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ABSTRACT
Deferring batch workload in data centers is promising for
demand response to enhance the efficiency and reliability
of a power grid. Yet operators of multi-tenant colocation
data centers still resort to eco-unfriendly diesel generators
for demand response, because tenants lack incentives to de-
fer their workloads. This work proposes an online auc-
tion mechanism for emergency demand response (EDR) in
geo-distributed colocation data centers, which incentivizes
tenants to delay and shuffle their workload across multiple
data centers by providing monetary rewards. The mecha-
nism, called BatchEDR, decides the tenants’ workload defer-
ment/reduction and diesel usage in each data center upon re-
ceiving an EDR signal, for cost minimization throughout the
entire EDR event, considering that only a limited amount
of batch workloads can be deferred throughout EDR as well
as across multiple data centers. Without future information,
BatchEDR achieves a good competitive ratio compared to an
omniscient offline optimal algorithm, while ensuring truth-
fulness and individual rationality over the auction process.
Trace-driven experiments show that BatchEDR outperforms
the existing mechanisms and achieves good social cost.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies; Modeling
techniques; I.1.2 [Algorithms]: Analysis of algorithms

Keywords
Colocation Data Centers; Emergency Demand Response;
Primal-dual Online Algorithms

1. INTRODUCTION
The large yet flexible energy demand of data centers rep-

resents a valuable demand response resource for grid sta-
bility [8, 11, 32]. In particular, data centers are already im-
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portant participants in emergency demand response (EDR).
Taking up 87% of all demand response capacities in the
U.S. [18], EDR protects the grid as the last line of defense
and coordinates large energy consumers, including data cen-
ters, to shed consumption during emergency events (e.g., se-
vere weather) [21]. EDR has been widely adopted through-
out the world and can even be executed multiple times each
day in some developing countries where power infrastruc-
ture is increasingly fragile. Further, as more renewables are
incorporated into the grid and result in a higher volatility
in power supply, we anticipate that EDR will be playing an
even more crucial role.

The emergence of data center demand response, albeit
highly desired, has also raised environmental concerns, be-
cause data centers typically participate by turning on back-
up diesel generators that are both costly and environmen-
tally unfriendly [6, 36]. On-site diesel generator produces
over 50 times of NOx particles per unit energy generation
as compared to a typical coal-fired power plant [25]. Sev-
eral studies [5, 13, 30–32] have investigated server resource
management techniques (e.g., switching off idle servers) to
modulate energy demand, as a low-cost and green alterna-
tive for data center demand response [11].

While the existing efforts on server energy management
for demand response are encouraging, they have been pri-
marily focused on owner-operated data centers like Google,
where the operator has full control over both servers and
the data center facility. In practice, another type of data
center—multi-tenant colocation data center (also called colo-
cation or colo)—has become common, yet less studied. In
a colocation data center, the operator manages the facility
and provides support (including power, cooling, and space)
to multiple tenants who control their own physical servers in
a shared space. Colocations satisfy the data center needs of
many industry sectors that do not want to completely rely on
public clouds. For example, many companies house the en-
tirety of their private clouds (or the private part of a hybrid
cloud) in colocations. Even IT giants, including Microsoft
and Amazon [6,36], rely on colocations to complement their
private data center infrastructure. The U.S. alone witnesses
over 1,400 colocations, a number still in rapid rise, driven
by the surging demand [7].

Compared to private data centers, colocations can be more
appropriate candidates for demand response, given their typ-
ical metropolitan location where demand response is mostly
needed. Nonetheless, colocation demand response presents
a new “split incentive” challenge: colocation operator wants



demand response for financial compensation from the grid,
but relies on diesel generation to do so; tenants manage their
own servers and have no incentive to shed consumption for
demand response.1

To overcome the split-incentive hurdle, recent studies [6,
24,36] have proposed various incentive mechanisms through
which the colocation operator passes down economic bene-
fits to tenants for enabling cost-effective and green coloca-
tion demand response (without fully relying on diesel gen-
eration). These studies often have two limitations. First,
they focus on a single occurrence of EDR and a single colo-
cation, whereas EDR typically occurs over an extended pe-
riod of time throughout a wide region, over which the colo-
cation operator often manages multiple data centers. For
example, EDR was triggered multiple times in January of
2014 throughout several eastern states in the U.S. due to
extremely cold weather [19], and Equinix (a large colocation
operator) has several data centers in these affected areas [9].
These colocation data centers are not isolated, because over
50% tenants house their servers in more than one colocations
and can spatially route their workloads from one colocation
to another [27]. Second, more importantly, prior studies
on colocation demand response [6, 24, 36] implicitly assume
that tenants reduce their IT energy by turning off servers
which process user-facing production workloads (e.g., on-
line shopping). Such interactive workloads are highly delay-
sensitive and, in practice, tenants may have concerns with
the associated performance degradation. Nonetheless, ten-
ants are highly diverse in colocations and many workloads
are delay-tolerant (e.g., lab testing, Hadoop), and are par-
ticularly suitable for demand response due to their schedul-
ing flexibilities. In fact, LBNL’s field test of data center
demand response used delay-tolerant batch workloads for
experiments [11].

In this work, we study demand response by colocations, an
important but less-explored type of data centers. Different
from the existing research on colocation demand response [6,
24,36], we focus on demand response in multiple colocations
where tenants deploy their delay-tolerant batch workloads,
which requires new mechanisms. Unlike delay-sensitive in-
teractive workloads that must be processed promptly, batch
workloads can often be flexibly re-scheduled, which also im-
plies that tenants participating in demand response need to
manage their batch workloads over a time span (e.g., a few
hours). On the other hand, an EDR event often lasts a few
hours or even a couple of days [19], over which participat-
ing tenants’ scheduling decisions of batch workloads must be
carefully coordinated online without violating performance
constraints (e.g., throughput for batch jobs over a period of
time). Existing mechanisms for one-time EDR [6,24,36] that
greedily schedule tenants’ energy reduction without account-
ing for batch workload scheduling over time are no longer
applicable and can result in significant cost increases (see
Section 6). Moreover, a tenant’s workloads located in mul-
tiple colocations affected by an EDR event need to be jointly
coordinated.

We propose an online auction mechanism, called
BatchEDR, to enable low-carbon and cost-effective EDR in
colocations by incentivizing tenants to delay some batch
workloads. BatchEDR collects bids from tenants online (in-

1Tenants are not eligible for directly participating in demand
response through the utility, because the utility cannot mon-
itor individual tenants’ energy consumption.

dicating their maximum workload deferment in each coloca-
tion) and, upon the arrival of each EDR signal, decides the
participating tenants’ batch workload deferment subject to
quality-of-service (QoS) requirements. BatchEDR does not
require future information such as tenants’ future bids or
EDR signals. Our main contributions are as follows.

• We formulate the problem of dynamically delaying ten-
ants’ batch workloads in an online manner for EDR in
geo-distributed colocations, with the goal of minimiz-
ing social cost (including both tenants’ performance
cost and operator’s diesel cost).

• We design a new online mechanism, BatchEDR, which
computes efficient online decisions to coordinate de-
ferment of tenants’ batch workloads for EDR while
achieving truthfulness. BatchEDR also meets each ten-
ant’s requirements on the maximum one-round energy
reduction across all data centers as well as maximum
overall energy reduction throughout the entire EDR
event. BatchEDR attains a good competitive ratio
(around 1.05) under realistic setting in terms of overall
social cost, even as compared with the offline optimum.

• We perform trace-based simulations to validate
BatchEDR and our results show that BatchEDR
achieves a close-to-minimum social cost and outper-
forms the best-known solution (e.g. Truth-DR [36]).

In the rest of the paper, we discuss the related work in
Sec. 2, and present the problem model in Sec. 3. In Sec. 4
and Sec. 5, we propose the online algorithm framework and
the one-round EDR mechanism. In Sec. 6 and Sec. 7, we
show the experiment results and conclude this paper.

