Your Noise, My Signal: Exploiting Switching Noise for Stealthy Data Exfiltration from Desktop Computers Zhihui Shao¹, **Mohammad A. Islam**², and Shaolei Ren¹ ¹UC Riverside, ²UT Arlington #### **Enterprise Network Completely Disconnecting** by "Air-Gapping" Desktop Laptop Network Switch The Internet Restricted Access to Desktop **Outside Network** Server # Malwares still manage to infiltrate these systems! Restricted Access to Outside Network ne internet Supply chain attacks Cybersecurity New Evidence of Hacked Supermicro Hardware Found in U.S. Telecom The discovery shows that China continues to sabotage critical technology components bound for America. By Jordan Robertson and Michael Riley. October 9, 2018, 10:01 AM CDT Updated on October 9, 2018, 4:37 PM CDT HW/SW backdoors Portable drives And many other ways... ### Data exfiltration remains a challenge! - Getting in, the **infiltration**, can be a "one time" incident - Getting stolen data out, the **exfiltration**, is long-term - Infiltration methods are not suitable for exfiltration - Cannot use the network # How to send data without using the network? Focus of our work! **Stealthiness** Fast Data Rate # Data transmission without using network LED Heat Noise ### Our approach - We vary computer power consumption to send data over the power network - We extract data from voltage measurements at other outlet #### Threat model - Transmitter - Target is infected with malware that can steal sensitive data - Malware modulates the power by running CPU intensive instructions - Receiver - Connected to a power outlet within the same power network as the transmitter - Equipped with an ADC to collect voltage measurements ### Why use voltage measurement? • Limitations of prior works that use *traditional* power measurement Requires physically tempering the power outlet/cable Requires targeted sensor placement How to use voltage measurement? Power factor correction (PFC) circuits is ubiquitously available in desktop computer power supply unit PFC creates high-frequency voltage ripples due to rapid switching PFC switching frequency varies with power supplies ### Sending data using voltage measurement Transmitter and receiver are in a lab, ~55 feet away from each other #### Simultaneous transmission • 4 transmitters sending data to a single receiver #### Bit rate - Symbol rate - Limited by lag in response to CPU load change - Maximum symbol rate is ~30 symbols/second #### Maximum bit rate ~30 bits/s - Bits per symbol - Current needs time to settle - One bit/symbol ### Demo # Experiments with different computers and locations | Transmitting
Computer | Configuration | Operating
System | Power Supply
Unit | Year | PFC
Switching
Frequency | Location | TX-RX
Distance | Bit
Error
Rate | Bits
Per
Second | |---------------------------|---------------------------|------------------------|---|------|-------------------------------|------------------------|-------------------|-------------------------|-----------------------| | Dell Optiplex
9020 | Core i7-4790,
16 GB | Windows 10 | Dell-L290EM-01 300W
by Lite-on Tech. Co. | 2015 | ~67.3 kHz | Lab #1
(Building A) | ~55 feet | 0.0% | 28.48 | | Dell PowerEdge
R630 | Dual Xeon
E52640, 32GB | Ubuntu
Server 14.04 | Dell-E495E-S1 495W
by Astek Intl. | 2016 | ~65.8 kHz | Office
(Building B) | ~90 feet | 0.0% | 28.48 | | Dell XPS
8920 | Core i7-7700,
16 GB | Windows 10 | Dell-460AM-03 385W
by Delta Electronics Inc. | 2017 | ~60.1 kHz | Lab #1
(Building A) | ~55 feet | 0.0% | 28.48 | | Acer G3-710 | Core i7-7700,
16 GB | Ubuntu
16.04 | ACER 750W | 2016 | ~63.5 kHz | Lab #2
(Building A) | ~20 feet | 10.1% | 25.60 | | Custom
Built #1 | Core i7-7700,
16GB | Windows 10 | Corsair 850W
RM850x-RPS0110 | 2018 | ~91.2 kHz | Lab #1
(Building A) | ~55 feet | 8.1% | 26.17 | | Custom
Built #2 | Core i7-7700K,
16 GB | Ubuntu
16.04 | EVGA 850W
Supernova 850G2 | 2016 | ~67.7 kHz | Lab #3
(Building A) | ~15 feet | 9.2% | 25.85 | | Apple iMac
Model A1419 | Core i5-3470S,
8 GB | macOS
10.13.3 | Apple 300W
PA13112A1 | 2015 | ~101 kHz | Lab #1
(Building A) | ~55 Feet | 16%
(50ms/sym)
2% | 15.79 | | (27-inch) | | | (for 2012-2017 models) | | | | | 2%
(100ms/sym) | 9.21 | # Experiments under different scenarios | Scenario | Bit Error
Rate | Bits Per
Second | | |----------------------------|-------------------|--------------------|--| | Default (4 cores) | 0.0% | 28.48 | | | With YouTube streaming | 2.3% | 27.82 | | | With MS Word running | 0% | 28.48 | | | With web browsing | 0% | 28.48 | | | With HDD file transfer | 3.5% | 27.48 | | | With ML training | 1.67% | 28.00 | | | Loading 1 CPU core | 8.9% | 25.94 | | | Loading 2 CPU cores | 2.5% | 27.77 | | | Loading 3 CPU cores | 0.0% | 28.48 | | | Using 4-bit pilot sequence | 3.3% | 28.13 | | | Using 8-bit pilot sequence | 0.0% | 27.88 | | ### Possible defense strategies - Eliminate PFC-induced switching noise - Require change in a mature power electronics design - Preventing switching noise from entering the power network - Use UPS or power-line filters - Suppressing Malware Activities - Randomize power consumption of a computer # Key take away! Your Noise is My Signal # Thank you! - Please contact us with questions and comments. - Zhihui Shao (zshao006@ucr.edu) - Mohammad A. Islam (<u>mislam@uta.edu</u>) - Shaolei Ren (sren@ece.ucr.edu)