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Abstract-Accurate runtime power estimation is important for 
on-line thermaVpower regulation on today's high performance 
processors. In this paper, we introduce a power calibration 
approach with the assistance of on-chip physical thermal sensors. 
It is based on a new error compensation method which corrects 
the errors of power estimations using the feedback from physical 
thermal sensors. To deal with the problem of limited number 
of physical thermal sensors, we propose a statistical power 
correlation extraction method to estimate powers for places 
without thermal sensors. Experimental results on standard SPEC 
benchmarks show the new method successfully calibrates the 
power estimator with very low overhead introduced. 

I. INTRODUCTION 

Chip power performance is critical for today's high

performance microprocessors as the transistor density has been 
increasing exponentially. It is directly related to the micropro

cessor's energy efficiency, the chip's thermal reliability and 

life expectancy. As a result, accurate estimation of power 
at runtime is crucial for the energy efficiency optimization, 

dynamic thermal/power management [1], [2], [3], [4] and chip 

reliability analysis [5], [6]. 

The coarse runtime power estimation provides total power 

consumption at the die level and can be used to assist the 

global power/thermal managements such as fan speed control 
and dynamic voltage and frequency scaling (DVFS). However, 

today's multi-core computer architecture enables the ability 
to perform more efficient fine-grained management such as 

task scheduling and computing migration, for which accurate 

functional-block-level power estimation is required [1], [2]. 
Although one is able to monitor the total power consumption 

of the die easily, measuring the runtime power at functional

block-level is extremely difficult [7]. As a result, there are 

many researches conducted in this area, and most of the 

proposed methods are performance counter based [8], [9], 
[10]. The functional-block-level power estimators count the 

execution numbers of various performance actions for each 

functional block in a time frame and calculate the power by 
multiplying the execution numbers with its corresponding per

formance parameters. However, the power estimators cannot 

be very accurate due to several reasons. First, not all the 

executions are counted in the performance counting process 
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Fig. I. A simple schematic diagram of the power calibration process. 

due to the complex behaviors of the microprocessor at runtime. 

Second, the performance parameters are not static in general 
because of the temperature variations and the aging of the 

chip. 

An alliterative way to get more accurate power estimation at 
runtime is to exploit the thermal-power relation of the chip and 

utilize the on-chip thermal sensors to calibrate the power esti
mator. The simple schematic diagram of the proposed power 

calibration process is shown in Fig. 1. A specially designed 

compact thermal model takes the power estimation from the 
power calibrator and calculates the full-chip temperatures with 

low overhead. The temperatures from the compact thermal 

model, the physical thermal sensor readings and the estimated 
power are fed into the power calibrator together, with the 

calibrated functional-block-level runtime power as the output. 

In this paper, we address the accuracy problem of the run

time functional-block-level power estimation by introducing 

a power calibration method. The main contributions of this 
paper are: 

1) First, we show how on-chip physical sensors can be used 

to compensate the power estimation error by exploiting 
the thermal-power relationship of the chip. 

2) Second, we show how to fully utilize the correlations 
among the power errors of different functional blocks 

and reach an accurate calibration when the number of 

thermal sensors is limited. 
3) Third, we propose a statistical correlation extraction 

scheme which characterizes the functional block corre
lations in a systematic way. 

The rest of this paper is organized as follows: In Section II, 

the basic thermal-power relationship of the chip and the 
power calibration problem are presented. In Section III, we 

demonstrate the new runtime power calibration method using 

physical on-chip thermal sensors. Experimental results are 



Fig. 2. A nine-grid equivalent thermal circuit. Each grid has a thermal node 
Ti denoted as a solid circle (black or red dashed), a thermal capacitor and a 
current source representing the power dissipation at the grid. There is also a 
thermal resistor between each pair of the adjacent thermal nodes. A thermal 
sensor, denoted as the red dashed circle (T5), is placed at the center grid. 

reported in Section IV and Section V concludes this paper. 

II. BACKGROUND 

A. Thermal-power relation of the chip 

In order to utilize on-chip physical sensors in the power 

calibration process, the thermal-power relation should be an
alyzed first. 

