
A Truthful Incentive Mechanism for Emergency
Demand Response in Colocation Data Centers

Linquan Zhang∗, Shaolei Ren†, Chuan Wu‡, Zongpeng Li∗
∗Department of Computer Science, University of Calgary, {linqzhan,zongpeng}@ucalgary.ca

† School of Computing and Information Sciences, Florida International University, sren@fiu.edu
‡Department of Computer Science, The University of Hong Kong, cwu@cs.hku.hk

Abstract—Data centers are key participants in demand re-

sponse programs, including emergency demand response (EDR),

where the grid coordinates large electricity consumers for

demand reduction in emergency situations to prevent major

economic losses. While existing literature concentrates on owner-

operated data centers, this work studies EDR in multi-tenant

colocation data centers where servers are owned and managed by

individual tenants. EDR in colocation data centers is significantly

more challenging, due to lack of incentives to reduce energy

consumption by tenants who control their servers and are

typically on fixed power contracts with the colocation operator.

Consequently, to achieve demand reduction goals set by the EDR

program, the operator has to rely on the highly expensive and/or

environmentally-unfriendly on-site energy backup/generation. To

reduce cost and environmental impact, an efficient incentive

mechanism is therefore in need, motivating tenants’ voluntary

energy reduction in case of EDR. This work proposes a novel in-

centive mechanism, Truth-DR, which leverages a reverse auction

to provide monetary remuneration to tenants according to their

agreed energy reduction. Truth-DR is computationally efficient,

truthful, and achieves 2-approximation in colocation-wide social

cost. Trace-driven simulations verify the efficacy of the proposed

auction mechanism.

I. INTRODUCTION

For improving the efficiency, reliability and sustainability of

power grids, demand response programs are adopted in many

countries for exploiting flexibility of electricity usage on the

consumer side in response to supply-demand conditions. (see

[1] for an overview). Large-scale data centers, given their large

yet flexible power demands, are widely identified as having

a great potential in demand response participation [1], [2].

Notably, data centers have many IT computing knobs (e.g.,

server speed scaling, workload shedding/migration), as well

as non-IT knobs (e.g., battery, cooling system), which are all

great assets for demand response to mutually benefit them-

selves and the power grid [1]. For example, data centers can

reduce skyrocketing electricity costs by optimizing workload

management, exploiting time-varying and location-dependent

electricity prices. Furthermore, data center demand response

helps improve power grid efficiency and increase adoption
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of volatile renewables, by reducing power demand upon low

renewable generation, to balance realtime supply-demand [1].

Among various benefits of data center demand response

[1], an important, perhaps even the most striking, benefit

is the enhancement of power grid reliability through emer-

gency demand response (EDR). In emergency situations (e.g.,

extreme weather conditions), EDR coordinates many large

energy consumers (including data centers) for power demand

reduction, and serves as the last line of defense for power grids

before cascading blackouts take place, preventing economic

losses in the order of billions of dollars [3], [4]. In view of

the aging grid infrastructure, surging demand and increasingly

frequent extreme weather, EDR has undeniably become crit-

ically important and seen an upward trend: in PJM, a major

regional transmission organization in the U.S., the capacity of

EDR power reduction commitment increases from 1, 700MW

in 2006 − 2007 to 10, 800MW in 2011 − 2012 [3]. Because

of their huge yet flexible power demand, data centers serve

as “energy buffers” and have been identified by U.S. EPA as

valuable assets for EDR [2]. As an example, on July 22, 2011,

hundreds of data centers participated in EDR and contributed

by cutting their electricity usage before a nation-wide blackout

occurred in the U.S. and Canada [4].

Existing research on data center demand response heavily

concentrates on owner-operated data centers (e.g., Google)

[1], [5]. In contrast, we study EDR in a critical yet unique

type of data centers, multi-tenant colocation data centers as

exemplified by Equinix and often known as “colocation” or

“colo”. Unlike owner-operated data centers where operators

fully manage both servers and facilities, colocation rents

physical space out to multiple tenants for housing their own

servers, while the colocation operator is mainly responsible

for facility support such as cooling and power supply (more

details in Sec II). Our study on colocation EDR has a two-

fold motivation. First, colocations are widely-existing (over

1,200 in the U.S. alone [6]), and according to Google [7],

“most large data centers” are colocations. Second, many large

colocations reside in densely-populated metropolitan areas

such as the Silicon Valley [6], where EDR is particularly

critical for peak demand reduction, unlike mega-scale owner-

operated data centers (e.g., Google) in rural areas with low

population densities.

Enabling colocation EDR is challenging because, unlike in

owner-operated data centers, colocation power management



is highly “uncoordinated”: the colocation operator purchases

electricity from the power grid and manages the facility,

whereas individual tenants manage their own servers and

power consumption. There is a “split incentive” hurdle: while

the colocation operator desires cutting electricity usage for

financial compensation received from the power grid in case

of EDR, tenants have little incentive for reducing their power

consumption, because they are typically billed by the coloca-

tion based on their subscribed/reserved power at fixed rates

regardless of energy consumption (on top of other power-

irrelevant fees such as network connectivity) [8]. To achieve

the energy reduction target during EDR, a colocation operator

has to resort to highly expensive and/or environmentally-

unfriendly energy generation devices (e.g., diesel generators).

To reduce the cost and environmental impact of such back-

up power generation, the tenants should be effectively incen-

tivized to voluntarily cut down their power consumption in

case of EDR.

