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Abstract— This paper considers the trajectory tracking prob-
lem for unmanned air vehicles (UAVs). We assume that the
UAV is equipped with an autopilot which reduces the twelve
degree-of-freedom (DOF) model to a six DOF model with
altitude, heading, and velocity command inputs. In this paper
we restrict our attention to planar motion. One of the novel
features of our approach is that we explicitly account for
heading and velocity input constraints. For a fixed wing UAV, the
velocity is constrained to lie between two positive constants, and
therefore presents particular challenges for the control design.
We propose a control Lyapunov function (CLF) approach. We
first introduce a CLF for the input constrained case, and then
construct the set of all constrained inputs that render the CLF
negative. The control input is then selected from this “feasible”
set. The proposed approach is then applied to a simulation
scenario, where a UAV is assigned to transition through several
targets in the presence of multiple dynamic threats.

I. INTRODUCTION

The stabilization and tracking of dynamical systems with
nonholonomic constraints has received recent attention in
the literature. An inherent challenge, identified by Brock-
ett’s well-known necessary condition for feedback stabiliza-
tion [1], is that nonholonomic systems cannot be stabilized
via smooth time-invariant state feedback. A simple but clas-
sical example of a nonholonomic system is a mobile robot
which serves as an interesting topic for stabilization and
tracking (c.f. [2], [3], [4]). Unmanned air vehicles (UAVs)
equipped with low-level altitude-hold, velocity-hold, and
heading-hold autopilots can be modeled by kinematic equa-
tions of motion that are similar to the kinematic equations
of motion of mobile robots. However, while mobile robots
and UAVs have similar angular velocity, or heading rate,
constraints, the linear velocity constraints are quite different.
In particular, fixed wing UAVs have a minimum velocity
constraint that is greater than zero, due to the stall conditions
of the aircraft, while mobile robots may have negative linear
velocity. As a result, existing approaches for mobile robots
are not directly applicable to fixed wing UAVs since negative
velocities are allowed. This paper deals with the issue of
tracking control for UAV kinematic models with physically
motivated heading rate and velocity constraints. We approach
the problem using control Lyapunov functions (CLFs) [5],
[6]. While our approach is designed for UAVs in particular,
it is also valid for mobile robot kinematic models with similar
input constraints.

In this paper, we take the following approach to UAV
trajectory tracking. We first propose a time-varying, con-
strained CLF for the UAV kinematic model. Following [7],

the CLF is used to define a state-dependent, time-varying set
of “feasible” control values from which different controllers
can be instantiated. Selection from this feasible control set,
guarantees accurate tracking as well as satisfaction of the
saturation constraints. As noted in [7], different control strate-
gies can be derived by selection from the feasible control
set according to some auxiliary performance index. This
approach introduces a great deal of flexibility to the tracking
control problem. In this paper we propose a simple selection
scheme based on saturation functions. The motivation for this
selection scheme is computational simplicity. It is worthwhile
to mention that the existing CLF based universal formulas are
not feasible in the UAV case due to the velocity constraints.

The salient features of our approach are as follows. First,
under the proposed tracking CLF framework with input
constraints, we allow the reference velocity and angular
velocity to be piecewise continuous while other approaches to
tracking control (e.g. [3], [4]) constrain them to be uniformly
continuous in order to apply Barbalat’s lemma. Second, using
different selection schemes, our approach can be used to
derive a variety of other trajectory tracking strategies. Finally,
it is computationally simple and can be implemented on
off-the-shelf inexpensive microcontrollers. To illustrate the
effectiveness of the controller, we apply our approach to
a UAV scenario, where the UAV is assigned to transition
through several opportunities in the presence of dynamic
hazards. Instead of following simple paths composed of
straight lines and circles (e.g. [3], [4]), the UAV tracks a
trajectory generated dynamically from the trajectory gener-
ator described in [8], which responds the current, possibly
time-varying, opportunity/hazard scenario presented to the
UAV.