2. RELATED WORK
Data center demand response has quickly emerged as an

important mechanism to transform data center’s huge en-
ergy demand from a negative to a valuable social asset.
Ghatikar et al. [11] first verify the feasibility of data center
demand response through field tests. Ghamkhari et al. [10]
and Aikema et al. [1] consider ancillary services, i.e., volun-
tarily reducing workload, to optimize the resource manage-
ment of data center to gain additional revenues from the
utility. Several studies [5, 14, 17] achieve minimizing ag-
gregate cost of data centers and utilities via dynamic pric-
ing [14], tuning server power usage for regulation service [5],
and minimizing social cost of data center demand response
via pricing [17]. Other studies optimize resource manage-
ment for data center demand response, e.g., partial execu-
tion [35], battery discharging [2], and geographic load bal-
ancing [22, 37]. Nevertheless, all these studies assume that
data center operators have full control over the servers, and
hence they are not applicable for colocations.

Several recent studies have investigated colocation demand
response. Ren et al. [24] propose a simple mechanism for
colocation, called iCODE, which is on a best-effort basis
without satisfying EDR requirement and also is not truthful.
Zhang et al. [36] propose a single-round randomized auc-
tion mechanism, Truth-DR, for EDR. [6] studies the same
problem but uses parameterized supply function bidding.
These studies [6, 24, 36] only focus on a single data center
and, more importantly, assume that tenants manage delay-
sensitive workloads for energy shedding for a single time slot,
which may not be suitable for demand response in practice.



Our study is also relevant to auction design, which has
been applied in various contexts. For example, Zhou et
al. [38] propose an online procurement auction mechanism
in smart grid, achieving truthfulness, computationally ef-
ficiency, and a constant competitive-ratio. But, they as-
sume that the bidders’ supply is always greater than de-
mand. Babaioff et al. [3] design an online auction mechanism
achieving constant approximation under a monotone hazard
rate distribution. Goel et al. [12] propose a truthful auction
achieving Pareto-optimal in an online manner, with total
payment constraints. These studies, except Truth-DR [36],
are not suitable for EDR, where both strategic tenants and
the operator-controlled diesel generation can contribute to
energy reduction; although Truth-DR is designed for EDR,
it is intended for a single time slot and cannot achieve de-
sirable properties, such as one-round reduction limitation
at geo-distributed data centers, performance guarantee, and
truthfulness, in the online EDR scenario.

3. PRELIMINARIES AND PROBLEM FOR-
MULATION

3.1 Incentivization for Colocation EDR
We consider a typical EDR event (e.g., PJM’s EDR [19])

that lasts for several hours over a large region. A colocation
operator signs up for the EDR program in advance (e.g.,
three years ahead in PJM [19]) and receives rewards for en-
ergy reduction commitment: energy reduction is mandated
during emergency that lasts up to a certain period of time
and non-compliance incurs a heavy penalty.2 It operates M
geo-distributed data centers over the EDR region serving N
tenants in total, each of which rents space and power to run
their servers in all or a subset of the data centers. During an
EDR event, the colocation operator’s data centers will con-
tribute to energy reduction for a total of T time slots (e.g.,
hours) as per the contract with the grid. In each time slot,
the grid sends an energy reduction signal to each data cen-

ter j, specifying the amount of energy to reduce R
(t)
j in this

time slot.3 Such an EDR requirement can be fulfilled by en-
ergy usage reduction from tenants in the data center and/or
energy production using on-site diesel generators. Let αj
denote the cost of producing one unit of energy using diesel
in data center j ∈ [M ].

A tenant may run delay-sensitive interactive workloads
(e.g., user-facing web service) and delay-tolerant back-end
batch workloads (e.g., testing, back-end data processing) in
these data centers. While interactive workloads must be
processed with stringent delay requirements, batch work-
loads typically have large scheduling flexibilities, both over
time and over locations [4, 16], and can be postponed to be
executed after EDR ends. Thus, we consider that partici-
pating tenants reduce their servers’ energy for EDR by de-

2When signing up for EDR, the colocation operator may
also share some of its received rewards with tenants to get
them committed to energy reduction during EDR. Then, a
coordination mechanism is still required to allocate energy
reduction among self-interested participating tenants (with
private workload information) during the actual EDR for
social cost minimization. This is the focus of our study, and
BatchEDR serves the purpose.
3Reduction is decided based on a predetermined reference
value (e.g., the past average value or tenant’s power capacity
subscription from the colocation) [19].

ferring batch workloads (which is also the approach adopted
in LBNL’s field test of data center demand response [11]).

Each tenant’s batch workloads arrive online and can be
quantified depending on the specific application, e.g., GB for
sorting data (one of Hadoop’s default applications). While
batch workloads are delay-tolerable, tenant still has a QoS
constraint (e.g., throughput requirement for data process-
ing) limiting the amount of workloads that can be deferred
until EDR ends. Here, we consider two important con-
straints for both total (equivalent to“average”over the course
of EDR) and per-slot amounts of deferrable workloads: first,
let wi represent the maximum amount of batch workloads
that tenant i ∈ [N ] can defer during the entire T time slots of

EDR across all data centers; second, let v
(t)
i be the maximum

amount of workloads that tenant i can delay in each time
slot t over all of its data centers.4 Note that deferred batch
workloads result in batch workload reduction during EDR,
and hence we interchangeably use (batch) workload defer-
ment and workload reduction without ambiguity. By defer-
ring batch workloads, tenants can reduce energy consump-
tion (e.g., via turning off unused servers [11]), and we use

f
(t)
i,j to convert a unit of workload reduction to the amount

of energy reduction for tenant i in data center j during time

t. The value of f
(t)
i,j is reported to the colocation operator

by tenant i, and as proved later, it is truthful.
Auction mechanism. BatchEDR incentives and coor-

dinates tenants’ workload reduction based on an auction
mechanism, where energy reduction is viewed as the “good”
to be allocated to bidders. Specifically, to incentivize ten-
ants’ contribution for EDR by deferring their workloads, the
colocation operator hosts a procurement auction upon the

arrival of each energy reduction signal R
(t)
j and then allo-

cates the energy reduction among participating tenants (as
well as its diesel generator). The N tenants are bidders in
the T auctions, each submitting a bid at the beginning of
each time slot. The bid of tenant i includes a vector of three
tuples: (b

(t)
i,j , f

(t)
i,j , e

(t)
i,j ), ∀j ∈M , where e

(t)
i,j denotes the maxi-

mum amount of batch workload it can reduce in data center
j in time slot t, f

(t)
i,j is the factor converting the amount of

deferred workload to energy reduction for data center j in

t, and b
(t)
i,j is its claimed cost (due to batch workload defer-

ment) for per-unit energy reduction in data center j in t.
Note that the bid’s values are all zero in data centers where
the tenant does not deploy servers. As part of its bid, tenant

i also submits v
(t)
i to specify its maximum tolerable amount

of workload reduction over all the data centers at time t.
Further, in the first auction, tenant i also informs the colo-
cation operator of its total workload reduction/deferment
constraint wi for the operator’s consideration over the T
auctions.

Online decisions. In each time slot t, based on the
collected bids and diesel cost in the data centers, the coloca-
tion operator makes the following decisions: (i) The amount
of energy reduction (through batch workload reduction) by
tenant i in data center j in this time slot. Here, we use

x
(t)
i,j ∈ [0, 1],∀i ∈ [N ], ∀j ∈ [M ], each of which represents a

percentage of tenant i’s submitted maximum workload re-
duction in data center j in t, such that tenant i is asked

to reduce energy at the amount of f
(t)
i,j e

(t)
i,jx

(t)
i,j . (ii) The re-

4Our analysis still applies when adding another constraint
on deferrable workloads for each data center.