This work proposes a novel incentive mechanism, called

Truth-DR, which breaks the split-incentive hurdle by finan-

cially rewarding tenants to reduce energy consumption for

EDR. Truth-DR is based on a reverse auction: upon the

notification of an EDR event, tenants voluntarily submit bids

to specify the amount of their planned energy reduction as

well as the associated costs; the colocation operator, as the

auctioneer, then decides which bids to accept and the actual

monetary reward. Tenants are naturally self-interested and may

not truthfully reveal their costs to the colocation operator. Even

if tenants are truthful, the problem of deciding the winning

bids involves mixed linear integer programming (MLIP) and

is NP-hard. Consequently, the Vickrey-Clarke-Groves (VCG)

type mechanism [9]–[11], well-known for guaranteeing truth-

fulness and economical efficiency (social cost minimization),

becomes computationally infeasible and is not applicable.

Instead, we design Truth-DR based on a randomized auction

mechanism, which employs a primal-dual approximation al-

gorithm for winner determination, and strategically assigns

rewards to elicit truthful bids. Furthermore, Truth-DR is

computationally efficient, individually rational, and guarantees

a 2-approximation in colocation-wide social cost, compared

with the optimum solution of the NP-hard MLIP problem.

We conduct trace-based simulations to validate Truth-DR and

corroborate our theoretical analysis, demonstrating the desired

efficiency in (social) cost reduction.

The rest of this paper is organized as follows. Related work

is reviewed in Section II. The system model and the prob-

lem formulation are described in Section III. In Section IV,

we present the 2-approximation algorithm and develop our

mechanism Truth-DR. Section V provides a simulation study.

Finally, concluding remarks are offered in Section VI.

II. BACKGROUND AND RELATED WORK

• Colocation is an integral segment of the data center industry.

The now U.S.$25 billion global colocation market is expected

to grow to U.S.$43 billion by 2018 with a projected annual

compound growth rate of 11% [12]. Colocation provides a

unique data center solution to many industry sectors, including

leading IT firms such as Twitter, who choose not to construct

and maintain private data centers or completely outsource IT

demands to public cloud providers (due to concerns of privacy

and losing control of data). Even top IT companies, such as

Microsoft, house some servers in colocations to complement

their own data center infrastructure.

Furthermore, colocation is an indispensable enabler for

cloud computing, serving as physical homes for many public

cloud services offered by small-/medium-scale cloud providers

(e.g., Salesforce, Box), which are not “large” enough to

construct mega-scale data centers [13]. Last but not least,

colocation provides physical support for a significant portion

of the Internet traffic, because content delivery network (CDN)

providers will handle 55% of Internet traffic by 2018 (up from

36% in 2013) in their servers housed in global colocations in

close proximity to user bases [14].

• Data center demand response. The critical role of data

centers is attracting increasing attention in the field of demand

response. Ghatikar et al. [5] conduct field tests to verify the

feasibility of data center demand response. Ghamkhari et al.

[15] and Aikema et al. [16] optimize data center computing

resources to provide ancillary services provided by utility.

Studies in [17], [18] investigate the interactions between data

centers and utilities, as well as pricing strategies of utilities.

The above studies focus on owner-operated data centers where

operators have full control over the servers, and are not

applicable to colocations. A recent study [13] proposes a

simple mechanism, iCODE, for colocation demand response,

which however cannot be applied to enable emergency demand

response in colocation data centers, because: (1) iCODE is

purely based on tenants’ best-effort reduction that may not

meet energy reduction target for EDR; and (2) iCODE is not

truthful, and strategic tenants can report falsified costs to gain

extra benefits.

• Auction and its applications. Zhang et al. [19] propose a

randomized auction for dynamic virtual machine provisioning

in cloud computing. Shi et al. [20] further extend it to an online

version where the future knowledge is unknown. However,

both problems are essentially of a packing type rather than

covering type as in this work, and simple extension is not

applicable (as shown in Section IV). A decomposition-based

randomized auction is proposed for the uncapacitated facility

location problem [21]. However, it requires a Lagrangian mul-

tiplier preserving approximation algorithm for the underlying

problem, which does not exist in our problem. Zhang et

al. [22] design a reverse auction for the electricity market,

nevertheless it is not absolutely truthful.

To our knowledge, this paper represents the first step to

enable cost-effective EDR in a colocation data center with an

efficient and truthful incentive mechanism.
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TABLE I: Summary of Notations

Notation Description Notation Description

N # of tenants in colocation δ Energy reduction target set by power grid
α BES cost for one unit of power reduction γ PUE (ratio of colocation energy consumption to IT energy consumption)
ni # of servers turned off by tenant i fi The payment that the colocation operator provides to a winning tenant i
ei Energy reduction by tenant i xi Binary variable indicating whether bid i wins or not
bi Reported cost by tenant i y Continuous variable indicating amount of energy provided by BES

III. SYSTEM MODEL

A. Colocation data center and EDR

Consider a colocation data center with N tenants, oper-

ated by one colocation operator. Each tenant i ∈ N =
{1, 2, · · · , N} manages its own servers and subscribes a

certain amount of power supply from the colocation operator

based on a negotiated contract, e.g., 500kW for 24 months

at a typical rate of U.S.$150/kW/month [8]. The coloca-

tion operator is responsible for facility management such as

cooling. In the event of EDR, a signal is received by the

colocation operator from the grid, specifying the amount of

energy reduction, δ, which the colocation needs to reduce in

one EDR period (e.g., one hour [23]) [3]. Such mandatory

EDR with a given reduction target is becoming a mainstream

approach for EDR to prevent grid-wide blackouts in emergent

situations [3].
Colocation power consumption consists of two parts: IT

consumption (due to the running servers) controlled by the

tenants, and non-IT consumption manageable by the coloca-

tion operator. The ratio of the total energy consumption to

IT energy consumption is called Power Usage Effectiveness

(PUE) γ, which typically ranges from 1.1 to 2.0.
Given power-based contracts, tenants may not actively par-

ticipate in EDR unless incentivized. Even if some tenants are

interested in EDR, their reduction may not collectively reach

the energy reduction target δ. Hence, the colocation operator

often needs to leverage its BES (backup energy storage) to

fulfill the shortage of EDR target. Common BES that can

produce extra power supply include pre-charged batteries and

diesel generators, which are expensive and/or environment

unfriendly [16], [24]. Let y be the amount of grid-power

demand reduction due to the usage of BES, and α be the

cost of BES usage per kWh. Such a cost comes from various

sources such as wear-and-tear, recharging energy or fuels.
Table I summarizes key notations in the paper.

