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7.1 Introduction
7.1.1  Definitions

Natural convection flow in porous media, due to thermal buoyancy alone, has
been widely studied (Combarnous and Bories, 1975) and well-documented
in the literature (Cheng, 1978; Bejan, 1984; Nield and Bejan, 1992, 1998) while
only a few works have been devoted to double-diffusive convection in porous
media. This type of convection concerns the processes of combined (simul-
taneous) heat and mass transfer which are driven by buoyancy forces. Such
phenomena are usually referred to as thermohaline, thermosolutal, double-
diffusive, or combined heat and mass transfer natural convection, in this case
the mass fraction gradient and the temperature gradient are independent
(no coupling between the two). Double-diffusive convection frequently
occurs in seawater flow and mantle flow in the earth’s crust, as well as in
many engineering applications.

Soret-driven thermosolutal convection results from the tendency of solute
to diffuse under the influence of a temperature gradient. The concentration
gradient is created by the temperature field and is not the result of a bound-
ary condition (see De Groot and Mazur, 1961; Patil and Rudraiah, 1980).
For saturated porous media, the phenomenon of cross-diffusion is further
complicated due to the interaction between fluid and porous matrix, and
accurate values of cross-diffusion coefficients are not available. This makes
it impossible to proceed to a practical quantitative study of cross-diffusion
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FIGURE 7.1

Stream functions at X = 0.25 (upper), X = 0.5 (middle), and X = 0.75 (bottom) for aspect ratio of
unity (left) with N = —0.2and N = —0.5 (middle) and aspect ratio of two (right) with N = -0.2.
Ra = 10%, Da = 1074, 5¢c = 1000. (Taken from [. Sezai and A.A. Mohamad. J. Fluid Mech. 400:
333-353, 1999. With permission.)



