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Abstract—Fluid flow and heat transfer at the interface region are analyzed in depth for three general and
fundamental classes of problems in porous media. These are the interface region between two different
porous media, the interface region between a fluid region and a porous medium, and the interface region
between an impermeable medium and a porous medium. These three types of interface zones constitute a
complete investigation of the interface interactions in a saturated porous medium. Detailed analytical
solutions, for both the velocity and temperature distributions are derived for all of these interface conditions.
The analytical temperature distributions are found in terms of confluent hypergeometric functions for two
different regimes, which are found to cover almost the entire range of real fluids. The numerical and
analytical results are found to be in excellent agreement. The numerical and analytical results are also
checked against an empirically based hypothesis for one of the interface conditions, namely the interface
between a fluid region and a porous medium, and are found to be in excellent agreement with that
experimental hypothesis.

1. INTRODUCTION

THE INTERFACE region can be considered to be a
boundary layer zone where the fluid flow and heat
transfer characteristics of two different porous media
or a porous medium and a fluid or a porous medium
and an impermeable medium adjust to one another.
A specific example can be cited from petroleum reser-
voirs wherein the oil flow encounters different layers
of sand, rock, shale, limestone, etc. Similar situations
are encountered in many other cases of practical inter-
est such as geothermal operations [1, 2], nuclear waste
repositories, water reservoirs, underground coal gasi-
fication, ground water hydrology, iron blast furnaces,
solid matrix heat exchangers, etc. Interface inter-
actions on flow and heat transfer present some inter-
esting and fundamental problems which require a
detailed analysis of the velocity and temperature dis-
tributions.

Most of the analytical work on fluid flow and heat
transfer through porous media has been based on
Darcy’s law which neglects the boundary and inertial
effects. The recent works which account for either one
or both of these effects [3-20] stress and validate the
need to take these effects into consideration, especially
in heat transfer calculations.

The present study analyzes a general class of prob-
lems involving interface interactions on flow and heat
transfer for three different types of interface zones.
These are:

(D) interface region between two different porous
media;

(11) interface region between a porous medium and
a fluid;

(111} interface region between a porous medium and
an impermeable medium.

The above three types of interface zones constitute a
fundamental and complete investigation of the inter-
face interactions in a saturated porous medium. Of
the above three categories only the fluid mechanics of
the second category has been investigated previously
[21]. Prior experimental investigations on this subject
were based on qualitatively justifying the assumption
that the velocity gradient at the interface is pro-
portional to the difference between the slip velocity
and the Darcian convective velocity within the porous
medium [21]. Furthermore, prior theoretical inves-
tigation on the second category is based on a specific
and artificial mathematical model of the porous
medium for which the empirically specified velocity
gradient at the interface was used.

In the present work in addition to the fluid flow,
the temperature distribution and the heat transfer at
the interface region are analyzed in detail for all three
categories. The intricacies of the boundary layer inter-
actions at the interface on both the velocity and tem-
perature fields are discussed in great detail and theor-
etical solutions are obtained for the velocity and
temperature distributions as well as the interface vel-
ocity and temperature. Analytical expressions are also
obtained for the Nusselt numbers for different inter-
face conditions. Throughout the analysis, the choice
of the gage parameters involved in the perturbation
solutions for velocity and temperature is found to
be inherently tied to the physics of the problem and
therefore it is found to be very important. This leads
to the use of a number of different gage functions for
describing the fluid mechanics and the temperature
distributions for different interfacial problems. Fur-
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NOMENCLATURE

C; fluid heat capacity [Wskg=' K] o*  a proportionality constant in the Beavers

Da Darcy number, K/L* and Joseph model [21]

F, afunction that depends on the Reynolds y  porous media shape parameter, \/(6/K)
number Re, and the microstructure of &  porosity of the porous medium
the upper porous medium, defined in ref. N non-dimensional normal coordinate for
[3] the channel region, y, /A

h channel height {m] n¥« non-dimensional normal coordinate for

J  unit vector aligned along the pore velocity the lower medium for the case of fluid
vector, V,/|V,| porous interface, y,/ \/ (K/d)

K  permeability of the porous structure [m?] #er non-dimensional normal coordinate for

K, permeability of the upper porous medium the channel region, y, /J (K/Pr,)

[m? n% non-dimensional normal coordinate for

L horizontal extent of the external boundary the porous region, y,/ \/ (K/(6 Pry))

[m] #im non-dimensional normal coordinate for

Nu Nusselt number, hx/K the upper porous medium,

P pressure [Nm™7] »ilJ (K [8))

Pr; effective Prandtl number for the ith porous nr non-dimensional normal coordinate for
medium, v/, the upper porous medium for the

Re Reynolds number based on permeability temperature distribution,
of the porous medium, paK "%/ e i/ K (Pri6))

Re, Reynolds number based on permeability n% non-dimensional normal coordinate for
of the upper porous medium, the lower porous medium for the
Pt K12 e temperature distribution,

T  temperature [K] V2 /(K (Pry82))

T, free stream temperature in the ith medium nr non-dimensional coordinate for the
K] porous medium

u, Darcian convective velocity [m s~ 1] #  dimensionless temperature,

u,, Darcian convective velocity for the upper KT)—T)/ (AT
porous medium, — (K, /u) (d<P>"/dx) 4. effective thermal conductivity of the

Uaa  interface velocity obtained from the porous medium saturated with stagnant
analytical solution flud [ Wm~'K™]

U~ interface velocity obtained from /. effective thermal conductivity of the ith
numerical solutions porous medium saturated with stagnant

Upexp  interface velocity obtained from fluid [Wm~' K~}
experimental data y;  fluid viscosity (kg m™' s~}

V  velocity vector [ms™ '} v  kinematic viscosity [m?s™]

V, pore velocity vector [ms™'] ¢  dimensionless horizontal length scale, x/L

y;  normal coordinate for the upper medium pe  fluid density [kg m~7]

[m] o  dimensionless parameter in the Beavers

y» normal coordinate for the lower medium and Joseph model [21].