B. Reverse Auction

The proposed solution, Truth-DR, is based on a reverse

auction: when EDR signal is issued by the power grid, the

colocation operator solicits demand response bids (including

the planned energy reduction and associated costs) from

tenants.1 The colocation operator then selects winning bids,

decides payments to the winners, and notifies tenants of the

auction outcome, as illustrated in Fig. 1.

1It is not appealing to directly pass down the grid operator’s financial
compensation from the colocation operator to tenants, because tenants’
responses (i.e., how much energy reduction) are unknown until the end of

EDR and consequently, the colocation operator has to primarily rely on its
BES for meeting EDR requirement.

Tenant 1 Tenant 2 Tenant 3 Tenant N

...

Step1: EDR signal

Step2: Solicit bids from tenants

Step3: Submit bids

Step4: Notify tenants winning bids & payments

Colocation Operator

(Auctioneer)

Fig. 1: An illustration of the reverse auction in Truth-DR.

Bids. Each tenant i voluntarily submits a bid to the coloca-

tion operator, which specifies two values: (i) planned energy

reduction ei; and (ii) claimed cost bi due to such a reduction.

Each tenant i has its own discretion to determine its true cost

ci (which our mechanism will guarantee to be the same as

the claimed cost). We will give examples on how each tenant

decides its energy reduction and cost in Section V. We also

implicitly allow (0, 0) as a bid, indicating that a tenant is not

interested and can be excluded from EDR.

Winner determination (social cost minimization). The util-

ity of tenant i is defined as the payment it receives minus its

true cost. The following properties are pursued in our auction

design: (i) Truthfulness (in expectation). Bidding true costs is

a dominant strategy at the tenants, for maximum utility (in

expectation). (ii) Individual rationality. A non-negative utility

is obtained by each truth-telling tenant participating in the

auction. (iii) Computation efficiency. The auction should run

in polynomial time for winner and payment determination. (iv)

Social cost minimization. We aim at enabling colocation EDR

at the minimum colocation-wide (social) cost, to transform a

colocation’s formidable power demand into an asset.

Let xi be a binary variable indicating whether tenant i’s
bid is successful (1) or not (0), and fi be the payment

that the colocation operator provides to a winning tenant i.
The social cost in the colocation is the sum of tenants’ net

costs, i.e., cost due to energy reduction minus award from

the colocation operator,
∑

i∈N bixi −
∑

i∈N fixi (assuming

truthful bidding), and the colocation operator’s cost in using

BES and providing financial awards to the winning tenants,

i.e., αy +
∑

i∈N fixi. With payments cancelling themselves,

the social cost is equivalent to aggregate tenant cost due to

energy reduction plus the operator’s cost for using BES, i.e.,
∑

i∈N bixi + αy, which represents the negative impact of

energy reduction on colocation operation.

Social cost is a commonly-studied metric in mechanism
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design and data center demand response [17]. Minimizing the

social cost is equivalent to maximizing the social welfare in

our system, considering that the financial compensation paid

by the grid operator to the colocation operator for EDR is

fixed. Such a financial compensation is typically computed as

the compensation rate times the amount of energy reduction.

Both the compensation rate and the energy reduction target

are typically determined using separate mechanisms [3]. For

example, the compensation rate is often determined through

a separate market between the power grid and many EDR

participants (e.g., data centers), which cannot be manipulated

by a single data center. The energy reduction target is also

determined well beforehand, e.g., the colocation may commit

an energy reduction capacity for EDR three years ahead [3].

We formulate below the social cost minimization problem,
referred to as MinCost, which provides the optimal winner de-
termination decisions and usage of BES (i.e., EDR strategies)
for the colocation operator, to achieve the energy reduction
target δ, assuming truthful bids are known.

MinCost: minimizex,y αy +
∑

i∈N

bixi (1)

subject to:

y + γ
∑

i∈N

eixi ≥ δ, (1a)

xi ∈ {0, 1}, ∀i ∈ N , (1b)

y ≥ 0. (1c)

where γ ·
∑

i∈N eixi is the colocation-level energy reduction

resulting from tenants’ server energy reduction
∑

i∈N eixi.

MinCost belongs to minimum knapsack problems and is

NP-hard [25]. This makes direct application of the VCG

mechanism computationally infeasible, for VCG requires ex-

actly solving the underlying winner determination problem

multiple times. We instead design a randomized auction that

is truthful in expectation and also computationally efficient.

Before concluding this section, we note that a baseline, based

on average energy consumption of the same time during past

weeks, will be used to verify tenants’ actual energy reduction,

which is typical in incentive-based approaches and similar to

how power utility verifies its customer’s energy reduction [3].

IV. TRUTH-DR: TRUTHFUL INCENTIVE MECHANSIM

This section develops a truthful and efficient mechanism,

called Truth-DR, to incentivize tenants’ participation in EDR.

Truth-DR works based on a randomized mechanism that

converts a 2-approximation algorithm, which solves the social

cost minimization problem, into a truthful and computational

efficient auction. We prove that the randomized auction also

achieves a 2-approximation ratio in social cost. In what

follows, we first design an efficient, 2-approximation algo-

rithm based on a primal-dual technique, and then design the

randomized auction using the algorithm as a plug-in module

to achieve truthfulness.