Table 1: Notation
Var Definition

N # of tenants
M # of data centers
T # of time slots

b
(t)
i,j per-unit energy cost of tenant i in data center j at

time t

f
(t)
i,j workload-to-energy conversion factor of tenant i in

data center j at time t

e
(t)
i,j maximum energy reduction amount that tenant i

can reduce in data center j at time t
wi maximum deferrable workload amount of tenant i

across all data centers during all T time slots

v
(t)
i maximum deferrable workload amount of tenant i

across all data centers in time slot t

x
(t)
i,j tenant i’s reduction % in data center j at t

y
(t)
j amount of energy to produce by using diesel gener-

ators in data center j at time t

R
(t)
j required energy reduction in data center j at t
αj per-energy diesel generator cost in data center j

φ
(t)
i tenant i’s reward at time t

u
(t)
i tenant i’s utility at time t

spective financial awards, φ
(t)
i , which is the total reward for

tenant i in time t. (iii) The amount of energy to produce

using diesel generator in each data center, y
(t)
j , ∀j ∈ [M ], in

order to meet the EDR energy reduction requirement R
(t)
j .

For ease of reference, we list important notations in Table 1.
Our goals of online auction mechanism design are three-

fold: (1) Truthfulness: As a highly desired property of mech-
anism design to avoid cheating behaviors, truthfulness is
formally defined in Def. 1 for our auction model. (2) In-

dividual rationality : Let u
(t)
i represent the utility of ten-

ant i in time slot t, equivalent to the reward it receives
minus its true cost of energy reduction at the time. At
any time, each tenant always obtains a non-negative util-

ity, i.e. u
(t)
i ≥ 0,∀i ∈ [N ], ∀t ∈ [T ]. (3) Social cost min-

imization: Social cost is a standard measure to assess ef-
ficiency of a mechanism [29] and, in our system, it is the
sum of the tenants’ overall net cost and colocation oper-
ator’s total cost. A tenant’s net cost is its cost due to
workload reduction minus the reward from the colocation
operator,

∑
j∈[M ]

∑
t∈[T ] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j −

∑
t∈[T ] φ

(t)
i . The

colocation operator’s cost is due to using diesel genera-

tor and offering rewards to tenants,
∑
j∈[M ]

∑
t∈[T ] αjy

(t)
j +∑

i∈[N ]

∑
t∈[T ] φ

(t)
i . As the rewards cancel each other,

the social cost is equivalent to the sum of tenants’
cost due to workload deferment and the operator’s cost

of using diesel, i.e.
∑
i∈[N ]

∑
j∈[M ]

∑
t∈[T ] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +∑

j∈[M ]

∑
t∈[T ] αjy

(t)
j , which represents the overall negative

impact of EDR on the entire colocation system. Social cost
has been a commonly metric in data center demand response
studies [6, 17, 36], and minimizing it is also equivalent to
maximizing social welfare.

Definition 1. (Truthfulness) The auction mechanism
is truthful if for any tenant i in time slot t, reporting a bid

(b
(t)
i,j , f

(t)
i,j , e

(t)
i,j ), ∀j ∈ [M ] and v

(t)
i that reveal its true infor-

mation always maximizes its utility, regardless of the bids of
other tenants.

3.2 Social Cost Minimization Problem
We first formulate the offline social cost minimization prob-

lem which, assuming that the operator knows all the reduc-
tion signals and the tenants’ true bids beforehand, provides
the “perfect” solution and serves as a benchmark to compare
BatchEDR with.
minimize:∑

i∈[N ]

∑
j∈[M ]

∑
t∈[T ]

b
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

∑
t∈[T ]

αjy
(t)
j (1)

subject to:∑
j∈[M ]

∑
t∈[T ]

e
(t)
i,jx

(t)
i,j ≤ wi, ∀i ∈ [N ] (1a)

∑
i∈[N ]

f
(t)
i,j e

(t)
i,jx

(t)
i,j + y

(t)
j ≥ R

(t)
j , ∀j ∈ [M ], ∀t ∈ [T ] (1b)

∑
j∈[M ]

e
(t)
i,jx

(t)
i,j ≤ v

(t)
i , ∀i ∈ [N ], ∀t ∈ [T ] (1c)

x
(t)
i,j ≤ 1, ∀i ∈ [N ], ∀j ∈ [M ], ∀t ∈ [T ] (1d)

x
(t)
i,j ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ], ∀t ∈ [T ] (1e)

y
(t)
j ≥ 0, ∀j ∈ [M ], ∀t ∈ [T ] (1f)

Constraint (1a) specifies that for each tenant, the actual
overall workload reduction at all the data centers through-
out the entire EDR event cannot exceed the maximum work-
load reduction constraint wi. We call this the time-coupling
workload reduction budget constraint. (1b) means that the
sum of tenants’ reduced energy consumption5 and diesel-
generated energy need to fulfill the EDR requirement set
by the grid. (1c) limits the total workload reduction over
all data centers for each tenant i at each time t within the
limit v

(t)
i that the tenant specifies. (1d) guarantees that the

operator will not ask any tenant to reduce more workload
than the maximum amount it specifies in its bid. Note that
back-up diesel generator is designed to support the entire
data center’ operation for a couple of days and hence the
colocation operator can always use diesel generator to fulfill
any amount of energy reduction requirement for EDR [6].
In other words, there always exists a feasible solution to the
social cost minimization problem.

Complete future information (including energy reduction
signals and tenants’ true bids over the T time slots) is needed
beforehand to solve the optimal offline problem (1). Nonethe-
less, the colocation operator needs to respond to EDR sig-
nals in an online manner without such future information.
Thus, we seek to design an online auction mechanism to al-
locate energy reduction to participating tenants (and diesel
generator), while guaranteeing truthful bidding, individual
rationality, and competitiveness in terms of social cost. To-
wards this end, we employ a primal-dual algorithm design
framework and formulate the dual of the primal social cost
minimization problem (1), by associating dual variable vec-
tors λ, z, σ, and δ with constraints (1a), (1b), (1c), and
(1d), respectively. The correspondence between constraints
and variables in the primal and dual problems is given in
Table 2.
Dual Problem:

5Non-IT energy (e.g, cooling) decreases proportionally as
tenants reduce server energy and hence, as in prior work
[6, 36], is attributed to tenants.



Table 2: variable-constraint correspondence

Primal (1a) x
(t)
i,j (1b) y

(t)
j (1c) (1d)

Dual λi (2a) z
(t)
j (2b) σ

(t)
i δ

(t)
i,j

maximize:

−
∑
i∈[N ]

λiwi +
∑
j∈[M ]

∑
t∈[T ]

z
(t)
j R

(t)
j

−
∑
i∈[N ]

∑
t∈[T ]

σ
(t)
i v

(t)
i −

∑
i∈[N ]

∑
j∈[M ]

∑
t∈[T ]

δ
(t)
i,j

(2)

subject to:

z
(t)
j f

(t)
i,j e

(t)
i,j ≤ b

(t)
i,jf

(t)
i,j e

(t)
i,j + λie

(t)
i,j + σ

(t)
i e

(t)
i,j + δ

(t)
i,j

, ∀i ∈ [N ],∀j ∈ [M ], ∀t ∈ [T ] (2a)

z
(t)
j ≤ αj , ∀j ∈ [M ],∀t ∈ [T ] (2b)

λi, z
(t)
j , σ

(t)
i , δ

(t)
i,j ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ], ∀t ∈ [T ] (2c)

Next, in Section 4, we first present our online algorithm
framework that achieves a reasonably good competitive ratio
(close to 1) as compared with the offline optimal social cost,
by assuming that a truthful and optimal auction can be
carried out in each time slot. Then, in Section 5, we discuss
the one-round optimal mechanism, achieving truthfulness
and individual rationality.

4. ONLINE ALGORITHM FRAMEWORK
In this section, we design an online algorithm framework
Aonline as shown in Algorithm 1, which solves the offline
optimization problem (1) and its dual (2), utilizing a one-
round mechanism Around (shown in Algorithm 2) in each
time slot. Below, we present the one-round social cost min-
imization problem and discuss the design rationale of our
online algorithm.