[m].
Other symbols
Greek symbols { > ‘local volume average’ of a quantity.

o, effective thermal diffusivity [m* s~ ]

thermore, in some cases even the scaling of the inde-
pendent variable becomes crucial. A very important
feature of this type of analysis is that the order of
magnitude dependencies as well as the relative import-
ance of the functional dependencies become quite evi-
dent from the solution.

The governing equations have also been solved
numerically for a range of the material properties and
different flow conditions. The analytical results have

been found to be in excellent agreement with the
numerical results. The ranges of validity of the theor-
etical model have been explored and their applicability
discussed at length. The theoretical results are also
compared with the empirically based hypothesis for
the interface region between a fluid and a porous
medium namely, the proportionality of the velocity
gradient at the interface to the difference between
the slip velocity and the Darcian velocity within the
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porous medium. The agreement between these theor-
etical and experimental results is shown to be excel-
lent. In addition, a detailed study on the influence of
the material parameters on the interface slip velocity
and the temperature distribution has been presented
over a broad range of their values.

2. FORMULATION

The complexity involved in the geometric structure
of a porous medium does not allow for an exact
description of the velocity and temperature fields
inside each individual porous structure. It has been
customary to employ Darcy’s law to describe the vel-
ocity field in a porous medium. While Darcy’s law can
be used to obtain a relation between the pressure
gradient and the velocity in an unbounded porous
medium for low speed flows, boundary and inertial
effects can play a major role on some of the heat
transfer computations. The governing momentum
and energy equations, which account for the inertial
and boundary effects, are given as [3-20]

(pe/ V- VIVD = —VCPY + (e / )V
—(us/ K)XVY = peF8 12KV KVOV - (1)
V> WKT) = (a./)VHTD @

where . is the fluid viscosity, g, the fluid density, K
the permeability of the porous medium, é the porosity,
V the velocity vector, V, the pore velocity vector,
J =V, /IV,| the unit vector aligned along the pore
velocity vector, {P)' the average pressure read off a
pressure gage, y = (8/K)"?, (T) the temperature, «,
the effective thermal diffusivity defined as A./(p;cy),
/. the effective thermal conductivity of the porous
medium saturated with a stagnant fluid and ¢; is the
fluid heat capacity. The function F depends on the
Reynolds number Re = pu K"?/yu; and the micro-
structure of the porous medium as described in ref.
[1]. Here u, is the Darcian convective velocity in the
flow direction defined as u, = —(K/pu.)d{P)>'/dx.
Angular brackets represent the local volume aver-
aging process. The method of local volume averaging
has been discussed in detail by Whitaker [22,23]. An
order of magnitude analysis on the momentum equa-
tion shows that the momentum boundary layer
thickness is of the order of (K/8)"? and that the
convective term {(V + V)V) causing boundary layer
growth is significant only over a length of the order
of (Ku./v) [3,4]. The latter quantity is small for most
practical situations. Therefore, a fully developed
momentum boundary layer results beyond a very
short developing length. For this case, the momentum
equation (1) reduces to [3, 4, 6]

(e VYD = (e KXV
—peF8 YV - (VI =V(PY = 0. (3)

This work is primarily concerned with the analysis
of fluid flow and heat transfer through an interface
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zone composed of at least one porous medium. For
the problem under study, the velocity field in the
porous medium will be independent of the flow direc-
tion and the system of governing equations inside the
porous medium reduces to [13]

(ur/ ) d?*<uy [dy” — (ur/ K)up
—peF3"yuy? —d(PY [dx =0 (4)
<wydTy | 0x = (0. /0)* T [ dy*. &)

Considering the momentum equation (4), the first
term represents the viscous resistance offered by the
boundary to the flow. The second and third terms
which form a linear combination of the flow velocity
and the square of the flow velocity, are a measure of
the frictional resistance offered by the structure of the
porous body. The last term, the pressure gradient
along the flow direction, is thus seen to balance the
inertial and viscous resistances encountered by the
flow outside the boundary layer. Thus the boundary
and inertial effects are both considered in this for-
mulation. The energy equation (5) describes a balance
between the convected energy, directly influenced by
the fluid flow and the energy diffusion normal to
the flow direction, effected by the heat conduction
process.

The present work considers fluid flow and heat
transfer for the general class of interfacial problems
which includes the interface between two different
porous media or the interface between a porous
medium and a fluid or the interface region between a
porous medium and a solid boundary. These three
fundamental types of the interfacial problems are
shown in Fig. 1. Despite the fact that there is a dis-
continuity of material properties at the interface, the
fluid flow and the temperature fields need to satisfy
conditions of smoothness in this zone. More specifi-
cally, the velocity and temperature fields and the shear
stress and heat flux distributions should be continuous
across the interface in order to be physically mean-
ingful. The present formulation accounts for both
boundary and inertial effects and the continuity con-
ditions.

3. FLUID FLOW ANALYSIS
AT THE INTERFACE

As discussed before the general class of the inter-
facial problems in saturated porous media consists of
three fundamental categories. In this section the fluid
mechanics of each of these categories will be inves-
tigated in depth.

3.1. Fluid mechanics of the interface region between
different porous media

The problem under study consists of two layers of
porous media with a common interface between them.
Figure 1(a) shows the schematic of the problem. To
analyze the problem the velocity field is non-
dimensionalized on the basis of the characteristic Dar-
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F1G. 1. (a) The interface region between two different porous

media. (b) The interface region between a porous and a fluid

region. (c) The interface between an impermeable medium
and a porous medium.

cian convective velocity u; as u; = {(u);/u, where {(u);
is the velocity in the ith porous medium and u; =
—(K;/ ) d{P;>'/dx, and the subscript i refers to the
properties and parameters of the ith porous medium.