A. A 2-Approximation Algorithm

To efficiently solve MinCost in (1) for winner determination

and BES usage, a natural approach is to relax the integrality

constraints (1b) to 0 ≤ xi ≤ 1, ∀i ∈ N , to obtain a linear

program (LP), solve it using standard LP solution techniques,

and then round the (possibly) fractional solution x to integers.

However, the integrality gap, i.e., the ratio between the optimal

social cost of (1) to the optimal social cost of the relaxed

LP, can be unbounded. For example, consider a case where

only one tenant participates in the auction, with N = 1, b1 =
1, e1 = α > 1, γ = 1, δ = 1. The optimal integer solution to

(1) is (x1 = 1, y = 0), and the social cost is 1. The relaxed

LP however would pick a solution (x1 = 1/α, y = 0), which

results in a social cost of 1/α. The integrality gap is hence α,

which is unbounded when α → ∞.

We design an efficient primal-dual algorithm to provide

a feasible solution to (1), which provably achieves a 2-

approximation in social cost, based on an enhanced LP re-

laxation of (1). Following the technique of redundant LP

constraints [25], [26], we introduce valid inequalities that are

satisfied by all feasible mixed integer solutions of (1) into the

LP relaxation.

Let S be a subset of bids in N . Define ∆(S) = δ −
γ
∑

i∈S ei, denoting how much energy reduction the coloca-

tion still needs to achieve the target δ, when all bids in S are

accepted. Let ei(S) = min{γei,∆(S)} denote the contribu-
tion of an additional bid i in making up the discrepancy. The
enhanced linear program relaxation (LPR) is:

LPR-Primal: minimize αy +
∑

i∈N

bixi (2)

subject to:

y +
∑

i∈N\S

ei(S)xi ≥ ∆(S), ∀S ⊆ N : ∆(S) > 0 (2a)

y ≥ 0, xi ≥ 0, ∀i ∈ N (2b)

Constraints in (2a) can be considered as an enumeration of all
possible solutions to achieve the energy reduction target. Each

constraint in (2a) assumes that all bids in subset S, ∀S ⊆ N ,
are accepted, and limit the solution space to decisions on other

bids in N \S, to make up for the gap ∆(S) > 0 to the energy
reduction target. Clearly any feasible mixed integer solution
(xi being integer) to LPR (2) is feasible to the original problem
(1), and vice versa. We next formulate the dual of LPR (2)
by introducing a dual variable z(S) corresponding to each

constraint in (2a).

LPR-Dual: maximize
∑

S⊆N :∆(S)>0

∆(S)z(S) (3)
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Algorithm 1 A Primal-Dual 2-Approx. Algorithm for (1)

1: Input: (α, γ,e, b, δ)

2: Output: solution (x, y)

3: //initialization

4: (x, y) = (0, 0); z = 0; C = ∅;

5: while ∆(C) > 0 do //Update primal/dual variables iteratively

6: Increase dual variable z(C) until some dual constraint goes

tight;

7: if
∑

S⊆N :∆(S)>0 z(S) = α then

8: y = ∆(C); break;
9: end if

10: if
∑

S⊆N :i∈N\S,∆(S)>0 ei(S)z(S) = bi then

11: xi = 1; C = C ∪ {i};

12: end if
13: end while

subject to:

∑

S⊆N :∆(S)>0

z(S) ≤ α (3a)

∑

S⊆N :i∈N\S,∆(S)>0

ei(S)z(S) ≤ bi ∀i ∈ N (3b)

z(S) ≥ 0 ∀S ⊆ N : ∆(S) > 0 (3c)

Algorithm 1 shows the approximation algorithm, based on

the LPR (2) and its dual (3), to derive a feasible, 2-approximate

solution to MinCost in (1). The idea of the algorithm is to

construct a mixed integer solution to LPR (2) and a feasible

solution to its dual (3) iteratively by increasing the dual

variable corresponding to the current set of bids to accept,

C, until the aggregate power from accepted bids in C reaches

the energy reduction target δ.

Lemma 1. Algorithm 1 computes a feasible solution to

MinCost in (1) and LPR (2), as well as a feasible solution

to dual (3).

Proof: First we examine if the returned solution is feasible

to (1). Values in x are initialized to 0 and updated to 1 only in

the iterations. Thus (1b) is satisfied. Similarly, y is initialized

to 0 and possibly updated to a positive value only, satisfying

guaranteeing (1c). For (1a), there are two cases.

Case 1: Algorithm 1 stops when ∆(C) ≤ 0. According to

the definition of ∆(C), we have γ
∑

i∈C ei ≥ δ, which implies

that constraint (1a) is not violated.

Case 2: Algorithm 1 exits from line 8. Hence y +
γ
∑

i∈C ei = δ. Constraint (1a) is respected too.

We can verify that the feasible solution to (1) is feasible to

its LPR (2) as well.

We next examine the dual solution z(C). Once the algorithm

adds tenant i into the winner set C, increasing z(C) will

not change the value of
∑

S⊆N :i∈N\S,∆(S)>0 ei(S)z(S), and

hence the corresponding constraint in (3b) is respected. Once

constraint (3a) goes tight, the algorithm exists and will not

increase any dual variable again. Therefore, the dual solution

is feasible to the dual (3) always.

Theorem 1. Algorithm 1 is a 2-approximation algorithm to

MinCost in (1); it achieves a social cost that is at most 2 times

the optimal social cost of (1).

Proof: Let OPT denote the optimal social cost computed

by solving (1) exactly, and OPTLPR be the optimal social

cost computed by its LPR (2). We analyze the algorithm in

the following two cases.