4.1 One-Round Social Cost Minimization
In time slot t, assuming truthful bids (that will be proved

later), we have the following modified social cost minimiza-
tion problem in (3), subject to the same constraints as (1) ex-
cept for the time-coupling workload reduction constraint (1a)
that shall instead be handled by our online algorithm frame-
work Aonline. In the modified objective function, instead of

using b
(t)
i,j as tenant i’s cost of per-unit energy reduction,

we use h
(t)
i,j , which is larger than b

(t)
i,j and decided based on

tenant i’s amount of remaining workload reduction budget.
The rationale will be detailed later. Thus, given tenants’
bids and EDR requirement in time slot t, the one-round op-

timization gives the optimal solution x
(t)
i,j , ∀i ∈ [N ], j ∈ [M ]

and y
(t)
j ,∀j ∈ [M ], at t for problem (3) which uses a modified

objective function.
minimize: ∑

i∈[N ]

∑
j∈[M ]

h
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

α
(t)
j y

(t)
j (3)

subject to:∑
i∈[N ]

f
(t)
i,j e

(t)
i,jx

(t)
i,j + y

(t)
j ≥ R

(t)
j , ∀j ∈ [M ] (3a)

∑
j∈[M ]

e
(t)
i,jx

(t)
i,j ≤ v

(t)
i , ∀i ∈ [N ] (3b)

x
(t)
i,j ≤ 1, ∀i ∈ [N ],∀j ∈ [M ] (3c)

x
(t)
i,j ≥ 0, ∀i ∈ [N ],∀j ∈ [M ] (3d)

y
(t)
j ≥ 0, ∀j ∈ [M ] (3e)

Similar to the offline optimization problem (3), we intro-
duce dual variable vectors z, σ, and δ, corresponding to
constraints (3a), (3b), and (3c), and formulate the following
dual problem. Then, according to the one-round dual prob-
lem (4), we adapt the solution to one-round dual (4) as a
feasible solution to online dual (2).
maximize:∑

j∈[M ]

z
(t)
j R

(t)
j −

∑
i∈[N ]

σ
(t)
i v

(t)
i −

∑
i∈[N ]

∑
j∈[M ]

δ
(t)
i,j (4)

subject to:

z
(t)
j f

(t)
i,j e

(t)
i,j ≤ h

(t)
i,jf

(t)
i,j e

(t)
i,j + σ

(t)
i e

(t)
i,j + δ

(t)
i,j

, ∀i ∈ [N ], ∀j ∈ [M ] (4a)

z
(t)
j ≤ αj , ∀j ∈ [M ] (4b)

z
(t)
j , σ

(t)
i , δ

(t)
i,j ≥ 0, ∀i ∈ [N ], ∀j ∈ [M ] (4c)

The one-round auction mechanism Around exactly solves
the one-round optimization problem (3) to minimize the
modified one-round social cost, as well as guarantees truth-
fulness and individual rationality. We delay the discussion of
the one-round auction mechanism in Section 5, but first uti-
lize the properties it achieves in analyzing the performance
of our online framework.

4.2 The Online Algorithm
The solution to the one-round problem (3) should be as

close as possible to the solution to the offline problem (1),
in order to achieve a good competitive ratio, defined as the
maximum ratio between the offline optimal social cost de-
rived by solving (3) exactly and the social cost produced by
solving the one-round problem (1) in each time slot. The
difficulty arises from the time-coupling workload reduction
budget constraint at each user: for each tenant, the max-
imum amount of batch workload reduction over all the T
time slots is limited by wi. Thus, when executing auctions
in an online manner, we need to explicitly consider how cur-
rent decisions affect the future ones, i.e., the overall social
cost varies with how the total workload reduction budget wi
is split across T times. For example, if a tenant reduces too
much batch workload in the early stage of the EDR event
and exhausts its budget wi prior to the end of EDR, the so-
cial cost can rise rapidly later on, since the colocation oper-
ator can no longer ask this tenant to reduce batch workload
and instead may need to produce more energy using diesel
generator for EDR.

The ideal scenario is that all tenants’ workload reduction
budgets can last for all T rounds of auctions, such that the
colocation operator can explore the best energy reduction



strategy among all the tenants over the entire span for min-
imizing the social cost. Following this intuition, we should
avoid exhausting tenants’ workload reduction budgets too
soon by not too greedily asking tenants to reduce energy
at the beginning of the EDR event. Towards this end, we
introduce an auxiliary variable λi for each tenant i ∈ [N ].
Initially, λi equals 0, and its value increases with the de-
crease of tenant i’s workload reduction budget. Precisely,
during the execution of our online algorithm, if λi has not

reached Γ[i] = minj∈[M ],t∈[T ] b
(t)
i,jf

(t)
i,j , the workload reduction

budget of tenant i will not be exhausted. Instead of the ac-

tual cost b
(t)
i,j for energy reduction, h

(t)
i,j = b

(t)
i,j (1 +

Λλ
(t−1)
i

b
(t)
i,jf

(t)
i,j

) is

used in the one-round social cost minimization problem (3),

where Λ = max{1,maxi∈[N ],j∈[M ],T∈[T ]{
f
(t)
i,j

Γ[i] (αj − b(t)i,j )}}, to

be solved in Around, if λi has not reached Γ[i]. In this way,
the cost of a tenant with a smaller remaining workload re-
duction budget will be evaluated higher at the colocation
operator. As a consequence, when minimizing the one-round
social cost online, the colocation operator will ask for less en-
ergy reduction from tenants with a smaller remaining work-
load reduction budget, and the tenants’ total workload re-
duction budget wi can last longer throughout the T time
slots.

In line 6 of Alg. 1, we carefully set the increment

of λ
(t)
i , where

∑
j∈[M] e

(t)
i,jx

(t)
i,j

wi
gives the percentage of cur-

rent reduction over the overall workload reduction wi, and∑
j∈[M] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

(γ−1)wi
reflects the corresponding percentage

of social cost increment, where γ = (1 + Wmax)
1

Wmax and

Wmax = maxi∈[N ],t∈[T ]{
∑

j∈[M] e
(t)
i,j

wi
}.The way of setting λ

(t)
i

ensures that λ
(t)
i is always increasing after tenant i reduces

its workload, such that the social cost evaluated by the op-

erator based on h
(t)
i,j is also increasing. Furthermore, it also

ensures that the workload reduction constraint (1a) is sat-
isfied over the T rounds of online auctions and a good com-
petitive ratio in social cost can be achieved, as shown in the

proof of Thm. 1. In line 12, we set λi as Λλ
(T )
i , where λi

is the dual variable in the offline optimization problem (2),
associated with the constraint (1a) throughout the online

auction. Thus, the increment of λ
(t)
i can be understood as

the adjustment for dual solution, to approach the optimal
solution of the offline dual problem (2).

The performance of the online algorithm framework Alg. 1
is given in Thm. 1.

Theorem 1. If there is a one-round auction mechanism
Around which produces the optimal solutions of (3) and (4),

Aonline achieves ( γ−1
γ−1−Λ

)(1 + (c1−1)Wmax

1+c0(c2−1)
)-competitive for

optimization (1). Here, Wmax = maxi∈[N ],t∈[T ]{
∑

j∈[M] e
(t)
i,j

wi
},

γ = (1+Wmax)
1

Wmax , α = maxj∈[M ]{αj}, α = minj∈[M ]{αj},
b = mini∈[N ],j∈[M ],t∈[T ]{b(t)i,j}, f = maxi∈[N ],j∈[M ],t∈[T ]{f (t)

i,j },

c0 = α/b, c1 = α/b, and c2 =
∑

j∈[M],t∈[T ] R
(t)
j

f
∑

i∈[N] wi
.

Proof. We prove the correctness and the competitive-
ness of Aonline by proving following three claims.

Claim 1. Aonline produces a feasible solution for dual (2).

Algorithm 1: The Online Algorithm Framework-
Aonline

1 λ
(0)
i = 0, ∀i ∈ [N ];

2 for 1 ≤ t ≤ T do

3 h
(t)
i,j =

+∞, if λ
(t−1)
i ≥ Γ[i]

b
(t)
i,j (1 +

Λλ
(t−1)
i

b
(t)
i,jf

(t)
i,j

), otherwise
,

∀i ∈ [N ], ∀j ∈ [M ];

4 Run the one-round mechanism Around, and let N (t)

denote the set of winning tenants;

5 foreach i ∈ N (t) do

6 λ
(t)
i ←

λ
(t−1)
i (1+

∑
j∈[M] e

(t)
i,jx

(t)
i,j

wi
)+

∑
j∈[M] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

(γ−1)wi
;

7 end

8 foreach i /∈ N (t) do

9 λ
(t)
i ← λ

(t−1)
i ;

10 end

11 end

12 λi ← Λλ
(T )
i , ∀i ∈ [N ];

The detailed proof of Claim 1 is given in Appendix A.