The qualitative velocity profile includes a boundary
layer region at the interface where the two different
velocity fields of the two porous media adjust to each
other. In what follows, singular perturbation analysis
is used to obtain an analytical solution for the velocity
profiles in the interface region. These velocity profiles
are then used to obtain an explicit expression for the
interface velocity in terms of the material properties
of the two media. The momentum equation (4) for
the two porous media reduces to

(Ki/éi)dzui/dy2 '“i_ﬂifsfuiz+1 =0 (6)

where B; = F; Re;. The solution for this equation can
be found in terms of a cumbersome equation. For this
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reason we have chosen to abandon that solution in
favor of the matched asymptotic expansions which
would reveal a lot more of the physics of the problem.
Since (K;/8,)"/? « 1, the velocity field attains a con-
stant value far from the interface, in both porous
media. The velocity field in the interface region cor-
responds to the inner solution and the constant free
stream values for the velocity correspond to the outer
solution to equation (6). The solution procedure
involves the use of the common, unknown interface
velocity as a boundary condition to solve for the vel-
ocity fields in each porous medium near the interface.
This unknown interface velocity is determined by
employing conditions of continuity of velocity and
shear stress across the interface.

The velocities u; are expanded in terms of powers
of the porosities J; as

= w0+ +0ui+ ... )

The outer solution uy, for the upper porous medium
can be easily seen to be

Uy 21_51514‘2.3%5%_513?5?4'.“ (3)

The solutions for the first three orders of the inner
solution for the upper porous medium are found to
be

ul = 14+(Us—1) exp (—tm) &)
up = Up exp (—1im) +B1(—14exp (—17im)
x (1—nm(Ug =1 —(U§=1)?/3)
+exp (=2nm) (Us—1)?/3)  (10)
ui = Ug exp (—im)+B1US(—exp (— 1)
X (i +2(U—1)/3)+2 exp (—21im)
X (Us—1)/3)+Bi(2+exp (—thim)
X (A niu + Bitim + C 1)+ exp (—20im)
X (D + E) +exp (= 3mm) (U —1)°/12)

amn

where
A, =(Us—1)*/2 (12)
B, = (U)-1?*/3+3(Us-1/2—1 (13)

C, = S(US—1)*/36+2(US—1)%/3
—2AUS—1)/3=2 (14)
D, = —2(U3—1)?/3 (15)
E, =2US-1)/3(1-(Us—1)— (U5 —1)?*/3) (16)

and fym = y,/+/(K,/8,) is the non-dimensional nor-
mal coordinate for the upper medium.

Typically, for the upper porous medium the inner
solution, given by equations (7) and (9)—(11), can be
seen to match with the outer solution given by equa-
tion (8) as the inner variable, #;, goes to infinity.

An explicit expression for the interface velocity is
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found from the inner solutions for the two porous
media, employing conditions of continuity across the
interface. This interface velocity is solved in terms of
ratios of material properties and parameters of the
two porous media, such as permeability, porosity,
friction factor and pressure gradients [24]. The com-
parisons between the theoretical and numerical inter-
face velocities are given in the discussion section.

3.2. Fluid mechanics of the interface region between a
porous medium and a fluid

Here the problem consists of a porous medium
exposed to a fluid layer as depicted in Fig. 1(b). In
this case the governing equation in the channel region
is simple and is given by the simplified Navier—Stokes
equation. The solution for the channel flow is found
to be

Uy = U0+’7cM(1—U0)—’1c2M (17)

where 7.\, is 2 non-dimensional length variable for the
channel region given by y,/A, where 4 is the channel
height, and U, is the unknown interfacial slip velocity.

In the porous medium introducing the gage par-

ameter
K\1
&M = \/<3) 71 (18)
the governing equation becomes
d?u,
el V"; g —aud+200g3, =0 (19)

where « = FORe, Re = (ton\/K)/v and ug; = (U /gy
Since the true characteristic Darcian velocity in the
porous medium is much smaller than the charac-
teristic velocity in the channel, u,, is expanded as

(20)

The inner equation for the porous medium can be
written from equation (19) as

dzucz
dndd
where 7%, is the non-dimensional normal coordinate
for the lower medium given by y,/,/(K,/8,). The first

three orders of the inner solution for the porous sec-
tion are found to be

— 2 3
Uy = EcmU T EMUL FEMUI T . ..

— U, —ausb+26e3y =0

@n

u; = exp (—nd) (22)

2 a
U, =20— (§a+1>em (—n%0+ 3 €Xp (—2n%4)
(23)

_ S s 1
uy = [(1—25)+ 3%+ 3¢ +2a6<—rrcm— 2)]

2 (2
X exp (—118)— 3 <3a+1)exp (—2180)

2

+ 5 exp (= 3nd0). (24)
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The unknown U, is then found from the channel and
inner solutions, equations (17) and (22)-(24). Direct
comparison between the theoretical and the exper-
imental as well as numerical results is given in the
discussion section.

3.3. Fluid mechanics of the interface region between a
porous medium and an impermeable medium

The interface region for this part is shown in Fig.
1(c). The solutions for the first three orders of inner
velocity components are found to be much simpler
for this case and are given by

ui = 1—exp (—17im) (25)

2
u' = ﬂl:_l‘*‘eXp (—7im) <§ +’7;M>

3
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e[ (nie St ) )
10
xexP(“"IiM)"‘((zﬂiM"' ?>/3> exp (—21m)

—¢€xXp (_3”IiM)/12:| (27)

1
+ 3 exp (—211iM)] (26)

and where 1, = y, /\/(K, /81), s, as before, the non-
dimensional coordinate into the porous medium.

