24 Groundwater Flows and Velocity Measurements

Shigeo Kimura

CONTENTS

24.1	1 Introduction	
24.2	Groundwater Velocity and Darcy's Law	844
	24.2.1 Darcy's Law	
	24.2.2 Hydraulic Conductivity and Permeability	846
24.3	Hydraulic Conductivity and Porosity Measurements	
	24.3.1 Slug and Bail Test	847
	24.3.2 Well Test	
	24.3.2.1 Storativity and Transmissivity	848
	24.3.2.2 Theoretical Background of Well Test	850
	24.3.3 Porosity	855
24.4	Groundwater Velocity Measurements	855
	24.4.1 Velocity Defined in Large Scale	
	24.4.2 Velocity Measurements in Small Scale	
	24.4.2.1 Point Dilution Test	
	24.4.2.2 Point Velocity Probe Based on Tracer Transport	858
	24.4.2.3 Thermal Method	860
24.5	Conclusion	864
Ackn	nowledgment	865
	enclature	
	rences	

24.1 INTRODUCTION

Various data, although relatively unpublicized, exist in support of the quantitative importance of groundwater relative to other components of the hydrologic cycle on the earth. With reference to Table 24.1, excluding the large amount of the earth's water resting in the oceans and seas at high levels of salinity, groundwater accounts for about one-third of the freshwater resources of the world. If we limit our consideration to the liquid-phase freshwater, groundwater will account for almost the total volume available for use. If we consider only the most active groundwater regimes, for example, in subsurface reservoirs of good hydraulic permeability, water quantity will be reduced just to about two-thirds of the total amount. Considering this, the freshwater breakdown comes to 95% of subsurface groundwater; 3.5% of surface water such as lakes, swamps, reservoirs, and river channels; and 1.5% of soil moisture. From the usability point of view, however, this volumetric superiority of subsurface groundwater should be somewhat moderated by the average residence times listed in the right column of the table. River water has a turnover time on

TABLE 24.1 Water Balance on the Earth

Parameter	Volume Percentage (%)	Residence Time	
Oceans and seas	97.5	~4,000 years	
Lakes and reservoir	< 0.01	~10 years	
River channels	< 0.01	~2 weeks	
Groundwater	0.70	2 weeks to 10,000 years	
Icecaps and glaciers	1.70	10-1,000 years	
Atmospheric water	< 0.01	~10 days	

Source: Data are taken from Freeze, R.A. and Cherry, J.A., Groundwater, Prentice Hall, Upper Saddle River, NJ, 1979; Shiklomanov, I.A. (ed.), World Water Resources: A New Appraisal and Assessment for the 21st Century, UNESCO, Paris, France, 1998.

the order of 2 weeks in average. On the other hand, groundwater moves at much slower speeds, with residence times spanning from tens to thousands of years [1-4].

In the field of hydrology, the continuous circulation of water among ocean, atmosphere, and land is known as the hydrologic cycle, and groundwater flows play an important role in order to close the cycle as shown in Figure 24.1. Focusing on the land-based portion of the cycle, inflow arrives as precipitation, in the form of rainfall or snowmelt. Outflow takes place as runoff and as evapotranspiration; the latter is a combination of evaporation from open bodies of water, evaporation from ground surfaces, and transpiration from the subsurface soils by plants. Precipitation delivers water to such streams as surface runoff or overland flow, and eventually to rivers and channels on the land surface, and by subsurface flow routes, as groundwater base flow following infiltration into the permeable soil. The figure of the hydrologic cycle makes it clear that a mass balance in a watershed must be considered as a combination of both the surface drainage area and the parcel of subsurface soils and geological formations that underlie it. Therefore, the

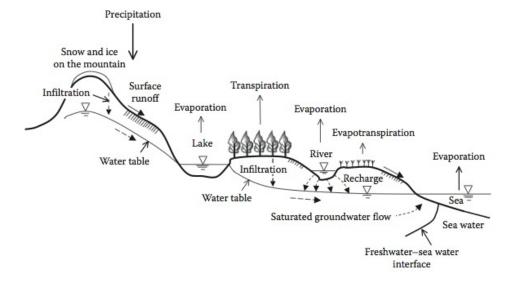


FIGURE 24.1 Hydrologic cycle in land. (Redrawn from Bear, J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979.)