The heat differential equation of the chip can be spatially 

discretized using finite difference method in the three dimen
sional space to generate an equivalent thermal circuit [11]. A 

two dimensional nine-grid equivalent thermal circuit example 

is shown in Fig. 2. As shown in the figure, each grid has 

a thermal node Ti, a thermal capacitor and a current source 
representing the power dissipation at the grid. There is also 
a thermal resistor between the adjacent thermal nodes. One 

thermal sensor, denoted as the red dashed circle, is placed at 

the center grid in this example. 

Mathematically, if there are n discretized grids with specific 
boundary conditions, the equivalent thermal circuit can be 

modeled using an ordinary differential equation [11] 

C
dT(t) + GT(t) = BU(t) 

dt 
(1) 

where T(t) E IRn is the temperature vector contammg the 

temperatures of the n thermal nodes, C E IRnxn is the thermal 
capacitance matrix, G E IRnxn is the thermal conductance 

matrix, B E IRnxp is the position matrix of the input where 

Bi,j denotes the portion of the jth functional block power 
injects into the ith thermal node and U(t) E IRP contains the 

power dissipations of the p functional blocks. The right hand 

side of (I) is also written as 

J(t) = BU(t) (2) 

where J(t) E IRn represents the power dissipations of n grids. 

B. Power estimator calibration problem 

In the thermal model introduced in the previous subsection, 
the input J(t) (or U(t)) is accurate and the resulting temper

ature T(t) is accurate. Assume the power estimation from a 

power estimator is J(t) CU(t)), the system equation with the 
estimated power is 

C
dT(t) + GT(t) = J(t) 

dt 
(3) 

where T is temperature estimation using the power estimation 

J (t). T is not accurate, but can be used for the power 
calibration process. 

Our goal is to compensate the power estimation error and 

get an accurate power as close to J (t) as possible. We will 

show in the following section that how the compensation is 
performed with the help of thermal sensors. 

III. RUNTIME POW ER ESTIMATOR CALIBRATION METHOD 

In this section, we present the runtime power estimator 
calibration method. First, a power error compensation method 

is presented with the assumption of infinite number of thermal 

sensors. Then, a statistical correlation extraction method is 
proposed to make the power error compensation applicable 

with limited number of thermal sensors. 

A. Power error compensation process 

As briefly introduced in Section I, error is inevitable for 

the runtime power estimators. In order to obtain the power 

compensation term using thermal sensor information, we have 
to first simulate the thermal system numerically using the inac

curate power estimation as input. The simulation is performed 

by discretizing (3) in time domain. We use Backward Euler 
(BE) here for illustration. By choosing an appropriate time 

step h, BE discretizes (3) in time domain as 

C - C - -
(h + G)T(t + h) = 

hT(t) + J(t + h) (4) 

Through inverting (£ + G) to the right hand side, (4) is also 

written as 

T(t + h) = (� + G)-l(� T(t) + J(t + h)) (5) 

Given the initial value T(O) and the input J(t) for all time 
points, the subsequent temperature T( t) can be calculated 

iteratively using (5). 
However, the temperature T(t) calculated from (5) is inac

curate due to the inaccurate input J. Assume the actual power 
input is J = J + (jJ. The real system response T can be 

calculated from 

C C 
(h + G)T(t + h) = 

hT(t) + J(t + h) (6) 

J) Power error compensation with sufficient thermal sen

sors: We would like to compensate the power estimation error 

with the feedback from thermal sensors. 
In the ideal case, assume there are thermal sensors every

where on the chip, that is, we have the accurate temperature 
information T(t) already. We define the temperature estima

tion error (jT, power estimation error (jJ as 

(jT(t) := T(t) - T(t) 

(jJ(t) := J(t) - J(t) 

(7) 

(8) 



Then subtract (4) from (6) and neglect the small second order 

term, we have 

(� + G)OT(t + h) = � OT(t) + OJ(t + h) (9) 

Because of the low-pass filter property of thermal system [2], 

the temperature estimation error over two successive time 
steps does not change too much, that is OT(t + h) R:j OT(t). 
Therefore, (9) becomes 

C C 
(h + G)OT(t) R:j hOT(t) + OJ(t + h) (10) 

We define the error compensation term, determined at time 

t + h, as 

E := OJ(t + h) (11) 

and from (10), the error compensation term E can be approx

imately solved as 

E R:j GoT(t) (12) 

We do not express E as a variable of t since it will not be 

calculated repeatedly at every time point. 