Claim 2. Let ∆P (t) = P (t)−P (t−1) and ∆D(t) = D(t)−
D(t−1), where P (t) and D(t) are the objective value returned
by (1) and (2). In each time slot t, ∆D(t) ≥ (1− Λ

γ−1
)∆P (t)

during the process of Aonline.

Proof. We assume that Around provides an optimal so-
lution, satisfying the strong duality (e.g. p = d), i.e., the
value of primal objective function (3) equals the value of
dual objective function (4). Let N denote the set of win-
ning tenants in Around. In each round, the increments of (3)

(i.e., ∆P (t)) and (4) (i.e., ∆D(t)) are as follows:

∆P (t) =
∑
i∈N

∑
j∈[M ]

b
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

αjy
(t)
j

∆D(t) = −
∑
i∈N

Λ(λ
(t)
i − λ

(t−1)
i )wi +

∑
j∈[M ]

z
(t)
j R

(t)
j

−
∑
i∈[N ]

σ
(t)
i v

(t)
i −

∑
i∈N

∑
j∈[M ]

δ
(t)
i,j

∆D(t) = d−
∑
i∈N

Λwi(λ
(t)
i − λ

(t−1)
i )

According to line 6 in Alg. 1 and d = p, we further have

∆D(t) =

= d−
∑
i∈N

Λwi(
λ

(t−1)
i

∑
j∈[M ] e

(t)
i,jx

(t)
i,j

wi
+

∑
j∈[M ] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

(γ − 1)wi
)

= d− Λ
∑
i∈N

(
∑
j∈[M ]

λ
(t−1)
i e

(t)
i,jx

(t)
i,j +

∑
j∈[M ] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

(γ − 1)
)

= p− Λ(
∑
i∈N

∑
j∈[M ]

λ
(t−1)
i e

(t)
i,jx

(t)
i,j +

∑
i∈N

∑
j∈[M ] b

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

(γ − 1)
)

≥ p− Λ
∑
i∈N

∑
j∈[M ]

λ
(t−1)
i e

(t)
i,jx

(t)
i,j −

Λ

(γ − 1)
∆P (t)



According to (3) and line 3 in Alg. 1, we replace p with
(b, f, e, x, α, y) and have

∆D(t) ≥
∑
i∈N

∑
j∈[M ]

h
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

αjy
(t)
j

− Λ
∑
i∈N

∑
j∈[M ]

λ
(t−1)
i e

(t)
i,jx

(t)
i,j −

1

(γ − 1)
∆P (t)

∆D(t) ≥
∑
i∈N

∑
j∈[M ]

(b
(t)
i,j +

Λλ
(t−1)
i

f
(t)
i,j

)f
(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

αjy
(t)
j

− Λ
∑
i∈N

∑
j∈[M ]

λ
(t−1)
i e

(t)
i,jx

(t)
i,j −

Λ

(γ − 1)
∆P (t)

∆D(t) ≥
∑
i∈N

∑
j∈[M ]

b
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

αjy
(t)
j −

Λ

(γ − 1)
∆P (t)

∆D(t) ≥ (1−
Λ

γ − 1
)∆P (t)

Hence, we could conclude that in each time slot t, ∆D(t) ≥
(1− Λ

γ−1
)∆P (t) during the process of Aonline.

Claim 3. Aonline can produce an almost feasible solution
for (1), the primal online problem. Specifically, its output
satisfies constraints (1b), (1c), (1d), (1e), and (1f), and
weakly satisfies constraint (1a): For all tenant i ∈ [N ],∑

j∈[M ]

∑
t∈[T ]

e
(t)
i,jx

(t)
i,j ≤ wi (1 +Wmax) (5)

The proof of Claim 3 is given in Appendix B.

Let CnoLast represent the social cost where we ignore the
last accepted bid of tenants, Cprimal represent the social cost
achieved byAonline in problem (1), and Cactual represent the
actual social cost where Around still minimizes problem (3),
but does not reduce workload more than remaining. Ap-
parently, Cprimal ≤ Cactual ≤ CnoLast, if there is an upper

bound with respect to CnoLast
Cprimal

, and then Cactual could be

bounded by Cprimal, that is, we obtain the competitive ratio
to optimum. Intuitively, the gap from CnoLast to Cprimal is
caused by the tenants’ last-time reduction.

We introduce C [L] = b(f
∑
i∈[N ] wi)+α(

∑
j∈[M ]

∑
t∈[T ] R

(t)
j

− (f
∑
i∈[N ] wi)) that represents the lower bound of social

cost, and ∆C [U ] = (α−b)Wmax(f
∑
i∈[N ] wi) that represents

the upper bound of cost increment from Cprimal to CnoLast.
In these two terms, (f

∑
i∈[N ] wi) is the upper bound of to-

tal energy of all tenants, and Wmax(f
∑
i∈[N ] wi) represents

the upper bound of the overall reduced energy of all tenants
through their last-time workload reduction.

CnoLast

Cprimal
≤
Cprimal + ∆C[U ]

Cprimal

≤ 1 +
∆C[U ]

C[L]

≤ 1 +
(α− b)Wmax(f

∑
i∈[N ] wi)

b(f
∑
i∈[N ] wi) + α(

∑
j∈[M ]

∑
t∈[T ] R

(t)
j − (f

∑
i∈[N ] wi))

≤ 1 +
(c1 − 1)bWmax(f

∑
i∈[N ] wi)

b(f
∑
i∈[N ] wi) + c0b(c2 − 1)(f

∑
i∈[N ] wi)

≤ 1 +
(c1 − 1)Wmax

1 + c0(c2 − 1)

Hence, we could conclude that Cactual ≤ (1 +
(c1−1)Wmax

1+c0(c2−1)
)Cprimal, and then combining with Claim 2, the

competitive-ratio of Aonline is ( γ−1
γ−1−Λ

)(1 + (c1−1)Wmax

1+c0(c2−1)
).

5. AUCTION MECHANISM
In this section, we introduce the one-round auction mech-

anism plugged in our online algorithm framework, which
efficiently allocates required energy reduction to tenants ac-
cording to their bids in each time-slot and guarantees in-
dividual rationality and truthfulness. We then complete
our online auction design by showing the properties that
it achieves.

5.1 One-round VCG Auction
The auction mechanism in each round optimally computes

the amount of batch workload reduction that each tenant
should reduce as well as diesel usage according to the one-
round problem in (3), and decides the rewards for winning
tenants. We apply the Vickrey-Clarke-Groves (VCG) mech-
anism for one-round auction, as it achieves the desired prop-
erties: concurrent truthfulness and social welfare maximiza-
tion (equivalent to social cost minimization in our context),
if the underlying resource allocation problem can be opti-
mally solved [29]. The one-round social cost minimization
problem in (3) belongs to linear program (LP), whose op-
timal solution can be computed in polynomial time using
algorithms such as interior point methods [34].

In the one-round auction, the colocation operator solves
(3) to decide the amounts of batch workload reduction for
each participating tenant and the amount of diesel usage.

Let f
(t)
i,j e

(t)
i,jx
∗(t)
i,j be the optimal energy reduction of tenant

i in data center j, ∀i ∈ [N ], ∀j ∈ [M ] in t, and y
∗(t)
j de-

note the optimal diesel energy production in data center

j in t, ∀j ∈ [M ], computed by (3). Let Ĉ
(t)
−i be the opti-

mal social cost of (3) computed when tenant i is absent.

The VCG reward to a winning tenant i is φ
(t)
i = Ĉ

(t)
−i −

(
∑
i′ 6=i,i′∈[N ]

∑
j∈[M ] h

(t)

i′,jf
(t)

i′,je
(t)

i′,jx
(t)

i′,j+
∑
j∈[M ] α

(t)
j y

(t)
j ). In-

tuitively, the reward that a winning tenant i receives is the
decrease in social cost attributed to i’s presence. The one-
round auction mechanism is summarized in Alg. 2.