II. PROBLEM STATEMENT

Following [9], we assume that each UAV is equipped with
standard autopilots for heading hold and Mach hold. In order
to focus on the essential issues, we will assume that altitude is
held constant. Let (x, y), ψ, and v denote the inertial position,
heading angle, and velocity for the UAV respectively. Then
the resulting kinematic equations of motion are

ẋ = v cos(ψ)

ẏ = v sin(ψ) (1)

ψ̇ = αψ(ψc − ψ)

v̇ = αv(v
c − v),



where ψc and vc are the commanded heading angle and
velocity to the autopilots, and αψ and αv are positive
constants [9]. In addition, we assume that each UAV has the
constraints that vmin ≤ v ≤ vmax and −ωmax ≤ ψ̇ ≤ ωmax,
where vmin > 0 and ωmax > 0 is the saturated heading rate.

Assuming that αv is large compared to αψ , Eq. (1) reduces
to

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (2)

ψ̇ = αψ(ψc − ψ).

Letting ψc = ψ + 1

αψ
ωc, Eq. (2) becomes

ẋ = vc cos(ψ)

ẏ = vc sin(ψ) (3)

ψ̇ = ωc

with input constraints that vmin ≤ vc ≤ vmax and −ωmax ≤
ωc ≤ ωmax. Note that if vmin = −vmax, then Eq. (3) is the
same as the kinematic model for a mobile robot with similar
input constraints.

In this paper we will assume the existence of a reference
trajectory (xr, yr, ψr, vr, ωr) which satisfies

ẋr = vr cos(ψr)

ẏr = vr sin(ψr) (4)

ψ̇r = ωr

under the constraints that vr and ωr are piecewise continuous
and satisfy the constraints vmin + εv ≤ vr ≤ vmax − εv
and −ωmax + εω ≤ ωr ≤ ωmax − εω , where εv and εω
are positive constants. The inclusion of ε∗ in the constraints
of the reference trajectory generator, guarantees that there
is sufficient control authority to track the trajectory. We will
see that as ε∗ approach zero, the feasible control set vanishes.
The control objective is to find feasible control inputs vc and
ωc such that |xr − x| + |yr − y| + |ψr − ψ| → 0 as t→ ∞.

Transforming the tracking errors expressed in the inertial
frame to the UAV frame, the error coordinates [10] can be
denoted as





xe
ye
ψe



 =





cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1









xr − x
yr − y
ψr − ψ



 . (5)

Accordingly, the tracking error model can be represented
as

ẋe = ωcye − vc + vr cos(ψe)

ẏe = −ωcxe + vr sin(ψe) (6)

ψ̇e = ωr − ωc.

Following [4], Eq. (6) can be simplified as

ẋ0 = u0

ẋ1 = (ωr − u0)x2 + vr sin(x0) (7)

ẋ2 = −(ωr − u0)x1 + u1,

where
(x0, x1, x2) = (ψe, ye,−xe) (8)

and u0

4
= ωr − ωc and u1

4
= vc − vr cos(x0).

The input constraints under the transformation become

−εω ≤ u0 ≤ εω v ≤ u1 ≤ v̄, (9)

where v
4
= vmin−vr cos(x0) and v̄

4
= vmax−vr cos(x0). It is

also easy to see that vmin−vmax+εv ≤ v ≤ vmin+vmax−εv
and εv ≤ v̄ ≤ 2vmax − εv .

Obviously, Eqs. (5) and (8) are invertible transforma-
tions, which means (x0, x1, x2) = (0, 0, 0) is equivalent
to (xe, ye, ψe) = (0, 0, 0) and (xr, yr, ψr) = (x, y, ψ).
Therefore, the original tracking control objective is converted
to a stabilization objective, that is, our goal is to find feasible
control inputs u0 and u1 to stabilize x0, x1, and x2.

Note from Eq. (7) that when both x0 and x2 go to zero,
that x1 becomes uncontrollable. To avoid this situation we
introduce another change of variables.