After we obtain the error compensation term, the power 
estimations of all the future time points are updated as 

J(t + ih) = J(t + ih) + E (13) 

where i = 1, 2, . . . . 

Note the error compensation term E is accurate as long as 
the power estimation error statistics do not change too much. 

In this case, one compensation/calibration is enough for the 

whole estimation time. If the condition is not satisfied, we 
can perform the error compensation process (12) and (13) 

periodically or at the time when the temperature errors at the 

thermal sensors exceed a threshold. 

2) Power error compensation with limited number of ther

mal sensors: We have shown we are able to fully compensate 

the power estimation error to generate accurate power esti

mation in the ideal case with sufficient number of thermal 
sensors. However, we cannot put thermal sensors all over 

the chip in reality. The number of sensors is always limited 

and as a result, it is impossible to obtain all the elements of 

OT(t) in (12). In this subsection, we show how to exploit the 

power estimator and limited thermal sensor information and 

approximately recover the full-chip temperature. 

Assume there are ns thermal sensors placed on chip. For 

convenience, we first perform matrix permutation on (1) to 

group the thermal nodes with thermal sensors together as 

g��] [:1:�:�l + [g�� [Cll C21 [��] U(t) 

(14) 

and 

(15) 

where Ts(t) E jRns represents the temperatures at the nodes 
where thermal sensors are placed and Tu(t) E jRn-ns repre

sents the temperatures at the nodes without thermal sensors. 

Accordingly, (12) becomes 

(16) 

We know the value of OTs since thermal sensors are placed at 

these nodes. However, oTu is unknown due to the absence of 
thermal sensors. Since there are 2n-ns unknowns in (16) with 

n equations, (16) is unsolvable (in the normal sense) unless 

the number of unknowns is reduced. Fortunately, we are able 
to reduce the number of unknowns by taking advantage of the 

power correlation among different functional blocks in a chip 

and introduce a correlation matrix D E jR(n-ns)xns. Then, 

we can represent Eu in terms of Es as 

(17) 

The details of forming the D matrix in a systematic way are 
presented in Section III-B. 

After the introduction of the correlation matrix D, the 

number of unknowns has been reduced to n. Combined with 
(17), (16) is rearranged as 

(18) 

where Insxns is an identity matrix with dimension ns. After 

Es is solved from (18) and Eu is obtained from (17), the error 

compensation is performed with the permuted form of (13). 

B. Statistical correlation extraction 

In this subsection, we provide a systematic method to extract 
the error compensation correlation and form the D matrix. 

Our idea is based on the observation that many functional 

blocks in a chip are highly correlated in their power con
sumptions. For instance, when a integer register file is busy, 

most likely the integer ALU and nearby cache memory will 

also be busy. As a result, if we properly place the thermal 
sensors so that more correlated functional blocks are clustered 

around those thermal sensors, we should be able to have a 
good guess of the compensation errors around the thermal 

sensors. Specifically, based on the placement of the ns thermal 

sensors, the chip is divided into ns blocks by combining the 
correlated functional blocks around each thermal sensor. We 

call this kind of block as sensor block. The compensation 
errors of different nodes inside the same sensor block are 

correlated and the correlation can be characterized, mainly 

because the power consumptions of these functional blocks 
inside the same sensor block rely strongly on a small number 

of common performance parameters [10] such that the power 

estimation errors are dependent on each other statistically. For 
example, in (17), each column of D shows the correlation of 

the compensation errors within a specific sensor block. 

Please note that instead of finding the error relation for 
each thermal node, it is only necessary to find the correlation 

among functional blocks since the powers of the nodes inside 
each functional block are extremely correlated and are usually 

considered to be the same or follow a static distribution. As 



a result, we only need to find the relation of the total power 

error 

(19) 

and the fine-grind power error relation (17) can be easily 

calculated. 
There are three steps in the statistical correlation extraction 

process. The first step is to collect sample data, both from 

measurement and power estimator simulation. The second step 
is to group the functional blocks into sensor blocks according 

to the results of a correlation test. The final step is to find 

the exact formulation of the correlated power errors of the 

functional blocks in each sensor block using simple linear 

regression method. 
Assume there are b benchmarks with steady power con

figurations. First, we run the benchmarks using the power 
estimator and record the power results 

