A Market Approach for Handling Power Emergencies in Multi-Tenant Data Center

Mohammad A. Islam, Xiaoqi Ren, Shaolei Ren, Adam Wierman, and Xiaorui Wang

What makes up the costs in data centers?

Amortized Cost	Component	Sub-Components
\sim 45%	Servers	CPU, memory, storage systems
$\sim 25\%$	Infrastructure	Power distribution and cooling
$\sim 15\%$	Power draw	Electrical utility costs
$\sim 15\%$	Network	Links, transit, equipment

What makes up the costs in data centers?

Infrastructure is really expensive especially for multi-tenant data centers

Infrastructure is really expensive especially for multi-tenant data centers

Pie Chart from CoreSite's "One Wilshire" (Photo: CoreSite)

We need to maximize the utilization!

We need to maximize the utilization!

Benefits of power oversubscription

Challenges for power oversubscription

Challenges for power oversubscription

How data center operators currently handle emergencies?

Before an outage occurs:

How data center operators currently handle emergencies?

After an outage occurs:

Consequences of power outage

On average, each incident is a million dollar loss

Consequences of power outage

We need to handle power emergencies better!

Natural ideas

- Lower the IT power usage
 - There're many power capping solutions
 - DVFS, admission control, load migration, etc. [X. Wang, 2009][H. Lim 2011][X. Fu, 2011][A. Bhattacharya, 2012][D. Wang, 2013]
 - But, operator does NOT control tenants' servers
 - Even assuming it does, which tenants should reduce power and by how much?
- Static power reduction contracts
 - Cannot predict power reduction from tenants during an emergency

Natural ideas

- Lower the IT power usage
 - There're many power capping solutions

Not applicable to multi-tenant data centers!

- Even assuming it does, which tenants should reduce power and by how much?
- Static power reduction contracts
 - Cannot predict power reduction from tenants during an emergency

Fu,

Goal: provide a **runtime** design to extract power reduction from **tenants** at minimum performance loss!

COOP: CO-Ordinated Power management

When a power emergency occurs...

- Two-level capping: high-level UPS and low-level PDU
 - UPS capacity exceeded by D_0
 - PDU capacity exceeded by D_i
 - N tenants: each cut power s_i and has a "performance cost" of $c_i(s_i)$

s.t

$$\min_{\substack{s_i \ge 0, i=1,2,\cdots,N}} \sum_{i=1}^N c_i(s_i)$$

.,
$$\sum_{i \in \mathcal{N}_j} s_i \ge D_j, \text{ for } j = 0, 1, 2, \cdots, M,$$

How to solve it?

$$\min_{\substack{s_i \ge 0, i=1,2,\cdots,N}} \sum_{i=1}^N c_i(s_i)$$

s.t.,
$$\sum_{i \in \mathcal{N}_j} s_i \ge D_j, \text{ for } j = 0, 1, 2, \cdots, M,$$

- Centralized control doesn't work...
- Market approach

Supply function s(r)

- If you offer me r, I will reduce power s_r ...
 - Extensively studied in the context of electricity markets
- We choose a parameterized supply function as follows
 - Efficiency [R. Johari, 2011][N. Chen, 2015]

$$s_i(bi,r) = \left[\delta_i - \frac{b_i}{r} \right]^{\dagger}$$

Parameterized supply function bidding

#1: Operator announces supply function $s_i(bi, r) = \left[\delta_i - \frac{b_i}{r}\right]^+$

#2: Tenant *i* submits bid b_i

#3: Operator clears market price *r* to satisfy multi-level power capping

#4: Power reduction is exercised

How to bid?

• Bid based on tenant's own performance cost, but no need to disclose it

How to set price?

- Tenants reduce more power when offered higher price
- Just sufficiently large to make sure that tenants are reducing enough power
 - If no price is within the expected range (to ensure no profit loss for operator), then enter "failover" mode

$$\min \quad r$$

s.t. $\sum_{i \in \mathcal{N}_{|}} s_i \ge D_j$, for $j = 0, 1, 2, \dots, M$

Implementation

Algorithm 1 COOP: Coordinated Power Management

1: Input: UPS and PDU capacities P_i^{cap} for $i = 0, 1, \dots, M$ 2: Monitor UPS and PDU power $P_i(t)$ continuously. if $P_i(t) > P_i^{cap}$ for any $i = 0, 1, \dots, M$ then Start waiting timer T_w end if while T_w has not expired **do** if $P_i(t) \leq P_i^{cap}$ for all $i = 0, 1, \dots, M$ then Go back to Line 2 end if 10 end while 11: ▷ Entering "power capping" mode 12 **if** $P_i(t) > P_i^{cap}$ for any $i = 0, 1, \dots, M$ then Set $D_i \leftarrow \left[P_i(t) - P_i^{cap}\right]^+$ 13 Announce $s_i(b_i, r) = [\delta_i - \frac{b_i}{r}]^+$ to tenant *i* Tenant *i* decides its bid b_i 14 15 Set price $r = \min_{r'} \{ r' \in [r_{\min}, r_{\max}] \mid \sum_{i \in \mathcal{N}_i} s_i(b_i, r') \}$ 16 $> D_i$, for $i = 0, 1, \dots, M$ 17 Each tenant *i* reduces $s_i(b_i, r)$ power 18 and if 19 20: > Leaving "power capping" mode 21 **wait** until $P_i(t) \le P_i^{cap} - D_i$ for all $i = 0, 1, \dots, M$ 22 Start capping timer T_c and **wait** until T_c expires or $P_i(t) > P_i^{Cap} - D_i$ for any $i = 0, 1, \dots, M$ if $P_i(t) > P_i^{Cap} - D_i$ for any $i = 0, 1, \dots, M$ then 23 Go back to Line 21 24 end if 25 if T_c expires then 26 Notify tenants to resume normal operation 27 Calculate the power capping duration T_o 28 29 Provide tenant *i* with a reward of $z_i = T_o \cdot r \cdot s_i$ Go back to Line 2 30 31 end if

Evaluation Methodology

Tenant	Туре	No. of Servers	Tenant's Max. Power	Location	Cluster's Max. Power
#1	Web search	2	200 W		
#2	KVS	2	310 W	Cluster#A	740 W
#3	Hadoop	2	230 W		
#4	Web search	3	300 W	Cluster#B	530 W
#5	Hadoop	2	230 W	Clusicl#D	550 W

- 5 tenants running different workloads housed on two clusters
- DVFS for power reduction

COOP is close to Optimal

- COOP almost minimizes the performance costs as OPT
 - OPT is an idealized case where the operator dictates tenants' power reduction as in an owner-operated data center
 - Settling time: just <1 second

COOP is win-win

- Tenants reduce power cost with minimum (temporary) performance impact
- Operator increases profit by selling capacity to more tenants

COOP: CO-Ordinated Power management

A market-based approach for handling power emergencies and helping operator better oversubscribe data center capacity

Simple, Scalable & Efficient