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ABSTRACT
Large data centers can participate in demand response programs

and receive financial benefits by reducing energy consumption

upon utility’s request. However, the existing research has only

considered demand response by owner-operated data centers (e.g.,

Google), leaving out another distinctly different yet integral part

of the data center industry — multi-tenant colocation data centers

(a.k.a., colocation or “colo”), where the space is shared by

multiple tenants for housing self-owned servers. A major hurdle

hindering colocation demand response is “split incentive”: the

colocation operator may desire demand response, but lacks control

over the tenants’ servers; the tenants, on the other hand, can

reduce server energy consumption but may not desire demand

response unless they are properly incentivized. In this paper, we

present a first-of-its-kind study on colocation demand response

and propose an incentive mechanism, called iCODE (incentivizing

COlocation tenants for DEmand response), which breaks the

split-incentive barrier for colocation demand response. iCODE

allows the tenants to voluntarily bid for energy reduction when

demand response is needed and receive monetary rewards if their

bids are accepted. We formally model tenants’ bids and how the

colocation operator decides the winning bids to maximize total

energy reduction without profit loss. We demonstrate the potential

of colocation demand response by using a trace-based simulation

to show that iCODE can significantly reduce energy consumption

(e.g., up to over 50%) during demand response periods.

1. Introduction
Demand response programs, in which customers reduce energy

usage upon requests by utilities, have been successfully adopted in

electricity markets to aid reliable grid operation and peak demand

shaving. The formidable yet flexible electricity demand makes
large data centers ideal for participating in demand response
programs. Nonetheless, the research to date has been dominantly

focused on owner-operated data center (e.g., Google) where the
operator has complete control over the servers [2, 4]. Another
important type of data center — multi-tenant colocation data
center (a.k.a. colocation or “colo”) — has been overlooked by the
literature. Fundamentally differing from owner-operated data

centers, a colocation houses multiple tenants that manage their
own servers in shared space, while the colocation operator is
mainly responsible for facility management (e.g., power, cooling).
Why colocation demand response? Our study on colocation

∗This extended abstract summarizes the work [8].

Copyright is held by author/owner(s).

demand response is motivated by the following two facts. First,

colocation is a critical and integral part of the global data center
industry and caters for the increasing IT demands across all
industry sectors. With an estimated annual growth rate of 11%,
colocation is expected to grow into a US$43-billion industry by
2018 [5]. Geographically distributed across all over the world,
colocations are not only appealing options for small and medium

companies that do not want to build their own in-house data
centers or completely outsource to public clouds (e.g., for privacy
concerns), but also satisfy the “global-footprint” needs of content
distribution providers and many top-brand IT companies (e.g.,
Facebook, Amazon and Microsoft) to improve their last-mile

latency performances. In addition, colocations are also the
physical homes for many clouds, whether they are private clouds
entirely serving a single enterprise or public clouds managed by
medium-scale providers (e.g., Salesforce, box) for which building
self-owned mega-scale data centers is out of the question due to
uncertain future needs, high upfront costs and/or long construction

cycle. Second, colocations have a great potential for demand
response. As noted by a study of Google [1], “most large data
centers are built to host servers from multiple companies” (i.e.,
colocations). Moreover, unlike large owner-operated data centers
that are typically located in rural areas with low population
densities, many colocations are located in densely-populated

regions and even in the heart of major cities (e.g., New York),
which are the very places where we need demand response.
What makes colocation demand response challenging? The

full potential of colocation demand response cannot be realized
without the participation of individual tenants, since the colocation
operator only has control over the non-IT energy consumption

(e.g., cooling energy) that offers a limited flexibility. However,
because of the prevailing pricing model in colocations that often
charge the tenants based on their peak power subscription
(regardless of the actual energy consumption) [7],1 tenants have
little incentive to participate in demand response and instead
unnecessarily always keep their servers on, resulting in an average

utilization of merely 6-12% [1]. In other words, there exists a
“split incentive” hurdle for colocation demand response: the
incentive provided by utilities/load serving entities (LSE) to
colocation operator for demand response cannot reach tenants,
which own and manage servers that take up a major fraction of

colocation energy consumption.
How to enable colocation demand response? We propose a

first-of-its-kind incentive mechanism based on reverse auction that

1Some tenants, especially large wholesale tenants, may be charged
based on energy usage, but they are typically charged based on a flat
rate and hence masked out by the colocation operator to participate
in incentive programs for demand response [9].



financially rewards tenants for demand response. The proposed

mechanism, called iCODE (incentivizing COlocation tenants for

DEmand response), is “non-intrusive” to existing industry
practices, as tenants’ participation is fully voluntary. Fig. 1(a)
illustrates the work flow of iCODE: first, upon receiving demand
response requests from LSE, the colocation operator notifies the
tenants to bid for energy reduction; then, participating tenants can
voluntarily decide their planned energy reduction (e.g., via turning

off unused servers) as well as desired payment for compensation;
finally, upon receiving the tenants’ bids, the colocation operator
selects winning bids to maximize the total energy reduction while
ensuring that the total incentive payout to tenants does not exceed
the reward the colocation operator receives from LSE, and energy
reduction is exercised accordingly by tenants.