Case 1: the while loop stops due to ∆(C) ≤ 0. The

constraint (3a) never goes tight in this case, and hence y = 0.

∑

i∈N

bixi =
∑

i∈C

bi =
∑

i∈C

∑

S⊆N :i∈N\S,∆(S)>0

ei(S)z(S)

=
∑

S⊆N :∆(S)>0

∑

i∈C\S

ei(S)z(S)

Note that
∑

i∈C\S

ei(S) ≤ γ
∑

i∈C\{ω}

ei − γ
∑

i∈S

ei + eω(S)

< δ − γ
∑

i∈S

ei + eω(S)

= ∆(S) + eω(S) ≤ 2∆(S)

where ω denotes the last tenant added to the solution set C.
∆(C \ω) > 0 implies that δ > γ

∑

i∈C\{ω} ei. As a result, we

have
∑

i∈N

bixi ≤
∑

S⊆N :∆(S)>0

2z(S)∆(S) ≤ 2OPTLPR ≤ 2OPT

Case 2: the while loop stops due to the break in line 8. The

objective of the LPR then has two parts: αy and
∑

i∈N bixi.

αy = ∆(C)
∑

S⊆N :∆(S)>0

z(S)

Since S ⊆ C, ∀S : ∆(S) > 0 and z(S) 6= 0, we have ∆(S) ≥
∆(C). Therefore

αy ≤
∑

S⊆N :∆(S)>0

z(S)∆(S) ≤ OPTLPR.

Similar to the analysis in Case 1, we have:

∑

i∈N

bixi =
∑

S⊆N :∆(S)>0

∑

i∈C\S

ei(S)z(S)

≤
∑

S⊆N :∆(S)>0

z(S)(γ
∑

i∈C

ei − γ
∑

i∈S

ei)

Note that the algorithm exits with ∆(C) > 0, i.e., δ >
γ
∑

i∈C ei. We have:

∑

i∈N

bixi ≤
∑

S⊆N :∆(S)>0

z(S)(δ − γ
∑

i∈S

ei)

=
∑

S⊆N :∆(S)>0

z(S)∆(S) = OPTLPR
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Algorithm 2 Truth-DR: Truthful Randomized Auction

1: Optimal Fractional Solution

• Solve LPR (2), obtaining optimal BES usage y∗ and optimal

fractional winner decisions x
∗.

2: Decomposition into Mixed Integer Solutions

• Decompose the fractional decisions (min{βx∗,1}, βy∗) to

a convex combination of feasible mixed integer solutions

(xl, yl), l ∈ I, of (1) using a convex decomposition

technique, using Alg. 1 as the separation oracle in the

ellipsoid method to solve the primal/dual decomposition

LPs.

3: Winner Determination and Payment

• Select a mixed integer solution (xl, yl) from set I ran-
domly, using weights of the solutions in the decomposition
as probabilities

• Calculate the payment of tenant i as

fi =

{

0 if xi = 0

bi +

∫αγei
bi

min{2x∗
i (b,b−i),1}db

min{2x∗
i
(bi,b−i),1}

otherwise

(min is component-wise minimum in all the above.)

Therefore, αy +
∑

i∈N bixi ≤ 2OPTLPR ≤ 2OPT .

B. The Randomized Auction

The idea of Truth-DR is as follows. We compute the optimal

fractional solution to LPR in (2), and then employ an LP dual-

ity based decomposition technique to decompose the fractional

solution into a convex combination of feasible, mixed integer

solutions to MinCost in (1). The decomposition exploits the

covering structure of the MinCost problem, according to

a sequence of recent work that originated from theoretical

computer science [21], [27], [28]. We then randomly pick one

of the mixed integer solutions as the outcome of the auction,

using their weights in the convex combination as probabilities.

The payments to the winners are computed according to the

rule in Theorem 2, which satisfy the sufficient and necessary

condition for truthfulness. The auction mechanism is given in

Algorithm 2, with details below.

1) Optimal Fractional Solution: The optimal fractional so-

lution (x∗, y∗) can be computed by solving LPR (2), applying

an efficient LP solution technique such as the primal-dual

interior-point method.
2) Convex Decomposition: The goal of the decomposition

is to find νl ∈ [0, 1] and a set of mixed integer solutions

(xl, yl), ∀l ∈ I, to the MinCost problem in (1), such that
∑

l∈I νlx
l = x∗,

∑

l∈I νly
l = y∗, and

∑

l∈I νl = 1. In

this way, when the randomized auction chooses the lth mixed
integer solution with probability νl, a good approximation
ratio in social cost in expectation may be achieved, as that
achieved by the optimal fractional solution. However, there
in fact does not exist a convex combination of the mixed
integer solutions, that exactly equals the fractional solution;
since otherwise, the expected social cost achieved by these
mixed integer solutions equals that achieved by the fractional

solution, contradicting the fact that the fractional solution
achieves a lower social cost than any possible mixed integer
solution. Therefore, to enable a feasible decomposition, we
need to scale up the optimal fractional solution by a certain
factor. If there exists an approximation algorithm that solves
the underlying winner determination problem with an approxi-
mation ratio of β, then we can use β as the scaling factor [28].

In addition, min{βx∗,1} should be used to replace βx∗, to
be decomposed into a convex combination of feasible integer

solutions xl’s, in order to ensure that the decomposition is
feasible. Otherwise, if there exists an entry in vector βx∗

larger than 1, the decomposition is infeasible: since each entry

in xl is at most 1, with a convex combination, we have that

the left-hand side of (4a)
∑

l∈I νlx
l ≤ 1. The linear program

for this convex decomposition is:

maximize
∑

l∈I

νl (4)

subject to:

∑

l∈I

νlx
l = min{βx∗

,1} (4a)

∑

l∈I

νly
l ≤ βy

∗ (4b)

∑

l∈I

νl ≤ 1 (4c)

νl ≥ 0,∀l ∈ I (4d)

The BES cost α is the cost of the colocation operator (auction-

eer) rather than tenants (bidders). The exact decomposition in

(4a) is to ensure that a tenant’s winning probability satisfies

the truthfulness condition in Theorem 2. Non-exact decompo-

sition of βy∗ will not affect the truthfulness of the auction,

and hence (4b) is an inequality rather than an equality.

