 under the assumption that 0 < η < 1.
It is worth pointing out that 0 < η < 1 is not necessary in the
proof of necessity.

Based on the above discussion, we now summarize the main
result in the following theorem.

Theorem 3.2. Suppose that the reference state ξ r
[k] satisfies that

max


supk |ξ r [k]−ξ r [k−1]|
T ,

supk |ξ r [k]−ηξ r [k−1]|
T


≤ ξ̄ and 0 < η < 1.2

Then for small enough Tγ , the tracking errors for the n followers are
ultimately mean-square bounded if and only if the leader has directed
paths to all followers 1 to n in Ḡu. In particularly, there exist 0 < α <
1 and β ≥ 1 such that the ultimate bound for ∥ζ [k]∥E is given by
2nT ξ̄

β

1−α
.

Proof. It follows from (5) that

ζ [k] = Cθ [k−1]
· · · Cθ [0]ζ0 + WX r

[k − 1]

+

k−2
l=0

Cθ [k−1]
· · · Cθ [l+1]WX r

[l]. (13)

Then we have that

2 Under these assumptions, we can obtain that ξ r
[k] is bounded.
∥ζ [k]∥E ≤ ∥Cθ [k−1]
· · · Cθ [0]ζ0∥E + ∥WX r

[k − 1]∥E

+

k−2
l=0

∥Cθ [k−1]
· · · Cθ [l+1]WX r

[l]∥E . (14)

Note thatWX r(l) is deterministic and |ξ r(k)+ηξ r(k)−ξ r(k+1)−
ξ r(k − 1)| ≤ 2T ξ̄ . We thus obtain that

∥WX r(k − 1)∥E ≤ 2
√
nT ξ̄ . (15)

Based on Lemmas 3.4 and 3.5, and according to Theorem3.9 in [19],
we know that there exist 0 < α1 < 1 and β1 ≥ 1 such that

∥Cθ [k−1]
· · · Cθ [0]ζ0∥E ≤


2nαk

1β1∥ζ0∥2, (16)

∥Cθ [k−1]
· · · Cθ [l+1]WX r

[l]∥E ≤ 2nT ξ̄


2αk−l−1

1 β1. (17)

Denote α ,
√

α1 and β ,
√
2β1. Note that 2

√
nT ξ̄ ≤ 2nT ξ̄β . It

thus follows from (14) to (17) that

∥ζ [k]∥E ≤
√
nαkβ∥ζ0∥2 + 2nT ξ̄

β(1 − αk)

1 − α
.

Therefore, the ultimate mean-square bound is given by 2nT ξ̄
β

1−α
. �

Remark 3.3. Theorem 3.2 provides a necessary and sufficient
condition for the boundedness of the tracking error system (5). In
the theorem we require Tγ to be small enough. Next we provide a
method to compute the allowable Tγ . It follows from Theorem 3.9
in [19] that ρ(S) < 1 is equivalent to that there exist symmetric
positive-definite matrices Pi ∈ R2n×2n such that

Pi − (C i)T


1
m

m
j=1

Pj


C i

≻ 02n×2n, i = 1, . . . ,m. (18)

Then by applying Schur complement lemma, it follows that (18) is
equivalent toPi (C i)T

C i


1
m

m
j=1

Pj

−1

 ≻ 04n×4n, i = 1, . . . ,m. (19)

Note that (19) is not a linear matrix inequality (LMI) because of
the term ( 1

m

m
j=1 Pj)

−1. Denote Qi = ( 1
m

m
j=1 Pj)

−1. Then we can
convert the non-convex problem (19) to a minimization problem
with LMI constraints, namely,

min tr


m
i=1


1
m

m
j=1

Pj


Qi


subject to
Pi (C i)T

C i Qi


≻ 04n×4n,

 1
m

m
j=1

Pj In

In Qi

 ≽ 04n×4n,

Pi ≻ 02n×2n, Qi ≻ 02n×2n.



H. Zhao et al. / Systems & Control Letters 61 (2012) 766–772 771
Fig. 1. Directed topology G1 .

Fig. 2. Directed topology G2 .