Let x̄0 = mx0 + x1

π1

, where m > 0 and π1

4
=

√

x2
1 + x2

2 + 1. Accordingly, x0 = x̄0

m − x1

mπ1

. Obviously,
(x̄0, x1, x2) = (0, 0, 0) is equivalent to (x0, x1, x2) =
(0, 0, 0). Therefore it is sufficient to find control inputs u0

and u1 to stabilize x̄0, x1, and x2. With the same input
constraints (9), Eq. (7) can be rewritten as

˙̄x0 = (m− x2

π1

)u0 +
x2

π1

ωr

+
1 + x2

2

π3
1

vr sin

(

x̄0

m
− x1

mπ1

)

− x1x2

π3
1

u1

ẋ1 = (ωr − u0)x2 + vr sin

(

x̄0

m
− x1

mπ1

)

(10)

ẋ2 = −(ωr − u0)x1 + u1.

III. CLF FOR TRACKING CONTROL WITH SATURATION

CONSTRAINTS

In this section, we find a valid CLF for UAV trajectory
tracking with input constraints. Consider the following class
of affine nonlinear time-varying systems

ẋ = f(t, x) + g(t, x)u, (11)

where x ∈ IRn, u ∈ IRm, and f : IR+ × IRn → IRn and
g : IR+ × IRn → IRn×m are locally Lipschitz in x and
piecewise continuous in t.

Definition 1: A continuously differentiable function V :
IR+ × IRn → IR is a control Lyapunov function (CLF) for
system (11) with input constraints u ∈ U ⊂ IRm if it is
positive-definite, decrescent, radially unbounded in x, and
satisfies

inf
u∈U

{

∂V

∂t
+
∂V

∂x
(f(t, x) + g(t, x)u)

}

≤ −W3(x), (12)

∀x 6= 0 and ∀t ≥ 0 where W3(x) is a continuous positive-
definite function.



In order to find a CLF with bounded input constraints, we
prefer the partial derivative of V to be bounded. Accordingly,
we have the following lemma.

Lemma 2: If W (x) =
√
xTx+ 1 − 1, then W (x) is

continuously differentiable, radially unbounded, positive-
definite, and

∥

∥

∂W
∂x

∥

∥ ≤ 1.
Proof: Trivial.

Lemma 2 will be used to construct a CLF for system (10).
The following lemma defines a continuous positive-definite
function.

Lemma 3: Let

W3(x) = γ0

(

x̄0

π2

)2

+ γ1k1 (vmin + εv)
x1

π1

sin

(

x1

mπ1

)

+γ2

(

k1 −
1

2

)(

x2

π1

)2 (

(vmin + εv) cos

(

x1

mπ1

)

− vmin

)

,

(13)

where π2

4
=

√

x̄2
0 + 1. If k1 > 1

2
, γi > 0, and m >

2/ cos−1

(

vmin

vmin+εv

)

, then W3(x) is continuous and positive-
definite.

Proof: Since W3 is a composition of continuous func-
tions, it is continuous. The first term in Eq. (13) is clearly
positive and zero if and only if x̄0 = 0. The second term in
Eq. (13) is nonnegative if

∣

∣

∣

x1

mπ1

∣

∣

∣
< π. But since

∣

∣

∣

∣

x1

mπ1

∣

∣

∣

∣

<
1

m
< cos−1

(

vmin

vmin + εv

)

/2 < π/4, (14)

the second term is positive and zero if and only if x1 = 0.
Since

∣

∣

∣

∣

x1

mπ1

∣

∣

∣

∣

< cos−1

(

vmin

vmin + εv

)

/2 < cos−1

(

vmin

vmin + εv

)

=⇒ cos

(

x1

mπ1

)

>
vmin

vmin + εv

⇐⇒ (vmin + εv) cos

(

x1

mπ1

)

− vmin > 0, (15)

the third term in Eq. (13) is positive and zero if and only if
x2 = 0.

The following theorem defines a valid CLF for UAV
trajectory tracking with input constraints.