4. HEAT TRANSFER ANALYSIS
AT THE INTERFACE

In this section analytical expressions are obtained
for temperature distributions for all interface con-
ditions. The governing energy equation in a porous
medium is given by equation (5). In obtaining an
analytical expression for the temperature distribution
it is crucial to account for the different temperature
and velocity boundary layer thicknesses.

4.1. Temperature distribution at the interface region
between a porous medium and an impermeable medium

The physical problem is shown in Fig. 1(c). The
energy equation can be written as

0 K/6 9%

—_——— 28
uaf Re Pr/Da ay* %)

In general the temperature at the boundary is a func-
tion of ¢ which is the dimensionless horizontal length
scale, x/ L, therefore, the boundary conditions for this
case are taken as

0(0,y) =0

0(5,0) =£(©)
8(¢,y - 00) = 0

29
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F1G. 2. (a) Comparison between the MBL and TBL for low
Prandt]l number fluids. (b) Comparison between the MBL
and TBL for high Prandt] number fluids.

where 6 is the dimensionless temperature distribution
given by ((T)—T,)/(AT).s where (AT),s is some
reference temperature related to the temperature
difference between the interface and the core of the
porous medium, Da the Darcy number, K/L? and
Pr the Prandtl number, v/a,. As mentioned previously
the differences between the momentum and thermal
boundary layers should be fully accounted for in the
analysis. The viscous boundary layer (MBL) is of con-
stant thickness and is of the order of &y = /(K/9).
The thermal boundary layer (TBL) will be of the
order of &r = \/ ((K/8)/Pr). Two limiting cases will
now be considered.

Case I. Low Prandtl number fluids

The analysis for this case is composed of two phys-
ically distinct regions in the fluid flow regime (see Fig.
2(a)). These are the region inside the TBL but outside
the MBL and the region inside the MBL. Physically
these regions are so distinct that they have to be
treated separately.

Inside the MBL. The normal coordinate is scaled as
#Im = y/&ém and in the limit of Pr — 0, the temperature
distribution is derived to be

6, mm) =1(9)

thus showing that the MBL region is essentially trans-
parent to the boundary condition at the impermeable
wall.

Outside the MBL. The normal coordinate is scaled
as np = y/er. In this region, the velocity field attains
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its free stream value U, which is found to be

—1+./(1+4p3)

Us = 285

(30

where § = FRe.
Thus the energy equation and boundary conditions
are written as

w_a
o¢ ong
00,71) =0
6, nr > 00)=0
0(£,0) = (&)

(3

(32)

Here
Q= U, Re,/Da.

Taking a general form for the variation of the bound-
ary temperature as

SO =48 (33)

the solution for the energy equation is obtained in
terms of the parabolic cylinder function D_,,_, as

0, n) = AT'(p+1) |:2,,+ Veg-1/2ge

E

Comparison between this theoretical result and the
numerical solution is given in the discussion section.

Case II. Large Prandtl number fluids

Here the thermal boundary layer is completely
inside the momentum boundary layer (see Fig. 2(b)).
Therefore, the region inside the TBL requires a smaller
scale than the region inside the MBL but outside the
TBL.

Outside the TBL. The normal coordinate is scaled
as 7y = y/ém and in the limit of Pr — oo, it can be
shown that the temperature distribution corresponds
to the free stream temperature boundary condition,
ie.

8, 7m) = 0.

Inside the TBL. The normal coordinate is scaled as
nr = y/er. The velocity distribution, very close to the
impermeable wall and inside the TBL is found to be
linear and given by

5 4B28?
u('lT)=<l'—ﬁT+ ﬂ9 )Pr_l/zﬂr~

The energy equation and the corresponding boundary
conditions can be written as

(35)

mg—g - g 36)

0(0, nr)=0
62.0) =/ () @7)

0 e — 00) = 0
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where

A= (1—@ 4g%6 2>Re'\/(Da/Pr).

The final temperature distribution for this case is
obtained in terms of the Whitaker function

1121" 2 3 5 % - 1/3
ST (i)

1y} ni
X EXp (“' E%)W—pw 173,146 (“9“‘%) (38)

where W denotes the Whitaker function and T
denotes the gamma function.

9(5& ’?T) =

4.2. Temperature distribution at the interface region
between two porous media with different free steam
temperatures

The temperature fields in the two porous media in
the interface region are nondimensionalized as

o _ T~ Tay

B Teo,z— o0, §
and

0. _ T~ Ty

B Too,l- 0,2

where T, , and T, , are the free stream temperatures
in the upper and lower porous media, respectively.
The unknown interface temperature {7;> is written
as

9!‘ (é; 0) A(f) <T i,__ T‘n :
8(8,0) = V(&) = ; T>__ Tw.j

The interface temperature, used as a boundary con-
dition, is solved using continuity conditions across the
interface.