2. iCODE: Model and Algorithm
In this section, we first present the foundation of iCODE, then

formalize the model, and finally formulate the problem of

maximizing energy reduction for demand response.

2.1 Foundation of iCODE

We discuss both technological and economic foundations for
iCODE as follows.
The tenants’ servers in colocations usually have a low

utilization (around 10%) [1], providing a good opportunity to
reduce energy consumption via workload consolidation and
turning off unused servers without any perceptible performance
degradation (as extensively studied in the literature [3]). Thus, as
an example, we consider the number of servers to be turned off as
the energy reduction knob for the tenants, while noting that other

techniques such as CPU frequency scaling can also be applied.
While dynamic pricing has been well applied in various

domains (e.g., smart grid), it may not be the right choice for
colocation, as it forces the tenants to follow time-varying prices
which they have no control over, thereby causing business
uncertainties and/or psychological concerns. Moreover, directly

“reselling” energy by modifying energy price may be subject to
strict regulations. Taking these into consideration, we choose a
reverse auction-based incentive mechanism iCODE which, by its
very nature, is “non-intrusive” to tenants, granting tenants the
complete freedom of whether and how they participate in

colocation demand response.

2.2 Model

We focus on one-time energy reduction for demand response
which involves no sequence of coupled decisions, and hence we
omit the time index in the model.
Tenant energy reduction. We consider a colocation data center

with N tenants each having Mi homogeneous servers, while our
model is extensible to heterogeneous servers. The total power

consumption of the servers belonging to tenant i is

pi = Mi ·
[

pi,s + pi,d ·
λi

Mi·µi

]

, where pi,s is the server static

power, pi,d is the dynamic power, and µi is the service rate
(measured in terms of the amount of workloads processed in a unit
time), and λi is tenant i’s total workload, distributed evenly among
itsMi servers. Considering that tenant i turns offmi servers when

participating in demand response, the average power consumption

becomes p′i = (Mi −mi) ·
[

pi,s + pi,d ·
λi

(Mi−mi)·µi

]

. Thus, the

resulting energy reduction by tenant i is given by
∆ei(mi) = (pi − p′i) · T = mi · pi,s · T , where T is the duration
of each demand response period.
Tenant cost. As an example, we quantify the tenant’s cost for

turning off servers in monetary values using the notions of
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Figure 1: (a) The work flow of iCODE. (b) Data trace.

“Hotmail” and “Wikipedia” are delay-sensitive, while “MSR”

is delay-tolerant. Trace of compensation rate for energy

reduction is taken from [6]. Each time slot is 15 minutes.

switching cost and delay cost. The switching cost results from,
e.g., the potential wear-and-tear when powering servers
up/down [3]. We denote tenant i’s switching cost for one server by

αi, and thus the total switching cost for tenant i is αi · mi. We
model the tenant’s delay performance using M/M/1 queue, which
provides an reasonable estimate of actual performance [3]. Hence,
the average delay for tenant i’s workload is 1

µi−
λi

Mi−mi

. We

consider a lower bound di,th on the average delay due to human

perception and use it as a soft threshold to calculate the monetary
cost associated with delay performance degradation. A larger soft
average delay threshold indicates that the tenant’s workload is
more delay-tolerant. Next, we express the total delay cost of
tenant i as di(mi) = βi · λi · [

1

µi−
λi

Mi−mi

− di,th]
+, where

βi ≥ 0 converts additional average delay exceeding the soft
threshold into monetary costs and [ · ]+ = max{0, ·}.
Colocation operator. In addition to tenants’ server energy

reduction, the total energy reduction for the colocation facility also
includes the energy reduction of non-IT equipments (e.g.,
cooling). This is captured in our model using Power Usage

Effectiveness (PUE) factor γ, which typically ranges from 1.1 to
2.0. Thus, the facility level energy reduction can be expressed by
γ ·

∑

i
∆ei. Denoting the compensation rate for energy reduction

from LSE by q (determined via orthogonal mechanisms, e.g., [4]),
the amount of reward the colocation receives is q · γ ·

∑

i
∆ei.

2.3 Algorithm

We present the two main decision-making parts of iCODE as
highlighted in Fig. 1(a). First, the tenants decide bids for energy
reduction and corresponding financial compensation they want.