Theorem 4: The function

V = W (x̄0) + k1W

(

x1

x2

)

=
√

x̄2
0 + 1 + k1

√

x2
1 + x2

2 + 1 − (1 + k1)

is a CLF for system (10) with input constraints (9) if W3(x)
is given by Lemma 3, 0 < γ1 < 1, 0 < γ2 < 1 and m >

max
{

M0, 1 + d2
εω

}

, where

M0

4
= max







2

cos−1

(

vmin

vmin+εv

) , 1 +
√

2
d1

εω







(16)

d1

4
=

(

k1 +
1

2

)

[2vmax − εv] + γ2(k1 −
1

2
)εv

+ k1 [(vmax − εv) + γ1(vmin + εv)]

+ (ωmax − εω) + (vmax − εv) + γ0 (17)

d2

4
=(vmax − εv)[

√
2(k1 −

1

2
)
M2

M0

+
√

2k1

M1

M0

+ 1]

+ (ωmax − εω) + γ0 (18)

and

M1

4
= sup

0<|α|<1/M0

|β|<1/M0

∣

∣

∣

∣

sin (α− β) + sin (β)

α

∣

∣

∣

∣

(19)

M2

4
= sup

0<|α|<1/M0

|β|<1/M0

∣

∣

∣

∣

cos (β) − cos (α− β)

α

∣

∣

∣

∣

. (20)

Proof: Obviously V is positive-definite, decrescent, and
radially unbounded, therefore it remains to show that V̇ +
W3 ≤ 0, ∀x 6= 0.

Differentiating V and setting u0 = −εωsign(x̄0), we
obtain the following expression after some algebraic manip-
ulation:

V̇ +W3 = −εω
|x̄0|
π2

(m− x2

π1

) + σ1u1 + σ2 + σ3 + σ4 (21)

where

σ1 =

(

k1 −
x̄0x1

π2π2
1

) (

x2

π1

)

σ2 = γ2(k1 −
1

2
)

(

x2

π1

)2 [

(vmin + εv) cos

(

x1

mπ1

)

− vmin

]

σ3 = k1

(

x1

π1

)[

vr sin(
x̄0

m
− x1

mπ1

) + γ1(vmin + εv) sin

(

x1

mπ1

)]

σ4 =

(

x̄0

π2

)[

x2

π1

ωr +
1 + x2

2

π3
1

vr sin(
x̄0

m
− x1

mπ1

) + γ0

(

x̄0

π2

)]

.

Three cases will be considered with respect to x̄0.
Case 1: |x̄0| ≥ 1.
Since |x̄0/π2| < 1,

∣

∣x1/π
2
1

∣

∣ < 1/2, and |x2/π1| < 1,
we know that |σ1| ≤ (k1 + 1/2). Note that σ1u1 ≤
(k1 + 1/2)(2vmax − εv), σ2 ≤ γ2(k1 − 1/2)εv , σ3 ≤
k1 [(vmax − εv) + γ1(vmin + εv)], and σ4 ≤ (ωmax − εω) +
(vmax − εv) + γ0. Since m > 1 +

√
2d1/εω , we get that

V̇ +W3 ≤ −εω |x̄0|
π2

(m− 1) + d1 ≤ − εω√
2
(m− 1) + d1 < 0,

where the second inequality comes from |x̄0| /π2 ≥ 1/
√

2
since |x̄0| ≥ 1.
Case 2: 0 < |x̄0| < 1.
Eq. (21) can be arranged as V̇ + W3 =
|x̄0|
π2

{

−εω(m− x2

π1

) + π2

|x̄0| [σ1u1 + σ2 + σ3 + σ4]
}

. We

will show that d2 ≥ π2

|x̄0| (σ1u1 + σ2) + π2

|x̄0|σ3 + π2

|x̄0|σ4,



which implies that m > 1 + d2/εω guarantees that
V̇ +W3 ≤ 0.