(; = [(;1, (;2, ... , (;b] (20) 

where, for example, the ith sample 

U
A i [ A i A i A i ] T = U1,U2,···,Up (21) 

since there are p functional blocks. Next, run the benchmarks 

on the test chip until the temperatures reach steady state, 

measure the steady state temperatures as T. The real power 
of the chip is reversely calculated as 

U = [U1, U2, ... , Ub] (22) 

using the measured temperatures. Note that all these steps 
should be performed off-line, such that the error can be better 

controlled and no overhead is introduced at runtime. Please 
see [12], [13] for details of the reverse power calculation. The 

errors of the functional block powers are obtained as 

JU = U - (; (23) 

Also assume the functional blocks with thermal sensors are 

permuted to the first few blocks, such that we can also write 

JU = [ :g: ] (24) 

where the ith sample of JUs is 

(25) 

(26) 

remember that ns is the number of thermal sensors. 
The next step is to determine the sensor blocks using a 

correlation test, such that functional blocks with high power 

error correlations can be identified and put into one sensor 

block. The correlations are tested first using the data samples 
JU through forming the correlation matrix (27) shown on top 

of the next page, where P.i is the expected value of JUi. (27) 
can be also divided into blocks like 

[ Ess 
corr/iu = 

Eus 
(28) 

By definition, correlation matrix is a symmetric matrix con
taining the correlation values of each random variable pair. 

The correlation value is a number between -1 and 1 which 
reveals the dependence of a random variable pair, where 1 
and -1 indicate the two random variables are fully dependent 

and 0 means totally independence. By investigating Eus which 
contains the correlation values of all the JUs and JUu pairs, 

we can easily determine which sensor block does the ith 

functional block without thermal sensors belongs to: for the 
ith row in Eus, simply take the column number of the element 

with the largest absolute value as the sensor block number. 
For the final step, we use the linear regression method to 

find the relations among the functional blocks within each 

sensor block. Assume ith functional block is associated with 
the jth functional block (which has thermal sensor placed), 

the relation 

JUj = ajJui (29) 

is found using the sample data information [Jut, Ju�, ... , Ju�] 
and [JU], Ju�, ... , Ju�]. With (29) for each functional

. 
block 

without thermal sensors, i.e. j = 1, 2, ... , n - ns, Dp m (19) 

is populated with aj and the correlation matrix D in (17) is 
derived subsequently. 

C. Compact thermal modeling and practical implementation 

considerations 

Thermal model is used in our power calibrator to con

nect the power and thermal. However, at the same time, it 
introduces overhead and degrades the system performance. 

The overhead can be significant especially when the full
chip thermal model is used. Model order reduction (MOR) 

technique, which reduces the size of large dynamic system 

models, can be used to generate a compact thermal model and 
reduce the runtime overhead. In this work, Krylov subspace 

based approach is used with structure preservation [14] to 

generate the compact thermal model as we need to preserve 
the structure of (14). Interested readers are referred to [15] for 

a comprehensive MOR introduction. 
The practical implementation of the new power calibration 

scheme needs to be considered carefully to avoid overhead as 

much as possible. The full thermal model generation, statistical 
correlation extraction, model order reduction process, and 

the pre-factorization of the compact thermal system matrices 

are performed off-line. The on-line computation should only 
contain the temperature calculation with the pre-factorized 

compact thermal system matrices and the power error com

pensation. 

IV. EX PERIMENTAL RESULTS 

The experiments are conducted using Matlab on a Linux 
server with Intel 3.0GHz quad-core CPU and 16GB memory. 

In order to validate the new power estimator calibration 

method, we build a dual-core processor with a shared L2 cache 
which is shown in Fig. 3 (a). The size of the processor is 

lOmm x 10mm x 0.7mm. The core architecture shown in 
Fig. 3 (b) is similar to the Alpha ev6 processor. There are 10 
thermal sensors placed on chip in total, 4 for each core and 2 
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(a) The dual-core micro
processor architecture. 

(b) The architecture for 
each core composed of 
functional blocks. 