The utility function u
(t)
i of tenant i in the VCG auction

is typically defined as the difference between its reward re-
ceived and its cost. In our online framework, a tenant’s
utility in each round should be related not only to its cost
of energy reduction, but also to its remaining workload re-
duction budget in that round: intuitively, a smaller utility is
obtained if a tenant wins in a one-round auction and reduces
its workload when its remaining workload reduction budget
is small, and larger otherwise. We characterize this property

using a utility function: u
(t)
i = φ

(t)
i −

∑
j∈[M ] h

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j .

Such form of utility function is consistent with the social cost
calculation in the one-round problem (3) and also used in
prior research [26] for different purposes. In this way, a ten-
ant’s workload reduction budget can last for a longer time;
and thus the colocation operator can have a larger solution
space to better schedule tenants’ workload reduction for fu-
ture EDR signals, efficiently reducing social cost over all T
rounds of auctions. Next, we show in Thm. 2 that truthful
bidding is the best strategy for each tenant in the auction.
Furthermore, each tenant gains a non-negative utility, based



on the VCG auction theory [29].

Algorithm 2: One-round Auction Around in time slot t

1 Solve LP (3) by interior-point method; let x
∗(t)
i,j and

y
∗(t)
j ,∀i ∈ [N ],∀j ∈ [M ] denote the solution.

2 foreach i ∈ [N ] do

3 h
′(t)
i′,j =

{
+∞, if i′ = i

h
(t)
i,j , otherwise

, ∀i′ ∈ [N ], ∀j ∈ [M ];

4 Solve LP of (3) where h
(t)
i,j is replaced by

h
′(t)
i,j ,∀i ∈ [N ],∀j ∈ [M ], by interior-point method;

let Ĉ
(t)
−i represent the optimal objective function

value.

5 φ
(t)
i = Ĉ

(t)
−i − (

∑
i′ 6=i

∑
j∈[M ] h

(t)

i′,jf
(t)

i′,je
(t)

i′,jx
(t)

i′,j +∑
j∈[M ] α

(t)
j y

(t)
j );

6 end

Theorem 2. The one-round VCG auction in Alg. 2 which

produces percentages of tenants’ workload reduction x
(t)
i,j ,∀i ∈

[N ], j ∈ [M ], diesel energy production y
(t)
j , ∀j ∈ [M ], and

rewards to winning tenants φ
(t)
i ,∀i ∈ [N ], is truthful in

(b
(t)
i,j , f

(t)
i,j , e

(t)
i,j ),∀j ∈ [M ] and v

(t)
i , and individually rational.

Proof. Suppose tenant i’s per unit energy bid is b
(t)
i,j ,

and then h
(t)
i,j can be exactly calculated by definition. In our

analysis, we omit the process of converting b
(t)
i,j to h

(t)
i,j , and

we assume that tenant i and other tenants i′ 6= i directly

submit h
(t)
i,j and h

(t)

i′,j as their per unit energy bids. Then, ac-

cording to the rule for calculating reward φ
(t)
i , when tenant i

submits its truthful bid h
(t)
i,j , its utility is:

u
(t)
i = Ĉ

(t)
−i − (

∑
i′ 6=i

∑
j∈[M ]

h
(t)
i′,jf

(t)
i′,je

(t)
i′,jx

(t)
i′,j +

∑
j∈[M ]

α
(t)
j y

(t)
j )

−
∑
j∈[M ]

h
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j

u
(t)
i = Ĉ

(t)
−i − (

∑
i∈[N ]

∑
j∈[M ]

h
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

α
(t)
j y

(t)
j )

We know that this tenant’s energy reduction amount

(f
(t)
i,j e

(t)
i,jx

(t)
i,j ) and this diesel usage y

(t)
j achieve the minimum

of
∑
i∈[N ]

∑
j∈[M ] h

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ] α

(t)
j y

(t)
j , which

represents the social cost in problem (3). Recall that Ĉ
(t)
−i

is the minimum social cost under the same EDR signal but

one tenant less; and thus Ĉ
(t)
−i is greater than or equal to∑

i∈[N ]

∑
j∈[M ] h

(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ] α

(t)
j y

(t)
j . We could

conclude that each tenant’s utility is always non-negative,

u
(t)
i ≥ 0.
Next, we compare the utilities under truthful bidding and

untruthful bidding. Suppose tenant i reports an untruthful

bid (
−→
h

(t)
i,j ,
−→
f

(t)
i,j ,
−→e (t)
i,j ,
−→v (t)
i ). Then tenants’ energy reduction

amount and diesel usage become (
−−−−−−−→
f

(t)
i,j e

(t)
i,jx

(t)
i,j )∀i∈[N ],∀j∈[M ]

and (−→y (t)
j )∀j∈[M ]. Recall v

(t)
i denotes the maximum amount

of tenant i’s reduced workload in all data centers at time t,

and it appears in constraint (3b), which is relevant to the

solution space of x
(t)
i,j . Intuitively, combining with f

(t)
i,j and

e
(t)
i,j , the solution space represents the capacity of tenant i’s

reducible energy. The untruthful −→v (t)
i might cause two pos-

sible changes in the solution space: (a) it shrinks the solution
space, that is, it cannot increase the capacity of reducible en-
ergy; (b) it expands the solution space: however, the actual
space which tenant i can achieve is still the same as before.
Therefore, the false bidding cannot improve the maximum
amount of its reducible energy. Tenant i’s utility under a
false bid is:

−→u (t)
i =Ĉ

(t)
−i − (

∑
i′ 6=i

∑
j∈[M ]

h
(t)
i′,j

−−−−−−−−−→
f

(t)
i′,je

(t)
i′,jx

(t)
i′,j +

∑
j∈[M ]

α
(t)
j
−→y (t)
j )

−
∑
j∈[M ]

h
(t)
i,j

−−−−−−−→
f

(t)
i,j e

(t)
i,jx

(t)
i,j

The difference between these two utilities is:

u
(t)
i −

−→u (t)
i =(

∑
i∈[N ]

∑
j∈[M ]

h
(t)
i,j

−−−−−−−→
f

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

α
(t)
j
−→y (t)
j )

− (
∑
i∈[N ]

∑
j∈[M ]

h
(t)
i,jf

(t)
i,j e

(t)
i,jx

(t)
i,j +

∑
j∈[M ]

α
(t)
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Recall that (f
(t)
i,j e

(t)
i,jx

(t)
i,j ) and y

(t)
j minimize the objective

of (3), i.e.,
∑
i∈[N ]

∑
j∈[M ] h

(t)
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(t)
i,j e

(t)
i,jx

(t)
i,j +
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(t)
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j .

Hence, in the right-hand side of the equation, the terms in
the first pair of parentheses is no less than the terms in the

second, and u
(t)
i −

−→u (t)
i ≥ 0. We can conclude that each

tenant could obtain the maximum utility under truthfully
reporting.

5.2 Online Auction Mechanism
By plugging the one-round VCG mechanism into the on-

line algorithm framework Aonline (line 4) in Alg. 1, we ob-
tain our online auction mechanism. As the VCG mechanism
produces the optimal solution of problem (3) in each round,
the competitive ratio of the online auction mechanism is the
same as that of Aonline shown in Thm. 1. Thm. 3 summa-
rizes our result.

Theorem 3. Aonline in Alg. 1 combining with Around
in Alg. 2 constitutes a truthful, individually rational, and

( γ−1
γ−1−Λ

)(1 + (c1−1)Wmax

1+c0(c2−1)
)-competitive online auction.

Proof. The only difference between Thm. 1 and Thm. 3
is that we plug in a fractional VCG mechanism for ensuring
truthfulness and the individual rationality. As the mecha-
nism produces the optimum of problem (3), the competi-
tive ratio of the online auction mechanism is the same as
Aonline. Combining with Thm. 2, it can be seen that in
each time-slot, if a tenant reports its true bid, it will obtain
the maximum utility. According to Def. 1, our online auc-
tion mechanism for EDR is truthful. Thm. 2 furthermore
shows that tenant’s utility is always non-negative. Hence,
we conclude that our online mechanism achieves all desirable
properties.