Set u1 = vmin − vr cos( x̄0

m − x1

mπ1

) when x2 ≥ 0 and
u1 = vmax − vr cos( x̄0

m − x1

mπ1

) when x2 < 0.
In the case of x2 ≥ 0, noting that (x2/π1)

2 ≤ |x2| /π1,
∣

∣

∣

x̄0

m − x1

mπ1

∣

∣

∣
< 2/m < cos−1( vmin

vmin+εv
),

∣

∣

∣

x̄0x1

π2π2

1

∣

∣

∣
< 1

2
, and

cos
(

x1

mπ1

)

> 0, we get that

π2

|x̄0|
(σ1u1 + σ2)

=
π2

|x̄0|
{(k1 −

x̄0x1

π2π2
1

)

( |x2|
π1

)[

vmin − vr cos

(

x̄0

m
− x1

mπ1

)]

+ γ2(k1 − 1/2)

(

x2

π1

)2

[(vmin + εv) cos

(

x1

mπ1

)

− vmin]}

≤ π2

|x̄0|
{(k1 − 1/2)

( |x2|
π1

)[

vmin − vr cos

(

x̄0

m
− x1

mπ1

)]

+ (k1 − 1/2)

( |x2|
π1

)

[vr cos

(

x1

mπ1

)

− vmin]}

≤π2(k1 −
1

2
)vr

1

m

∣

∣

∣

∣

∣

∣

cos
(

x1

mπ1

)

− cos
(

x̄0

m − x1

mπ1

)

|x̄0| /m

∣

∣

∣

∣

∣

∣

≤
√

2(k1 − 1/2)(vmax − εv)
1

M0

M2,

where the last inequality comes from 1/m < 1/M0, π2 <√
2 since 0 < |x̄0| < 1, and Eq. (20) by letting α = x̄0/m

and β = x1/(mπ1).
In the case of x2 < 0, noting that vmax −

vr cos
(

x̄0

m − x1

mπ1

)

≥ εv and (vmin + εv) cos
(

x1

mπ1

)

−
vmin ≤ εv we get that
π2

|x̄0|
(σ1u1 + σ2)

=
π2

|x̄0|
{(k1 −

x̄0x1

π2π2
1

)

(

−|x2|
π1

)[

vmax − vr cos

(

x̄0

m
− x1

mπ1

)]

+ γ2(k1 − 1/2)

(

x2

π1

)2

[(vmin + εv) cos

(

x1

mπ1

)

− vmin]}

≤ π2

|x̄0|
{(k1 −

1

2
)

(

−|x2|
π1

)

εv + γ2(k1 −
1

2
)

( |x2|
π1

)

εv} ≤ 0.

Note that

π2

|x̄0|
σ3 ≤ π2

|x̄0|
k1vr

(

x1

π1

) [

sin

(

x̄0

m
− x1

mπ1

)

+ sin

(

x1

mπ1

)]

≤π2k1vr

∣

∣

∣

∣

x1

π1

∣

∣

∣

∣

1

m

∣

∣

∣

∣

∣

∣

sin
(

x̄0

m − x1

mπ1

)

+ sin
(

x1

mπ1

)

|x̄0| /m

∣

∣

∣

∣

∣

∣

≤
√

2k1(vmax − εv)
1

M0

M1,

where the first inequality comes from x1

π1

sin
(

x1

mπ1

)

≥ 0

according to (14), and the last inequality comes from π2 <

√
2, 1/m < 1/M0, and Eq. (19) by letting α = x̄0/m and

β = x1/(mπ1).
Also note that

π2

|x̄0|
σ4

=
π2

|x̄0|
x̄0

π2

[

x2

π2

ωr +
1 + x2

2

π3
1

vr sin

(

x̄0

m
− x1

mπ1

)

+ γ0

x̄0

π2

]

≤
∣

∣

∣

∣

x2

π1

ωr

∣

∣

∣

∣

+

∣

∣

∣

∣

1 + x2
2

π3
1

vr sin

(

x̄0

m
− x1

mπ1

)
∣

∣

∣

∣

+ γ0

∣

∣

∣

∣

x̄0

π2

∣

∣

∣

∣

≤(ωmax − εω) + (vmax − εv) + γ0.

Combining these expressions gives the desired result.
Case 3: x̄0 = 0.
In this case we have V̇ +W3 = σ1(u1 + σ2) + σ3. For σ3

we have σ3 ≤ k1

(

x1

π1

)

sin
(

x1

mπ1

)

vr(γ1 − 1) ≤ 0.
Here we choose u1 similar to case 2 except that x̄0 = 0.