Second, the colocation operator determines the winning bids to

maximize the total energy reduction without losing profit.2

Deciding tenants’ bids. We denote tenant i’s requested

payment from colocation operator for turning off mi servers by
ci(mi) = wi · [αi ·mi + di(mi)], where wi ≥ 1 is referred to as
greediness of tenant i. Tenant i may submit multiple bids
(∆ei, ci), each corresponding to one value of mi ≥ 0 (i.e., the
number of servers turned off). We denote the set of tenant i’s bids
as bi ⊆ Bi = {(∆ei, ci) | (∆ei(mi), ci(mi)), mi =
0, 1, · · · ,Mi,max}, whereMi,max specifies the maximum number

of turned off servers (due to average delay constraint denoted by

Di) such that bi only contains valid bids. Note that, the tenants
decide the bids at their own discretion, and completely control the

2We focus on how the colocation operator decides winning bids out
of those submitted by tenants, while leaving the possibly strategic
bidding process (e.g., tenants strategically place bids to maximize
their own benefits) as a future study.
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Figure 2: (a) Energy reduction by iCODE compared to NDR. (b) Incentives received by tenants. (c) Average delay exceeding the soft

threshold. (d) Impact of the number of participating tenants.

Table 1: Tenant model parameters (in U.S. currency).
Tenant #1 Tenant #2 Tenant #3

Delay cost β (¢/ms/106jobs) 30 20 0.4
Switching cost (¢/server/15min) 0.5 0.5 0.5
Service rate (jobs/hour) 360,000 180,000 30
Soft avg. delay threshold 12 ms 25 ms 175 s
Avg. delay constraint 20 ms 40 ms 300 s

parameters (e.g., αi, βi). However, asking for unreasonably high
payments may result in that the tenants receive no incentives at all
(without noticeably improving their delay performance), since in
such cases their bids are unlikely to be accepted due to constraint
of no profit loss.

Deciding winning bids. We formulate the process of deciding
the winning bids into an optimization problem, in which the
colocation operator aims at maximizing the energy reduction
while the total incentive payout to tenants does not exceed the
total reward provided by LSE. Mathematically, the problem of

deciding winning bids (DWB) can be formalized as:

DWB : max
(∆ei,ci),∀i∈I

γ ·
∑

i∈I

∆ei (1)

s.t.
∑

i∈I

ci ≤ q · γ ·
∑

i∈I

∆ei, (2)

(∆ei, ci) ∈ bi ∪ {(0, 0)}, ∀ i ∈ I, (3)

where I is the set of participating tenants who submit their bids to
the colocation operator, (1) specifies the objective of maximizing

energy reduction, (2) sets the limit on total maximum incentive

payment, and (3) defines the set of valid winning bids. {(0, 0)} in
(3) indicates that the colocation operator may chose to reject all
bids of a particular tenant (e.g., when the bids come with
unreasonably high incentive payment requests). More details of
solving DWB are available [8].

3. Performance Evaluation
We present a trace-based simulation study to evaluate iCODE.

We consider a colocation with 3 consolidated tenants, each having
10,000 homogeneous servers with a static power of 150W and
dynamic power of 100W per server. The simulation settings are
chosen such that tenant #1 and #2 process delay-sensitive
workloads, and tenant #3 processes delay-tolerant workloads. The

colocation is considered to be located in New York with a PUE of
1.6 (typical for colocations). The workload traces of the 3 tenants
normalized to their respective maximum server capacities and the
LSE compensation rates are shown in Fig. 1(b), while the
simulation parameters used are listed in Table. 1. We note that the
switching cost of 0.5 cents for turning off one server for 15

minutes is already higher than the cost saving in owner-operated
data centers (assuming a fair electricity price of 10 cents/KWh).
This indicates that there is better motivation for turning off servers
in the colocation than in owner-operated data centers (which has
been extensively studied [3]). In our study, we use NDR

(Non-Demand Response) as the benchmark algorithm where the
tenants always keeps their servers on without incentives for
demand response.
We present our results in Fig. 2, where hourly values are shown

for clearer presentation. In Fig. 2(a), we show that by applying
iCODE, the colocation can reduce energy consumption by as

much as 4.4MWh, which is more than 50% of the NDR energy
demand. Fig. 2(b) shows the financial rewards received by the

tenants during different hours. This figure also includes the

net-reward for the colocation operator, when there is a greater

reward from the LSE than the total incentive payout to tenants. In

Fig. 2(c), the delay performance of the tenants are shown, showing

a negligible increase in delay (e.g., less than 2ms for tenant #1)

even when there is a high energy reduction. The impact of tenants’

participation in iCODE is examined in Fig. 2(d), showing a

declining energy saving when fewer tenants take part in iCODE.

Nonetheless, even though only 1 out of 3 tenants participate in

iCODE, a non-negligible energy reduction can still be achieved.
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