Theorem 4. Aonline in Alg. 1 runs in polynomial-time
in each round.

The detailed proof of Thm. 4 is given in Appendix C.
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Figure 1: Trace data. (a) Total EDR energy reduc-
tion by PJM on January 7, 2014. (b) Normalized
workload.

6. PERFORMANCE EVALUATION
Our theoretical analysis has shown that BatchEDR achieves

a competitive ratio compared to the offline optimum in terms
of social cost. Hence, the goal of this section is to investigate
the performance of BatchEDR in a realistic scenario and vali-
date our analysis via a trace-based simulation. Next, we first
introduce the simulation setup and then show our results.

6.1 Data Sets and Simulation Setup
We evaluate our mechanism based on trace data, and sim-

ulate a real EDR event in a set of colocation data centers
located in New Jersey and Virginia, which are primary data
center markets served by PJM (a major regional transmis-
sion organization in U.S [20]). In our setting, the operator
owns five colocation data centers, serving ten participating
tenants. Each data center has a power usage effectiveness
(PUE) factor of 1.5, which is common for colocation data
centers [6, 36], i.e., one watt of IT power corresponds to 0.5
watt of non-IT power, adding to 1.5 watt for the whole data
center. Each tenants houses 2,000 servers in one data center
it rents. Each server has a normalized service capacity of
1.0 (corresponding to one unit of batch workload per time
slot), an idle power of 120W and a busy power of 200-250W
(accounting for different energy reductions by deferring a
unit of batch workload and turning off one unused server).
The diesel generator cost αj is 200$/MWh based on typi-
cal power generation efficiency and the current oil price as
of 2015 [33]. In our simulation, the configuration of data
centers is shown as follows:

DC#1 DC#2 DC#3 DC#4 DC#5
# of Tenants 6 6 7 8 6
Location Ashburn Newark Richmond Trenton Norfolk

6.1.1 EDR Requirement
Fig. 1(a) shows the total energy reduction requirement

for EDR across PJM service areas on January 7, 2014 (se-
vere weather on that day) [19]. For our evaluation, we scale
down the data such that each data center is required to re-
duce energy equal to up to 25% of its peak IT energy (which
is consistent with LBNL’s field test [11] that achieves around
25% energy reduction while still preserving data center oper-
ation). For example, a data center using 5000kW IT power
will be required to reduce up to 1250kWh energy for EDR
during one hour.

6.1.2 Workload and Energy
Fig. 1(b) illustrates four samples of the server utiliza-

tion collected from real clusters like Microsoft Research and

Google [15, 23, 28], which we use as tenants’ batch work-
load arrival rate in each data center (normalized to their
maximum service capacity). For instance, 0.3 workload is
equal to the service capacity of 600 servers (each with a nor-
malized capacity of 1.00) for a tenant with 2,000 servers.
For our evaluation, we consider that tenants turn off un-
used servers (due to reduced/deferred batch workloads) to
eliminate those servers’ power. Due to servers’ different idle
powers and non-IT power that takes up 50% of IT power
(based on PUE of 1.5), for a server with 200W to 250W

power, the value of f
(t)
i,j that maps batch workload reduc-

tion to energy reduction ranges from 300W to 375W per
unit of batch workload.

6.1.3 Tenants’ Bids
We set the cost of each tenant b

(t)
i,j to be 0.07∼0.13$/kWh,

which is on a par with the electricity cost saving (had ten-
ants operated their own data centers) and also consistent
with prior research on colocation EDR [6, 15, 36]. In each
data center, the maximum amount of batch workload that
can be deferred/reduced by a tenant is its arrival workload,
subject to total workload reduction constraints across all the
data centers both over T time slots and over one round (as
described below).

6.1.4 Overall Workload Reduction Constraint
For each tenant i, we set the maximum amount of over-

all workload reduction wi to be 50% (varying in 40%∼60%
later) of its total batch workload arrival across all data cen-
ters over T time slots.

6.1.5 One-round Workload Reduction Constraint
For each tenant i at time t, we set the default one-round

workload reduction limitation v
(t)
i as 90% of its total batch

workload arrival across all data centers at time t. This value
will be varied in 80%∼100% as we proceed with the simula-
tion.

6.2 Results
Before presenting our results, we first introduce two bench-

marks to compare BatchEDR with.
OPT: This is the optimal mechanism solving the offline

problem and optimally deciding the workload reduction and
the diesel usage in advance. Note that OPT is not imple-
mentable in practice due to lack of future information.

Truth-DR: Proposed in [36], Truth-DR is the best-known
auction mechanism for colocation EDR, but it is designed
for one-round auction in a single data center. We adapt
Truth-DR to our setting by independently executing Truth-DR
for each data center in each time, until the workload reduc-
tion budget is exhausted.

6.2.1 Close-to-Minimum Social Cost

We first compare the total social costs by time achieved by
diesel only method, Truth-DR, BatchEDR, and offline opti-
mal solution, as illustrated in Fig. 2. The result shows that
BatchEDR is better than Truth-DR and also significantly out-
performs the diesel-only method (without incentivizing ten-
ants’ energy reduction). As Truth-DR is a one-round EDR
mechanism, it may exhaust one tenant’s reducible work-
load at the early rounds and cannot reduce workload when
cheaper bids emerge subsequently. Thus, BatchEDR out-
performs Truth-DR by carefully accounting for tenants’ en-
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ergy reduction budget over multiple rounds. OPT decides
to reduce workload with future knowledge (i.e. knowing the
future bids and EDR requirements), and thus it may not
always try its best to reduce from tenants in early rounds,
such that it can keep the workload reduction budget in the
later rounds to reduce the total social cost.

In Fig. 3, we scale each tenant’s per-energy cost b
(t)
i,j ,

showing the increasing trend of the total social cost when
it is costlier to defer workloads (due to, e.g., higher business
value of processing batch workloads). Nonetheless, BatchEDR
still outperforms the diesel-only method and is fairly close
to OPT, even though tenant’s per-energy cost is two times
of the default value.

6.2.2 Cost Saving Compared with Diesel-only

Fig. 4 shows the total social cost saving by BatchEDR and
Truth-DR methods (compared to the diesel-only method).
We see that BatchEDR yields a larger social cost saving com-
pared with Truth-DR, i.e., BatchEDR achieves up to 32%
more social cost saving at the end of the EDR event, com-
pared with Truth-DR.

6.2.3 Energy Reduction Source

Fig. 5 and Fig. 6 show the energy reduction source of
BatchEDR and OPT in each time slot, respectively. We see
that under BatchEDR, tenants contribute to EDR mostly
during the first few time slots, while they cease their contri-
butions during the last time slot due to workload reduction
constraint. On the other hand, OPT can better plan ten-
ants’ energy reduction with the help of future information,
but Fig. 2 has shown that such future information does not
offer much gain in terms of social cost.

6.2.4 Competitive Ratio in Total Social Cost

Fig. 7 shows the competitive ratio achieved by BatchEDR

in total social cost by varying v
(t)
i and wi (which capture

performance constraints by limiting the percentage of a ten-
ant’s batch workloads that can be reduced during one round
and over all T rounds across all of its data centers). We ob-

verse that the competitive ratio slightly increases with the
decrease with wi ratio and the increase with the vi ratio.
When wi increases, more workload could be reduced, that
is the solution space is expanded and more solution could
attain a good social cost close to the optimum, and then
BatchEDR could obtain a better solution. Moreover, when
vi is decreasing, the overall reduced workload might last for
a longer time, and thus BatchEDR obtains a better social
cost.

We have also conducted other experiments (e.g., competi-
tive ratio under different numbers of tenants), but the results
are similar and hence omitted for brevity.