When x2 ≥ 0, we get that

σ1u1 + σ2 ≤k1

( |x2|
π1

) [

vmin − vr cos

(

x1

mπ1

)]

+ γ2k1

( |x2|
π1

)

[vr cos

(

x1

mπ1

)

− vmin]

=(γ2 − 1)k1

( |x2|
π1

)[

vr cos

(

x1

mπ1

)

− vmin

]

,

which is nonpositive since 0 < γ2 < 1 and m >
1/ cos−1(vmin/(vmin + εv)).

When x2 < 0, we get that

σ1u1 + σ2 ≤k1

(

−|x2|
π1

)

εv + γ2k1

( |x2|
π1

)

εv

≤(γ2 − 1)k1

( |x2|
π1

)

εv,

which is also nonpositive.
It is straightforward to show that M1 and M2 in Eqs. (19)

and (20) are bounded as |α| approaches both 0 and 1/M0.
Therefore M1 and M2 are finite and can be found by
straightforward optimization techniques.

Theorem 4 demonstrates that V is a valid CLF for sys-
tem (10) under saturation constraints (9). Note that a very
conservative upper bound is found for m in each case for
simplicity of the proof. In reality, m can be much smaller
than the upper bound specified above. Also note that all of
the parameters can be computed numerically off-line. The
resulting controller will be computationally simple.

IV. NONLINEAR TRACKING CONTROL BASED ON CLF

With the CLF given in Theorem 4, our goal in this section
is to find a family of feasible tracking control laws based on
this CLF.

Following the notation introduced in the proof of Theo-
rem 4, we get that V̇ + W3 = λ0u0 + λ1u1 − λ̄, where



λ0

4
= x̄0

π2

(

m− x2

π2

)

, λ1

4
= σ1, and λ̄

4
= −σ2 − σ3 − σ4.

Consider the line defined by

λ0u0 + λ1u1 = λ̄, (22)

which separates the control space into two halves, where
the half plane λ0u0 + λ1u1 ≤ λ̄ represents unconstrained
control values that ensure that V̇ ≤ −W3(x). The input
constraints (9) produce a time-varying rectangle in the u0–
u1 plane. Theorem 4, guarantees a nonempty intersection
between the half plane λ0u0 + λ1u1 ≤ λ̄ and the input con-
straints (9). We call this nonempty intersection the “feasible
control set” and denote it by F(t, x).

We have the following theorem.
Theorem 5: If the time-varying feedback control law

k(t, x) satisfies k(t, 0) = 0, k(t, x) ∈ F(t, x), ∀x 6= 0, and
k(t, x) is locally Lipschitz in x and piecewise continuous in
t, ∀x 6= 0 and ∀t ≥ 0, then this control solves the tracking
problem with input constraints, that is, |xr − x|+ |yr − y|+
|ψr − ψ| → 0 as t→ ∞.

Proof: Straightforward using standard Lyapunov stabil-
ity theory for time-varying systems.

There are an infinite number of possibilities for selecting
a feedback strategy that satisfies Theorem 5. In this paper
we will investigate the performance of a simple saturation
control.

Lemma 6: If

u0 =

{

−η0x̄0, |η0x̄0| ≤ εω

−sign(x̄0)εω, |η0x̄0| > εω
(23)

u1 =











v, −η1x2 < v

−η1x2, v ≤ −η1x2 ≤ v̄

v̄, −η1x2 > v̄

, (24)

then ksat(t, x) = [u0, u1]
T satisfies the conditions of Theo-

rem 5 for sufficiently large η0 > 0 and η1 > 0.
Proof: The proof follows a similar line as that in

Theorem 4 and is omitted here for space limitations.
In Lemma 6 we used a simple control law that stays in

the feasible control set. Other continuous saturation functions
like atan, tanh are also possible as long as they stay in the
feasible control set. In the case of vr and ωr being uniformly
continuous, it is also possible to use geometrical strategies to
find feasible control laws (e.g. choose the geometrical center
of the feasible control set F(t, x) as feasible controls).