Fig. 3. The dual-core microprocessor architecture, with two cores and one 
shared L2 cache. 10 thermal sensors (red solid circle) are placed on chip, 2 
on the L2 cache and 4 on each core. 

TABLE I 
SENSOR BLOCKS DETERMINED BY THE STATISTICAL EXTRACTION. 

Sensor block # Functional blocks in the sensor block 
I L2 Cache Left 
2 Core I: ICache, Bpred 
3 Core I: DCache, DTB 
4 Core I: FPAdd, FPReg, FPMul, FPMap, FPQ 
S Core I: IntMap, IntQ, LdStQ, ITB, IntExec 
6 L2 Cache Right 
7 Core 2: ICache, Bpred 
8 Core 2: DCache, DTB 
9 Core 2: FPAdd, FPReg, FPMul, FPMap, FPQ 

10 Core 2: IntMap, IntQ, LdStQ, ITB, IntExec 

for the L2 cache as shown in Fig. 3. The power infonnation 
is obtained using the power estimator Wattch [16] by running 

the standard SPEC benchmarks [17]. One core of the dual

core processor is assumed to be active and the other one is 
assumed to be idle, they can be switched when the temperature 

on one core is too high. The power estimations given by the 
power estimator is modeled with up to 20% mean value error 

with the correlations similar to the one reported in [18]. The 

original order of the thennal model is 3200 and the reduced 

model, which is used in our power calibrator, has the order 

of 106. The simulation time step h is chosen to be 0.1s to 

balance the speed and accuracy. 

The sensor blocks detennined by the statistical correlation 

extraction are shown in Table I. The accuracy comparison of 
the power density map snapshot of bzip2 benchmark is given 

in Fig. 4. The real power density map is shown in Fig. 4 
(a), the estimated power density map which has significant 

error is shown in Fig. 4 (b), and the power density map 

TABLE II 
RUNTIME AND ACCURACY COMPARISON OF THE POWER CALIBRATION 

METHOD ON S PEC BENCHMARKS. 

Benchmar� jEstimatior Calibration 
err org time org err red time X red err 

bzip2 14% 0.04 4.1% 0.0011 36X 4.2% 
gzip 11% 0.12 4.3% 0.0016 7SX 4.3% 
mcf 17% 0.06 6.3% 0.0013 46X 6.1% 

mgrid 12% 0.04 I.S% 0.0014 29X 2.3% 
swim 13% O.OS 2.3% 0.0011 4SX 2.4% 
galgel 13% 0.09 1.9% 0.0013 69X 2.0% 

after the calibration process is demonstrated in Fig. 4 (c). It 
is clear from the figures that the power calibration process 

successfully compensated the power estimation errors and 

generated a much more accurate power density map compared 
to the directly estimated one. The result with the compact 

thennal model can be found in Fig. 4 (d). It is almost the 
same as Fig. 4 which reveals the high accuracy of the compact 

thennal model. 

The detailed results on other benchmarks are presented 
in Table II, where Estimation means the inaccurate power 

estimation, org is the calibration with the original thennal 
model and red suggests the compact thennal model is used, 

X shows the speedup of the compact model over the original 

model. To be fair, all the times are measured as the time spent 
to calibrate 1 second transient power map, with the unit s. 
Even with the large average power estimation error around 
15%, the new power calibration method reduces the average 

error to around 4%. The overhead of the power estimator is 

also low, especially with the compact thennal model. Only 
about 0.0015 seconds are spent to calibrate 1 second transient 

power map. 

V. CONCLUSION 

In this paper, we have proposed a new runtime power 
estimator calibration method for high-performance micropro

cessors with the assistance of on-chip physical thennal sensors. 

It is based on a new error compensation method which corrects 
the errors of power estimations using the feedback from 

thennal sensors. We also proposed a statistical correlation 

extraction method to fully utilize the infonnation from limited 
number of thennal sensors. Experimental results on standard 

SPEC benchmarks demonstrate the new method successfully 
calibrates the power estimator with very low overhead intro

duced. 
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(c) The power density map of the dual-core 
processor after the calibration process with 
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(d) The power density map of the dual-core 
processor after the calibration process with 
the compact thermal model. 

Fig. 4. Comparison of the power density maps of the dual-core processor before and after the power calibration process. 
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