We can solve the decomposition problem (4) by finding all
the possible mixed integer solutions to (1), and then directly
solve LP (4) to derive the decomposition weights νl’s. But
there are exponentially many possible mixed integer solutions
and hence an exponential number of variables in this LP. We
therefore resort to its dual below, where dual variables µ, ω
and φ are associated with primal constraints (4a), (4b) and

(4c), respectively:

minimize βy
∗
ω +

N
∑

i=1

min{βx∗
i , 1}µi + φ (5)

y
l
ω +

∑

i∈N

x
l
iµi + φ ≥ 1, ∀l ∈ I (5a)

ω ≥ 0, φ ≥ 0 (5b)

Though the dual has an exponential number of constraints,

the ellipsoid method can be applied to solve it in polynomial-

time [27]. The ellipsoid method can obtain an optimal dual

solution using a polynomial number of separating hyperplanes.
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Algorithm 1 can help find violated dual constraints that act

as separating hyperplanes in the ellipsoid method to cut the

solution space, and a feasible mixed integer solution to (1) can

be derived each time a separating hyperplane is generated.

Hence, a polynomial number of candidate solutions to (1)
are produced through the process of the ellipsoid method,

and the primal decomposition LP (4) can be reduced to a

linear program with a polynomial number of variables (νl’s)

corresponding to these solutions. Then we can solve the

reduced primal problem in polynomial time. The correctness

of the above decomposition method is given in the following

lemma:

Lemma 2. The decomposition method correctly obtains a

polynomial number of mixed integer solutions xl’s to the

MinCost problem (1), and convex combination weights νl’s
which achieve the optimal objective value

∑

l∈I νl = 1 for

(4), in polynomial time.

Proof: We show
∑

l∈I νl = 1 by proving that the optimal

value of (5) is 1. We first observe that the optimal value of

the dual is at most 1 since (µ = 0, ω = 0, φ = 1) is a feasible
solution to the dual. For the sake of contradiction, we suppose

βy∗ω +
∑N

i=1 min{βx∗
i , 1}µi + φ < 1. The unconstrained

variable µ, which possibly leads to negative µis, may make
the approximation algorithm work inappropriately. Let

µ
+
i =

{

µi if µi ≥ 0 and βx∗
i ≤ 1

0 otherwise

By executing the β-approximation algorithm using ω as the

BES cost and µ+ as the bidding prices, we obtain a mixed

integer solution (xπ, yπ), π ∈ I that satisfies:

ωy
π+

N
∑

i=1

µ
+
i x

π
i ≤ βωỹ

∗+β

N
∑

i=1

µ
+
i x̃

∗
i ≤ βωy

∗+β

N
∑

i=1

µ
+
i x

∗
i (6)

where (x̃∗, ỹ∗) is the optimal fractional solution when

(ω,µ+) are used as the BES cost and the bidding prices,

respectively.

Due to the covering nature of the underlying problem, we
can reduce more energy from tenants to meet the energy
reduction target without violating the feasibility. Let

x̃
π
i =

{

xπ
i if µi ≥ 0 and βx∗

i ≤ 1
1 otherwise

We therefore have ỹπ ≤ yπ since we need less energy from
BES to cover the energy reduction request. We also have:

N
∑

i=1

µix̃i
π =

N
∑

i

µ
+
i x

π
i +

∑

i : µi < 0

or βx∗
i ≤ 1

µi

≤
N
∑

i

µ
+
i x

π
i +

∑

i : µi < 0

or βx∗
i > 1

min{βx∗
i , 1}µi

(7)

Combining Inequalities (6) and (7), we have

ωỹ
π +

N
∑

i=1

µix̃i
π

≤ βωy
∗ + β

N
∑

i=1

µ
+
i x

∗
i +

∑

i : µi < 0

or βx∗
i > 1

min{βx∗
i , 1}µi

≤ βωy
∗ +

N
∑

i=1

min{βx∗
i , 1}µi ≤ 1− φ

We find a violated constraint in (5a) as (x̃π, ỹπ) is a feasible

mixed integer solution to (1). A contradiction occurs, thus the

optimal value of the dual (5) is 1. Due to the strong duality

of linear programs, the optimal value of the decomposition

problem (4) is 1 as well, i.e.,
∑

l∈I νl = 1.

The ellipsoid method [29] is applied to solve the dual

problem (5) with an exponential number of constraints in

polynomial-time. Algorithm 1 acts as a separation oracle

for generating separating hyperplanes for the dual (5). Once

an optimal dual solution is obtained, using a polynomial

number of hyperplanes, we can convert the primal (4) to an

optimization problem with a polynomial number of constraints

corresponding to these hyperplanes. As a result, the convex

decomposition can be solved in polynomial time.

3) Winner Determination and Payment: We decide the win-

ners by randomly selecting a mixed integer solution (xl, yl)
from the set obtained through the decomposition method, with

the weights νl’s in the decomposition as probabilities. We next

design a payment for each winner, such that truthfulness of the

auction can be guaranteed.

We have shown that the optimal fractional solution of our

covering problem cannot be decomposed into a series of

weighted mixed integer solutions through simply scaling it up

by a factor, i.e., βx∗; instead, we decompose {βx∗,1}. Our

new decomposition rules out applications of a fractional-VCG

type of payment. However, we discover that our randomized

solution to (1) satisfies a set of nice properties that enable us

to exploit another route of truthful payment computation.