Case I. Low Prandt! number fluids

The basic components of this case are composed of
four distinct regions in the flow field. These are: two
regions in the upper and lower porous media which
are inside the MBL, and two regions in the TBL
but outside the MBL in the upper and lower porous
media. Again, it can be shown that the temperature
distribution inside the MBL regions is constant and
equals the interface temperature. The temperature dis-
tributions in the upper and lower porous media inside
the TBL are obtained in terms of the complementary
error functions

G (Eamin) = [T+ (ryrarsre) P

! Qx’?s%‘
x erfc (5 \/ (-—Ew)) (39

HMT 30:7~%
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8i2(§’ ’?3) = [1 +(?’7r‘2r5r6)- WZI— 1

x erfe G \/ (ng#>) (40)

where r, = K,/K,, r,=6,/8,, rs=A4q/is and
re = Q,/Q, are the ratios of material properties and
parameters of the two porous media. Here

Q- J(1+4F, Re, 3))
e 2F,8,

mz}/pa, @n

[J(1+4F; Re; 85)
Qz == [ 211:23‘;‘—‘— -1 \/D{IZ . (42)

Dimensionless coordinates n;r and n% for the upper
and the lower porous media are respectively given by
yil (K[ Prid,) and y,/\/(K,/Pr,3,). It is found
that for low Prandtl number fluids even though the
temperature profiles do change as we move down-
stream, the interface temperature is invariant with &,
This situation is analogous to the transient contact
heat conduction problem, for which the temperature
profiles do change as a function of time, while the
interface temperature remains constant. As it will be
shown in the next section, the situation is quite differ-
ent for the high Prandtl number fluids.

Case II. High Prandtl number fluids

For this case, the analysis for the region inside the
TBL becomes quite involved. However, outside the
TBL region the temperature distributions in the two
media attain the free stream temperature values.
Inside the TBL region, the velocity distribution is
linear and the governing equation for the upper
porous medium is derived to be

08, 8%,
Wt P T = me @3)
where
¢1=UOR31\/DQI {44)

A= [(1 - Udy— [UU+ E—‘((U )2+Ug+l)] 8

—5? [Ué-}- E%—}—‘l QUs +1)+—(7(U %)?

~1 1(Ug)2—-6zvg+72)ﬂ Re,./Da, (45)

and
Uy, = US+8,Ul+52U% (46)

Using a double perturbation expansion, the tem-
perature field is expanded in terms of (Pr;)~"? as

Gy (€. nm) = 0o (&) + 0, (E nin) Pry 2

+0:(E ) Pri '+ “7n
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with the interface temperature expanded as
AQ) = Ao(H)+A(DPrT 2+
V(&) = Vo(O)+V1(OPry P+

48)
“9)

As mentioned before, the interface temperature itself '

is solved using continuity conditions. The first- and
second-order temperature distributions in the upper
domain are found to be

1 2
0o(S, ir) = [W] erfc (\/(‘/’;ga)> (50)
6, ) = \/ ('f;) exp (:%)

2Ao 7711‘)
N (w fate

where

FafFs 2Ao
o= [2w*(‘ =) \/( ) zw,}/
[Jwruyfj(%?)Jw] (52)

(53)

Y= VoRez\/Daz
=[U—V®—&[%+ﬁ%wﬂz +n]

i

—ﬁﬁ%f m°QW+D+ HUGs

— (V9> —62V5+ 72):“ Re, /Da, (54)

Vo= V46,V +83V3 (55)
Ag = [14(rars)?1! (56)
Vo =[14@rs) 210 &Y

A similar solution can also be written for the lower
porous medium. The analysis reveals that for the high
Prandtl number fluids, the interface temperature does
vary with £, Therefore, in contrast to the low Prandtl
number fluids the interface temperature is a function
of the downstream distance for high Prandt! number
fluids.

4.3, Interface region between two porous media with
surface heat generation at the interface

This case can correspond to some energy related
problems, such as, underground coal gasification. The
surface heat generation will lead to a temperature
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distribution along the interface. To consider a some-
what general case, this surface temperature variation
is denoted by a power law variation such as B&% The
analysis and solution procedure for this problem are
similar to those for a porous medium with an imper-
meable boundary. For this case, only the results for
the upper porous medium are given. For the low
Prandtl number fluids the solution inside the TBL is
obtained in terms of the Whitaker function as

r N A
%@mhlﬁl(gﬂ (82)
10 Q.
X exp (— 54—2) Wt yaus (%) .

(58)

For very large Prandtl numbers, the temperature dis-
tribution in the upper porous medium inside the TBL
is obtained in a different form but still in terms of the
Whitaker function, W, as

_ g N D) (Y
911(61”1'1') Béq \/TE ( 46 )

X exp (_, 'p;;?T> W_y_vays (%) 59

4.4. Interface region between a porous medium and a
Sluid

The schematic for this case is shown in Fig. 1(b).
For high Prandt]l number fluids, the temperature field
outside the TBLs in the fluid and the porous medium
attains the free stream values T, and T, ,, respec-
tively. Again, the analysis and solution procedure for
this problem are similar to those for two porous media
with different properties. The temperature fields T,
and (T,) in the channel and the porous medium are
nondimensionalized as

Tl —Tm,l
OCI B TOD.Z_Too,l
0., = <T2>_Too.2
< Tao,l_ 0,2

Again the expansions for the above temperatures
and the interface temperature are written as

Be = o+ 0. PriVi4 ... (60)
B = 0% +0% Pry V24 61
Ay = Ag+Ay PriPe .. (62)
V. = Vo+ Vo Pry'?+ ... (63)

The first- and second-order temperature distributions
in the channel region are found to be

si2 *n
B0(é,mer) = [W] erfc (\/ (wc‘tg T)) e
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s ()
)
X (Q ajus ¢ ) 7ot erfe ( 2e

Qs QA
x( \/2l/’c + 4‘/”'1‘) 65)

and the first- and second-order temperature dis-
tributions in the porous medium are found to be

1 8 22
035 (&, nk) = (W) erfc (\/ (‘/’c4z ))
(66)
% (E k) = \/ (%) exp ( l//cx? )

Ac2Vc0 7]:‘TZ * l//:l‘”::rz
(ot F ) (4

o
( 2t 4wc.>' ©7)

Here n. and % are non-dimensional normal coor-
dinates for the channel and the porous region which
are given respectively by y,//(K/Pr)) and y,/
J(X/8Pr,) and