7. CONCLUDING REMARKS
This paper investigates online incentive mechanisms for

motivating tenants to voluntarily reduce their deferrable work-
load across multiple geo-distributed colocation data centers,
in the EDR scenario. An online efficient and truthful auc-
tion mechanism, BatchEDR, is proposed for allocating en-
ergy reduction requirements among the tenants’ online ar-
rival workloads under one-round and overall limitations of
reduced workload, and rewarding the tenants for their work-
load deferment/reduction. We prove that BatchEDR guar-
antees a performance bound in social cost, as compared with
the offline optimum, and achieves truthfulness. Our trace-
based simulation shows that BatchEDR performs well un-
der various settings, compared with other alternative mech-
anisms. To best of our knowledge, our study is the first
effort to design an online, truthful mechanism for EDR in
multiple geo-distributed colocation data centers.
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APPENDIX
A. PROOF OF CLAIM 1

Proof. In Alg. 1 step 4, we obtain a feasible dual solu-
tion of (4), and hence it guarantees the constraint (4a); and
based on the dual variable update rules (step 3, 6, 9, and 12



in Alg. 1), we have:
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which satisfies the constraint (2a).
In the proof, from the first line to the second line, we

replace h
(t)
i,j based on the equation in step 3. As λ

(t)
i is non-

decreasing (step 6 and 9) and λi = Λλ
(T )
i (step 12), the

constraint (2a) is always feasible.

For each h
(t)
i,j that equals +∞ in (3) and (4), it implies

λ
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i ≥ Γ[i]. Also, according to (4b) and (4c), we have αj ≥
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i,j ≥ 0. Therefore, we have
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which satisfies the constraint (2a).
Therefore, we conclude that our online framework Aonline

produces a feasible solution for dual (2) at the end.

B. PROOF OF CLAIM 3
We denote Wmax = maxi∈[N ],t∈[T ]{

∑
j∈[M] e

(t)
i,j

wi
}, γ = (1 +

Wmax)
1

Wmax , and Γ[i] = minj∈[M ],t∈[T ]{b(t)i,jf
(t)
i,j }.

Proof. In step 5 of Alg. 1, at each round, we obtain a
feasible solution for (3), which satisfies constraints (1b), (1c),
(1d), (1e), and (1f). To show (5), we utilize the following
equation, ∀i ∈ [N ], t′ ∈ [T ]:
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 , 0 ≤ t′ ≤ T (6)

Our proof includes four parts.
(part 1): We prove Eq. (6) always holds in our online

algorithm Aonline; (part 2): We prove that if a tenant
uses up its workload reduction budget, we will have that

λ
(t′)
i ≥ Γ[i]

γ−1
(γ

∑t′
t=1

∑
j∈[M] e

(t)
i,j

x
(t)
i,j

wi − 1) ≥ Γ[i]; (part 3): We

prove that Alg. 1 will not update x
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i,j in constraint (1a)

when tenant i’s workload reduction budget is used up (i.e.,
ensuring that the solution is feasible); (part 4): We analyze
how much the reduction amount will be excessively allocated
at most (e.g. (5)).

Proof of part 1: We will prove Eq. (6) by induction.
At first, for t′ = 0, the equation apparently holds; then, we
suppose it holds for t′ − 1; next, for t′.
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The first inequality is based on the induction assumption (6).

Comparing with Eq. (6), we next need to show

1 +
∑

j∈[M] e
(t′)
i,j x

(t′)
i,j

wi
≥ γ

∑
j∈[M] e

(t′)
i,j

x
(t′)
i,j

wi to finish the proof.

Based on the definitions of Wmax and x
(t)
i,j , we have

0 ≤
∑

j∈[M] e
(t)
i,jx

(t)
i,j

wi
≤Wmax ≤ 1,∀i ∈ [N ],∀t ∈ [T ]. We uti-

lize ln(1+x)
x

≥ ln(1+y)
y

, ∀0 ≤ x ≤ y ≤ 1. Therefore, we have:

ln(1 +

∑
j∈[M] e

(t′)
i,j x

(t′)
i,j

wi
)∑

j∈[M] e
(t′)
i,j x

(t′)
i,j

wi

≥
ln(1 +Wmax)

Wmax

ln(1 +

∑
j∈[M ] e

(t′)
i,j x

(t′)
i,j

wi
) ≥ ln(1 +Wmax)

1

Wmax

∑
j∈[M ] e

(t′)
i,j x

(t′)
i,j

wi

e
ln(1+

∑
j∈[M] e

(t′)
i,j

x
(t′)
i,j

wi
) ≥ eln(1+Wmax) 1

Wmax

∑
j∈[M] e

(t′)
i,j

x
(t′)
i,j

wi

1 +

∑
j∈[M ] e

(t′)
i,j x

(t′)
i,j

wi
≥
(

(1 +Wmax)
1

Wmax

)∑
j∈[M] e

(t′)
i,j

x
(t′)
i,j

wi

1 +

∑
j∈[M ] e

(t′)
i,j x

(t′)
i,j

wi
≥ γ

∑
j∈[M] e

(t′)
i,j

x
(t′)
i,j

wi

Hence, we prove Eq. (6) always holds in Aonline.
Proof of part 2: For a tenant i, at time t′, when

its energy reduction (
∑t′

t=1

∑
j∈[M ] e

(t)
i,jx

(t)
i,j ) exceeds wi,∑t′

t=1

∑
j∈[M] e

(t)
i,jx

(t)
i,j

wi
≥ 1, since γ ≥ 1, it is apparent that

Γ[i]

γ−1
(γ

∑t′
t=1

∑
j∈[M] e

(t)
i,j

x
(t)
i,j

wi − 1) ≥ Γ[i], when tenant i uses up
its reduction budget. Combined with the proof of part 1,
the inequality holds.

Proof of part 3: If the workload has been used up, based
on the proof of part 2, λi will be greater than or equal to

Γ[i]. According to line 3 in Alg. 1, when λ
(t−1)
i ≥ Γ[i], the

algorithm will not reduce tenant i’s workload anymore by

setting corresponding h
(t)
i,j as +∞, which could ensure the

solution feasible.
Proof of part 4: In our algorithm,

∑
j∈[M ]

∑
t∈[T ] e

(t)
i,jx

(t)
i,j

equals
∑
j∈[M ]

∑t′

t=1 e
(t)
i,jx

(t)
i,j , where t = t′ is the first time

tenant’s total workload reduction amount exceeds its bud-



get. Hence,

∑
j∈[M ]

t′−1∑
t=1

e
(t)
i,jx

(t)
i,j < wi, then:

∑
j∈[M ]

∑
t∈[T ]

e
(t)
i,jx

(t)
i,j =

∑
j∈[M ]

t′−1∑
t=1

e
(t)
i,jx

(t)
i,j +

∑
j∈[M ]

e
(t′)
i,j x

(t′)
i,j

≤ wi + max
t∈[T ]

 ∑
j∈[M ]

e
(t)
i,j


≤ wi (1 +Wmax)

Now, we have bounded how much the workload reduction
exceeds the budget with the solution of the primal problem.
Next, we analyze how the reduction excess influences the
total social cost.

C. PROOF OF THEOREM 4
Proof. Let |N | and |M | denote the number of tenants

and the number of data centers respectively, and |N ||M | de-
note the multiplication of |N | and |M | . In Alg. 1, for a

specific t (i.e., in a specific round), the variables h
(t)
i,j are up-

dated for at most |N ||M | times in line 3; the variables λ
(t)
i

are updated at most |N | times in lines 6 and 9; and Alg. 2 is
executed once. In Alg. 2, the interior-point method is exe-
cuted for at most |N |+1 times for computing reduction and
reward. As problem (3) is a linear program problem with a
polynomial number of decision variables (i.e., |N ||M |+ |M |)
and constraints (i.e., |N |+ 2|M |+ 2|N ||M |), we can obtain
the solution in polynomial time by interior-point method for

each round of execution. The variables h
′(t)
i,j and φ

(t)
i are up-

dated for at most |N ||N ||M | and |N | times, which also can
be finished in polynomial time. Thus, we conclude Alg. 2
can be finished in polynomial time, and then Alg. 1 runs in
polynomial time in each round.