If the solution to the above minimization problem is 2mn, then
we can get the allowable Tγ . The proposed minimization problem
can be solved by the cone complementary linearization (CCL)
method in [20], which can also be found in the literature such as
[9,21].

Remark 3.4. Note that 0 < η < 1 is not necessary in the proof of
necessity. Therefore, it is possible that η takes a value greater than
or equal to 1. When we apply the method in Remark 3.3, we can
let 0 < η < 1 or η ≥ 1. If there is a solution to the minimization
problem in Remark 3.3, the given η is allowable.

Remark 3.5. Note that the current paper focuses on solving a
distributed tracking problem with a dynamic leader under the
constraint that the leader is a neighbor of only a subset of the
followers while [11] focuses on a stationary leaderless consensus
problem, where the final consensus value is a constant. Note
that the leader’s state is changing over time but its state or
state derivative is not available to all followers. As a result, a
more stringent connectivity condition is required in this paper.
Actually, if the graph is only jointly connected as in [11], in
general it is impossible to ensure distributed tracking under
the constraint of the current paper. Of course, if the leader is
stationary (that is, the state of the leader is constant), then
the tracking problem here can be considered a special case
of the stationary consensus problem under a directed network
topology as studied in [11]. In this case, a standard proportional
algorithm (instead of a proportional and derivative algorithm
studied in this paper) and the joint connectivity requirement are
sufficient.

4. Simulations

In this section,weprovide an example to demonstrate the effec-
tiveness of the proposed algorithm. For simplicity, we let aθ [k]

ij = 1
Fig. 3. Tracking errors using (3) (T = 0.001, γ = 1.7).

if (j, i) ∈ Ē θ [k], i = 1, . . . , n, j = 1, . . . , n + 1. We assume that
there exist one leader and four followers. We also assume that
the Markov chain has two modes with the corresponding graphs
shown in Figs. 1 and 2, respectively. It can be seen that the leader
has no directed path to all followers in each topology. However, the
leader has directed paths to all followers in the union topology of
Ḡ1 and Ḡ2. We let the transition probability matrix be Π =

1
2121T

2 .
First, let η = 0.95. By applying the CCL algorithm and the

Matlab LMI toolbox we obtain that a feasible Tγ is Tγ = 0.0017.
In this case, ρ(S) = 0.8993 < 1. It follows that ρ(S) < 1 for
all Tγ ≤ 0.0017. The time-varying reference state is chosen as
ξ r

[k] = sin[kT ]. Let T = 0.001 and γ = 1.7 (Tγ = 0.0017). The
tracking errors are shown in Fig. 3. It can be seen that the ultimate
tracking errors are very small. Second, let η = 1. We obtain that
a feasible Tγ is Tγ = 0.0304. In this case, ρ(S) = 0.9409 < 1,
which implies that 0 < η < 1 is not a necessary assumption.
It follows that ρ(S) < 1 for all Tγ ≤ 0.0304. The time-varying
reference state is chosen as ξ r

[k] = sin[kT ] + kT . We first let
T = 0.01 and γ = 3.04 (Tγ = 0.0304). The tracking errors are
shown in Fig. 4. It can be seen that the ultimate tracking errors are
very small. Then we let T = 0.1 and γ = 0.304 (Tγ = 0.0304).
The tracking errors are shown in Fig. 5. It can be seen that the
ultimate tracking errors are larger, which shows that the tracking
errors are related to the sampling period T .

5. Conclusion and future work

In this paper, we have studied the distributed discrete-
time coordinated tracking problem for multi-agent systems with
Markovian switching topologies. The time-varying reference state
has been considered. Based on algebraic graph theory and
Markovian jump linear system theory, the necessary and sufficient
conditions for the boundedness of the tracking errors have been
obtained. An LMI approach has been used to find proper sampling
periods and control gains. We have assumed that the topology
switching probabilities are equal. The general case where the
switching probabilities are not necessarily equal will be addressed
in our future work.
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Fig. 4. Tracking errors using (3) (T = 0.01, γ = 3.04).
Fig. 5. Tracking errors using (3) (T = 0.1, γ = 0.304).
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