Y& = U Reg/Da (68)
4
A% = —|:ecM+aczM+ ((6+ Do—25+1+ 9a2>£3M:|

X Rech\/ Da (69)

K
Ap =(-— UO)\/ (P) Rey\/Da (70)
Ap = [1+67"2r?7! n
Vo = [146"2r5 V77! (72)

rs AgiA
ol

[J WP+ 5z W/:?] 73

/2 Acl *
¢ - [’56 : 2‘/’01 ( VCO) 2‘/’01 :I/

[y 172 4 7y257 2y 8],

A%
“‘[m“

(74)

For this case, as in the case of the interface between
two porous media, the interface temperature is found
to be dependent on &,
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5. NUSSELT NUMBERS FOR DIFFERENT
INTERFACE REGIONS

In this section explicit analytical expressions are
obtained for the heat flux at the interface for all three
cases. These expressions are obtained in part from the
theoretical analysis which was done in the previous
section. The heat flux quantities are then expressed in
the non-dimensional form as the Nusselt numbers.

First considering the interface between an imper-
meable medium and a permeable medium the Nusselt
number is derived for the low and high Prandtl num-
ber fluids. For the low Prandtl number fluids the
Nusselt number is obtained as

e 3

where I' is the gamma function. For the high Prandtl
number fluids the Nusselt number is obtained as

C(p+1)

61/2
T(p+1/2)

(75)

1/3 1/2

u = G LOED S0 <PL5> & (16)

I(1/3) I'(p+2/3) Da
where, as mentioned before, 1 is a parameter which
is explicitly related to the friction factor, Reynolds
number, porosity, Darcy number, and the Prandtl
number, whereas Q is not dependent on the Prandtl
number. The analysis shows that for high Prandtl
number fluids the Nusselt number is proportional to
Pr'? and for low Prandtl number fluids the Nusselt
number is proportional to Pr'/%. Asit becomes evident
in the next section the Nusselt number expressions are
extremely accurate even for Prandtl numbers where
the analytical temperature distribution shows some
deviations. This is because the analytical temperature
distribution is extremely accurate close to the interface
region even for Prandtl numbers where the tem-
perature distribution deviates slightly outside the
interface region. However, it should be mentioned
that the temperature distributions, in general, are also
very accurate and the deviations, if any, are quite
small.

The Nusselt number for the interface region
between two different porous media with different free
stream temperatures is also derived for the low and
high Prandt]l number fluids based on the temperature
distributions that were derived in the previous section.
For the low Prandtl number fluids the Nusselt number
is obtained as

_ [ Pr, 8 2 Qe
() (5 e
It should be noted that the ¢ dependence for the low
Prandt]l number fluids is the same for the two types of
interfaces.

For the high Prandtl number fluids the Nusselt
number for the interface region between two different

porous media with different free stream temperatures
is obtained as

7
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g AA
Nug = [AOW Prift4 (—‘2 - ——-4;]") né”z] /

[(w Pri'+A, (g)m) @ Dal)'”]- (78)

For the interface region between a high Prandt!
number fluid and a porous medium the Nusselt num-
ber is found to be

X120 ALA

[(Q Pri 24 Ay (g)m)(é Da ”2]. (19

6. RESULTS AND DISCUSSIONS

In this section the flow and heat transfer results for
different types of interface conditions are discussed.
The analytical solutions for the velocity and tem-
perature distributions are compared with the cor-
responding numerical solutions for different interface
conditions. The explicit expression for the interface
velocity for the case of the interface region between a
porous medium and a fluid, which was derived theo-
retically, is compared with the pseudo interface vel-
ocity extracted from the Beavers and Joseph model
[21] as well as the numerical results.

The numerical results are obtained by finite
differencing the governing equations. A central dif-
ferencing scheme is used to evaluate the second deriva-
tives while the non-linear terms are replaced by a
suitable linearized approximation. The analytical
solutions for the velocity distributions are evaluated
from the corresponding theoretical results presented
in Section 3. The analytical temperature distributions
are obtained by evaluating the explicit theoretical
results presented in Section 4.

Figure 3 compares the analytical and the numerical
solutions for the interface region between two differ-
ent porous media for Re, = 0.1, 2 and 3, The upper
porous medium physical properties were chosen as:
K, = 10""m? F, = 0.07 and 8, = 0.98. The property
ratios r,, 75, and r; used in Fig. 3 were 2, 1.5 and 1,
respectively. The analytical and numerical solutions
are seen to be in quite good agreement. It has been
found through numerous numerical experimentation
that reasonable agreement between the numerical and
analytical results is obtained for many practical situ-
ations.

Figure 4 presents the velocity distributions for the
interface region between an impermeable medium and
a porous medium. The velocity distributions are pre-
sented for two different Reynolds numbers which are
Re, = 0.1 and 3. As it can be seen, although the agree-
ment in general is good, it is better for lower Reynolds
numbers. It should be noted that the results of the
interface region between two porous media and the
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F1G. 3. The velocity distribution for the interface region
between two different porous media for Re, = 0.1, 2, and 3
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F16. 4. The velocity distributions for Re = 0.1 and 3 for the
interface region between a porous medium and an imper-
meable medium.

interface region between an impermeable medium and
a porous medium can very easily combine to produce
the velocity distribution inside a bounded channel
filled with two different porous media. The complete
velocity distribution inside the bounded channel for
the same property ratios as in Fig. 3 is shown in Fig.
5 for two different Reynolds numbers. As it can be
seen in Fig. 5 inside the channel four distinct boundary
layers exist. These are the two boundary layers along
the two impermeable boundaries and the two bound-
ary layers interconnected at the interface along each
of the two porous media. Furthermore, the results
obtained in Sections 3 and 4 can be easily combined
to produce the velocity and temperature distributions
in a multi-layered porous medium as for example the
flow of oil in different layers of sand, rock, shale and
limestone.