Let Pi(bi) be the probability that tenant i with bid cost bi
wins in the auction, and b−i denote all bids except (ei, bi).
Our auction renders the following results on Pi(bi).

Lemma 3. Given fixed bids b−i from all other tenants, the

probability that tenant i wins, Pi(bi), is monotonically non-

increasing in bi with Truth-DR. Moreover,
∫∞

0
Pi(b)db <

∞, ∀i ∈ N .

Proof: Assume b′i ≤ bi. Given a fixed b−i, let x∗
i , x

∗∗
i be the

optimal fractional solution for bidder i when its bid is bi, b
′
i,

respectively. Note that xi ∈ {0, 1}, thus E[xi] = Pi(bi)× 1+
(1 − Pi(bi)) × 0 = Pi(bi). We then further have Pi(bi) =

E[xi] =
∑

l∈I νlx
l
i = min{βx∗

i , 1}. We next are going to

prove that x∗∗
i ≥ x∗

i .

Let f(x, bi, b−i) be the value of the objective of the LPR
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with bids (bi, b−i) when the solution is x. We have:

f(x∗
, bi, b−i) ≤ f(x∗∗, bi, b−i) (8)

f(x∗∗
, b

′
i, b−i) ≤ f(x∗, b′i, b−i) (9)

Considering the difference between f(x∗, bi, b−i) and

f(x∗, b′i, b−i), we have:

f(x∗
, bi, b−i)− f(x∗

, b
′
i, b−i) = (bi − b

′
i)x

∗
i

Similarly, f(x∗∗, bi, b−i)−f(x∗∗, b′i, b−i) = (bi−b′i)x
∗∗
i . For

the sake of contradiction, we suppose x∗∗
i < x∗

i , then

f(x∗∗
, bi, b−i)− f(x∗∗

, b
′
i, b−i) < f(x∗

, bi, b−i)− f(x∗
, b

′
i, b−i)

(10)

Add (9) to the inequality above, we have:

f(x∗∗
, bi, b−i) < f(x∗

, bi, b−i)

which contradicts (8). Therefore x∗∗
i ≥ x∗

i and Pi(b
′
i) ≥

Pi(bi).

In LPR (2), if bi > αγei then x∗
i = 0, because if the price

offered by the tenant i is too high, the system will use BES

instead. Therefore Pi(bi) = min{βx∗
i , 1} = 0 in this case. We

further have
∫ ∞

0

Pi(b)db =

∫ αγei

0

Pi(b)db ≤ αγei < ∞.

The sufficient and necessary conditions that we follow to

design our payment scheme, to achieve truthfulness, are:

Theorem 2. [30] [31] A randomized auction with bids b and

payments f is truthful in expectation if and only if

• Pi(bi) is monotonically non-increasing in bi, ∀i ∈ N ;

•
∫∞

0
Pi(b)db < ∞, ∀i ∈ N ;

• The expected payment satisfies E[fi] = biPi(bi) +
∫∞

bi
Pi(b)db, ∀i ∈ N .

We design the payments of winning tenants as

fi = bi +

∫ αγei
bi

min{2x∗
i (b, b−i), 1}db

min{2x∗
i (bi, b−i), 1}

= bi +

∫ αγei
bi

Pi(b)db

Pi(bi)

where x∗
i (bi, b−i) is the optimal solution of variable xi to

LPR (2), when tenant i’s bid cost is bi, and others are b−i.

As we can calculate Pi(bi) by solving LPR (2) given bi,
then the payment fi can be calculated numerically.

Theorem 3. Truth-DR in Algorithm 2 runs in polynomial time,

is truthful in expectation, individually rational, and achieves

2-approximation in colocation-wide social cost.

Proof: Based on Lemma 3, it is ready to see that each step

in Algorithm 2 involves polynomial-time computation only.
According to Lemma 3, Truth-DR satisfies the first two

conditions in Theorem 2. Furthermore, we have

E[fi] = (1− Pi(bi))× 0 + Pi(bi)×
(

bi +

∫ αγei
bi

Pi(b)db

Pi(bi)

)

= biPi(bi) +

∫ ∞

bi

Pi(b)db

The last equality is due to
∫ αγei

bi
Pi(b)db =

∫∞

bi
Pi(b)db as

proven in Lemma 3. Hence Truth-DR is truthful in expectation.

The utility of tenant i when it reports its true cost ci is:

Case 1: tenant i loses, and its utility ui = 0;
Case 2: tenant i wins, and its utility

ui = fi − ci = ci +

∫ αγei
ci

Pi(b)db

Pi(ci)
− ci

=

∫ αγei
ci

Pi(b)db

Pi(ci)
≥ 0

In both cases, the utility is non-negative, and so Truth-DR is

individually rational.

The expected social cost is E[αy + bTx], satisfying

E[αy+ b
T
x] ≤ βαy

∗ + b
T min{βx∗

,1} ≤ βOPTLPR ≤ βOPT.

Since we use Algorithm 1 to solve the MinCost problem (1)

with an approximation ratio of β = 2 according to Theorem

1, Truth-DR achieves a 2-approximation to the optimal social

cost in expectation.

V. PERFORMANCE EVALUATION

A. Data Sets and Simulation Setup

We consider a colocation data center, with six participating

tenants (denoted as Tenant #1, Tenant #2, · · · , and Tenant #6),

located at Ashburn, VA, which is a major data center market

served by PJM (a major regional transmission organization in

the U.S. [23]). Each tenant i has mi = 10, 000 homogeneous

servers with idle/static and computing powers of d0,i = 100W

and dc,i = 150W each, respectively [13]. The PUE γ of

colocation is set to 1.6 (typical for colocation), and the default

cost for using BES, α, is considered $150/MWh which we will

vary later depending on the BES energy source [13], [24]. The

peak power demand of the colocation is 24MW.