One advantage of the CLF-based approach used in this
paper is that it only requires vr and ωr to be piecewise
continuous instead of being uniformly continuous, which
results in wider potential applications than other approaches
which requires uniform continuity. Note that if we go back to
the original system defined by (3), we can see that vc = u1+
vr cos(x0) and ωc = ωr−u0, which is piecewise continuous
in t since vr and ωr are piecewise continuous in t. The
other advantage is that it provides the possibility to use other
advanced strategies to choose feasible controls from F(t, x).

For example, at each time t, a feasible control may be
generated from F(t, x) while optimizing some performance
index function or minimizing some cost function at the same
time, which introduces more flexibility and benefits to the
tracking control problem than specifying a fixed control law
in advance. In addition, it is also possible to propose a
suboptimal controller from F(t, x) based on the combination
of model predictive techniques and the tracking CLF.

V. SIMULATION RESULTS

In this section, we simulate a scenario where a small fixed
wing UAV is assigned to transition through several known
targets in the presence of dynamic threats. The overall system
architecture consists of Waypoint Path Planner (WPP), Dy-
namic Trajectory Smoother (DTS), Trajectory Tracker (TT),
Low-level Autopilot, and UAV.

The design of the WPP and DTS are described in [11]
and [8], respectively. The WPP produces waypoint paths that
change in accordance with the dynamic threat environment.
The DTS smoothes through these waypoints and produces
a feasible time-parameterized trajectory that satisfies Eq. (4)
and the constraints for reference inputs.

The parameters used in this paper are given in Table I.

Parameter Value Parameter Value

vmin 1.0 (m/s) vmax 2.0 (m/s)
ωmax 1.7 (rad/s) ε1 0.2 (m/s)

ε2 0.2 (rad/s) vr ∈ [1.2, 1.8] (m/s)
ωr ∈ [−1.5, 1.5] (rad/s) αψ 5
αv 50 m 100
k1 2 γ0, γ1, γ2 0.5
η0 10 η1 10

TABLE I

PARAMETER VALUES USED IN SIMULATION.

Figure 1 shows the problem scenario. The dots are threat
locations to be avoided. The waypoint path planner described
in [11] generates the waypoint path which is shown in green.
The dynamic trajectory smoother described in [8] generates
the reference trajectory, which is shown in red. The actual
trajectory is shown in blue.

The trajectory tracking errors for position and heading
angle are plotted in Figure 2. We can see that the tracking
error for heading angle converges faster than that for x and
y coordinate, which is due to the weighting factor m in the
definition of x̄0.

The reference and commanded control inputs are plotted in
Figure 3. Obviously, vr and ωr are only piecewise continuous
instead of uniformly continuous. The reference control inputs
generated by the trajectory generator satisfy their constraints
respectively, that is, vr ∈ [1.2, 1.8] m/s and ωr ∈ [−1.5, 1.5]
rad/s. The commanded control inputs vc and ωc are within
the range [1, 2] m/s and [−1.7, 1.7] rad/s respectively, which
satisfies the input constraints. The original heading rate plot



Fig. 1. The simulation scenario: waypoint path (green), smoothed reference
trajectory (red), and actual trajectory (blue).

ωc is somewhat chattering due to the abrupt change of the
reference heading rate ωr, discrete implementation of the
system with a sample rate of 20 Hz, and the high gain m in
the definition of x̄0. The chattering phenomenon is overcome
by adding a low pass filter after the control signal ωc.
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Fig. 2. The trajectory tracking errors expressed in the inertial frame.

VI. CONCLUSION

A tracking CLF for a UAV kinematic models with input
constraints is derived. Based on this CLF, a feasible con-
trol set is formed. This feasible control set facilitates the
generation of a variety of feasible control strategies that not
only guarantee accurate tracking but also optimize auxiliary
performance functions. A simple saturation control strategy
generated from the feasible control set was used and applied
to a non-trivial simulation scenario.
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