The explicit analytical expression for the interface
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FiG. 5. The complete velocity distribution inside a bounded
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F1G. 6. The variations of the interface velocity between two
porous media as a function of their corresponding per-
meability ratios.

velocity for the interface region between two different
porous media is compared with the numerical results
in Fig. 6. In the numerical runs, to obtain an accurate
value for the interface velocity, the number of grid
points and successive iterations are increased till con-
vergence is achieved. In the theoretical analysis the
interface velocity was uniquely determined by the
material properties of the two porous media and the
flow parameters.

The variations of the interface velocity for different
values of the permeability ratios are presented in Fig.
6. The material properties of the upper porous
medium used in this figure were K, = 10~°m? 6, = 0.7
and F, = 0.07 and the property ratios were r, = 0.9,
r; = 1. As it can be seen from Fig. 6 the agreement
between the numerical result and the explicit ana-
lytical expression for the interface velocity is excellent.

1401

Furthermore, the variations of the interface velocity
is in accordance with physical principles. From
numerous numerical experimentations it is found that
the interface velocity decreases when r, is increased
because the permeability of the lower porous medium
is decreased. The interface velocity will tend asymptot-
ically towards zero when both the permeability and
the porosity of the lower porous medium tend towards
zero. This represents the limiting case of the lower
medium being an impermeable solid boundary. On
the other hand since r; is the ratio of the friction
functions F, and F,, an increase in r, implies a
decrease in F,, which in turn signifies a decrease in
the resistance offered by the porous structure. This
influences the interface velocity directly as the overall
flow in the lower porous medium increases causing an
increase in the interface velocity.

Next, the explicit theoretical expression for the
interface velocity obtained from the present analytical
work for the interface region between a fluid region
and a porous medium is compared with the empirical
model proposed by Beavers and Joseph [21] which
states that the velocity gradient at the interface is
proportional to the difference between the slip velocity
and the Darcian convective velocity. For purposes of
comparison, a new parameter is introduced, namely

o=h/JK (80)

Beavers and Joseph proposed that the interface con-
dition is given by

duy;, o*

~— =——{ur—u.) attheinterface
&~ JR

8D

where

o* = the proportionality constant

Kdp, . . .
u, = — — ——is the Darcian convective velocity
e dx

ue = fluid velocity.

Based on their proposed shear condition the following
quantity

o+ 2a*

a(1+a*g) (82)

Uinl,exp =
can be obtained as the interface velocity.

In what follows for a given value of o, the analytical
interface velocity, the numerical interface velocity
(based on the numerical solution of the governing
equations) and the interface velocity from the empiri-
cal results of ref. [21] are computed and compared for
the same pressure gradient and in the linear regime
which was used in the Beavers and Joseph experi-
ments. The results of such a comparison are given in
Table 1. Upon examining Table 1 it can be seen that
the analytical interface velocity, the numerical inter-
face velocity and the pseudo-interface velocity
obtained from Beavers and Joseph are in excellent
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Table 1. Comparison between the analytical, numerical and
empirical interface velocities

Uin\,cxp
Unin (interface
Ui (numerical velocity
(from the solution obtained
explicit of the from the
analytical governing experimental
o = h/\/K expression) equations) results)
4 0.3045 0.2940 0.2940
8 0.1438 0.1436 0.1436
12 0.0935 0.0935 0.0935
16 0.0691 0.0691 0.0691
20 0.0548 0.0548 0.0548
24 0.0454 0.0454 0.0454
28 0.0387 0.0387 0.0387
32 0.03378 0.03378 0.03379
36 0.02995 0.02995 0.02996
40 0.02689 0.02689 0.02690
44 0.02440 0.02441 0.02442
48 0.02234 0.02234 0.02235
52 0.02059 0.02060 0.02060
56 0.01910 0.01911 0.01911
60 0.01781 0.01782 0.01782
64 0.01668 0.01669 0.01669
68 0.01569 0.01570 0.01570
72 0.01481 0.01482 0.01482
76 0.01402 0.01403 0.01403
80 0.01331 0.01332 0.01332
84 0.01267 0.01268 0.01268
88 0.01209 0.01210 0.01210
92 0.01156 0.01157 0.01157
96 0.01108 0.01108 0.01109
100 0.01063 0.01064 0.01064

agreement. Furthermore, the results of the analysis
given in Table 1 confirm the hypothesis proposed by
Beavers and Joseph, namely, the velocity gradient at
the interface is proportional to the difference between
the slip velocity and the Darcian convective velocity
within the porous medium.

The temperature profiles for the interface region
between an impermeable and a porous medium are
shown in Figs. 7-9. For all these figures a linear sur-
face temperature variation is assumed. All of the
results are presented at & = 1 except in Fig. 9. Figure
7(a) presents the temperature profiles for low Prandtl
number fluids at three different Reynolds numbers.
These are Re = 0.1, 1 and 10. As expected, the higher
the Prandtl number the thinner the thermal boundary
layer. As seen in Fig. 7(a) the agreement between the
analytical and numerical results is excellent. Figure
7(b) presents a comparison between the theoretical
results for the low Prandtl number fluid and the
numerical results for two Prandtl numbers 0.73 and
8. Again the agreement is excellent. It is worth noting
that the low Prandtl number solution predicts accu-
rately the temperature distribution even for a Prandtl
number as high as 8.