Energy reduction targets: We scale down the total energy

reduction by PJM’s EDR on January 7, 2014 (when there was

severe weather condition) [23], to levels around 15% of the

colocation’s maximum power, to produce the energy reduction

targets in our experiments. We choose 15% because field tests

[5] show that data centers can reduce 10-20% energy without

affecting normal operation. The total EDR energy reduction

by PJM is shown in Fig. 2(a). There were 11 EDR events,

starting from 5am to 11am and 16pm to 19pm, respectively,

and each event lasted one hour.

Workload: We use traces collected from [32] (“Hotmail” and

“MSR”) and [33] (“Wikipedia”), and, due to limited traces,

we duplicate them with randomness of up to 20% to generate

the six tenants’ workloads. All workloads are normalized with

respect to each tenant’s maximum service capacity. Fig. 2(b)

depicts the three traces.

Tenants’ Energy Reduction bids: We consider that tenants

use the widely-studied knob of “turning off unused servers”

to slash energy consumption [32]. In our simulations, the

number of servers to turn off by tenant i, ni, is decided using

a widely-considered average queueing delay constraint [13],

[32]: Suppose the service rate of a server owned by tenant i is
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Fig. 2: Trace data. (a) Total EDR energy reduction by PJM on January
7, 2014. (b) Normalized workloads.

µi (e.g., jobs per unit time) and the workload arrival rate is λi;

based on the queueing theory [32], the average job queueing

delay is 1

µi−
λi

mi−ni

, which is required not to exceed a threshold.

We set the parameters according to [13] (e.g., for interactive

services, µ = 1, 000req/second and delay threshold is 20ms).

By turning off ni servers, total power consumption of tenant

i’s servers becomes p′i = (mi − ni) ·
[

d0,i + dc,i
λi

(mi−ni)·µi

]

,

where λi

mi−ni
is the average server utilization (with workloads

equally distributed to the servers) [32]. Thus, when no server

is turned off (i.e., ni = 0), the total power consumption is

pi = mi ·
[

d0,i + dc,i
λi

mi·µi

]

, and the total energy reduction

by tenant i is ei = (pi− p′i) ·T = ni · d0,i ·T , where T is one

EDR period, which is 1 hour in our simulations.

Tenants’ Costs: We consider that tenant i’s power man-

agement cost (e.g., wear-and-tear) for the energy reduction ei
increases linearly with ni, the number of servers turned off,

with a slope uniformly distributed between 1 ∼ 2 cents/server

(equivalently, 6.7 ∼ 13.3 cents/kWh). This can reasonably

model tenants’ costs, because: when tenants house servers

in their own data centers, they save 6.7 ∼ 13.3 cents/kWh

(depending on electricity price), which is naturally enough to

cover the power management cost [32].

B. Results

Our evaluation results are shown below.

1) Close-to-Minimum Social Cost: We first compare the

social costs achieved by Truth-DR, the optimal integer solution

to the MinCost problem in (1), as well as the optimal fractional

solution to its LPR in (2), as illustrated in Fig. 3. We obtain

the average social cost of our randomized auction by executing

Algorithm 2 for 10 times. We observe that Truth-DR provides

almost the optimal performance at most time slots, only a

slightly higher than the optimum when t = 11. The results

show a close-to-optimum performance in practice, much better

than the theoretical performance bound proven in Theorem 1.

2) Satisfying Energy Reduction Target: Fig. 4 plots the

energy reduction achieved by Truth-DR at each time period,

showing that Truth-DR for EDR reaches all energy reduction

targets exactly at most time slots except t = 11, where Truth-

DR produces even more reduction than requested. We further

detail the energy reduction provided by each tenant and BES

in Fig. 5.
3) Tenants’ Non-Negative Utilities: Next, we show the

payments and utilities received by different tenants in EDR.

Fig. 6 illustrates the payments paid by the colocation operator

to all tenants. We observe that tenant i receives no payment

when it does not reduce its energy consumption. Fig. 7 shows

that all tenants receive non-negative utilities by reducing server

energy and participating in EDR, confirming the individual

rationality.
4) Social Cost Reduction Compared to “BES Only”: We

show that Truth-DR reduces the colocation-wide social cost

compared to using only BES without incentivizing tenants,

under different BES costs α from 150$/MWh to 350$/MWh,

where 350$/MWh is the cost for using diesel generators based

on typical diesel efficiency [34]. Fig. 8 shows that there is a

trend that the social cost saving is more significant as the BES

usage gets costlier. Even when α = 150$/MWh, there is still a

significant saving, showing that Truth-DR enables colocation

EDR at a low colocation-wide cost by incentivizing tenants’

participation.

Other results, such as tenants’ truthfulness (i.e., a tenant’s

net utility decreases if it claims a falsified cost, as already

formally proved in Theorem 3), are omitted for brevity.

VI. CONCLUSIONS

This work studied how to enable colocation EDR at the

minimum colocation-wide cost. To address the challenges

of uncoordinated power management and tenants’ lack of

incentives for EDR, we proposed a first-of-its-kind auction-

based incentive mechanism, called Truth-DR, which is com-

putationally efficient, truthful in expectation and guarantees

a 2-approximation in colocation-wide social cost. We also

performed a trace-driven simulation study to complement the

analysis and showed that Truth-DR can achieve the energy

reduction target for EDR at a low colocation-wide cost,

while ensuring that truthfulness and individual rationality are

preserved for tenants during the auction process.
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