In Fig. 8(a), the high Prandtl number analytical
results are compared with the numerical results at
three different Reynolds numbers. All other factors
being the same, higher velocities lead to thinner ther-

K. Varal and R. THIYAGARAJA

1.0

0.8 —— Analytical
. cooo Numerical

0.6 Re = 0.1

0 Re =)
0.4 Re =10
0.2
o.o i i "
0.0 1,000 2,000 3,000 4,000
nm
(a)
1.0
0.8 —— Anglytical
oooc Numerical
8 0.6
0.4
0.2
0.0 S
0.0 100 150
m
(b)

FiG. 7. (a) Comparison between the analytical and numerical

temperature distributions for a low Prandtl number fluid at

three different Reynolds numbers for the interface region

between an impermeable medium and a permeable medium.

(b) Prandtl number effect on the low Prandtl number ana-
Iytical temperature distribution.

mal boundary layers. Also as seen in Fig. 8(a), the
agreement between the analytical and numerical
results is quite good. Figure 8(b) shows the tem-
perature profiles at three different Prandtl numbers.
As expected the higher the Prandtl number the thinner
the thermal boundary layer. As seen in Fig. 8(b) the
agreement between the analytical and numerical
results is not good for Prandt] numbers around eight.
However, since the low Prandtl number solution easily
covers Prandtl numbers around eight, it can be said
that the two Prandtl regimes cover most of the prac-
tical situations.

For the cases where the theoretical temperature dis-
tribution is not in excellent agreement with the
numerical results the theoretical Nusselt number
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results are still found to be in excellent agreement
with the numerical results. This fact becomes apparent
upon closer examination of Fig. 8. The temperature
profiles at different locations are presented in Fig. 9.
It should be noted that the temperature is non-
dimensionalized with respect to the temperature
difference between the surface and free stream at
& = 1. This type of nondimensionalization causes a
downshift in the temperature profiles as seen in Fig.
9. Again as seen in Fig. 9 there is excellent agreement
between the analytical results for high Prandtl number
fluids and the numerical results.

Finally the comparison between the experimental,
theoretical and numerical interface velocity, given in
Table 1, is plotted also in Fig. 10. Again, it can be
seen that there is an excellent agreement between the
theoretical and experimental results.

A major advantage of the present work is that the
analytical solutions which are presented here can be
of significant help in refining the equations for the
porous media. This is because these fundamental

Analytical
oooo Numerical
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F1G. 8. (a) Comparison between the high Prandtl number

analytical solution and the numerical results for different

flow regimes. (b) The variations of the Prandtl number on
the high Prandtl number analytical solution.
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FiG. 9. Temperature distributions at different downstream

locations.

analytical solutions can be easily used to readily
analyze the functional dependencies and the effects of
the different coefficients and properties of the porous
media in the governing equations, thereby enabling a
more accurate correlation and evaluation of the future
experimental studies.

7. CONCLUSIONS

A complete and thorough analysis of the fluid flow
and heat transfer at the interface region of a porous
medium is presented. The physics of the interface
region is discussed in detail for three general and
fundamental classes of problems in porous media.
Theoretical solutions are obtained for the velocity
and temperature distributions for all cases. Explicit
expressions for the interface velocity and temperature
can be easily obtained for all cases from the theoretical
solutions. The theoretical solutions are shown to be
in excellent agreement with the numerical results. The
analytical results are also checked against an empir-
ically based hypothesis for the interface region
between a fluid and a porous medium and are found
to be in excellent agreement.

031
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F1G. 10. Comparison between the empirically based interface
velocity with the theoretical and numerical interface velocity.



1404

Acknowledgement—The authors are grateful to Mrs Barbara
G. Dole for her excellent work in typing this manuscript.

1

2.

10.

REFERENCES

. P. Cheng, Heat transfer in geothermal systems, Adv.

Heat Transfer 14, 1-105 (1978).

P. Cheng and J. Minkowycz, Free convection about a

vertical flat plate embedded in a porous medium with

application to heat transfer from a dyke, J. Geophys.

Res. 82, 2040-2044 (1977).

. K. Vafai and C. L. Tien, Boundary and inertia effects
on flow and heat transfer in porous media, Int. J. Heat
Mass Transfer 24, 195-203 (1981).

. M. Kaviany, Laminar flow through a porous channel
bounded by isothermal parallel plates, /nz. J. Heat Mass
Transfer 28, 851-858 (1985).

. C. T. Hsu and P. Cheng, The Brinkman model for con-
vection about a semi-infinite vertical flat plate in a porous
medium, Int. J. Heat Mass Transfer 28, 683-697 (1985).

. C. L. Tien and M. L. Hunt, Boundary-layer flow and
heat transfer in porous beds, Chem. Engng Processing
21, 53-63 (1987).

. M. Kaviany, Thermal convective instabilities in a porous
medium, J. Heat Transfer 106, 137-142 (1984).

. J. T. Hong, C. L. Tien and M. Kaviany, Non-Darcian
effects on vertical-plate natural convection in porous
media with high porosities, Int. J. Heat Mass Transfer
28, 2149-2157 (1985).

. T. W. Tong and E. Subramanian, A boundary-layer

analysis for natural convection in vertical porous enclos-

ures—use of the Brinkman-extended Darcy-model, Int.

J. Heat Mass Transfer 28, 563-571 (1985).

K. Vafai and C. L. Tien, Boundary and inertia effects

on convective mass transfer in porous media, Int. J. Heat

Mass Transfer 25, 1183-1190 (1982).

11

12.

13.

16.

17.
18.

19.

20.

21.

22.
23.

24.

K. VaFral and R. THIYAGARAJA

P. Ranganathan and R. Viskanta, Mixed convection
boundary-layer flow along a vertical surface in a porous
medium, J. Numer. Heat Transfer 7, 305-317 (1984).
M. L. Hunt and C. L. Tien, Non Darcian convection
in cylindrical packed beds, ASME-JSME Conference
(1987).

K. Vafai, Convective flow and heat transfer in variable
porosity media, J. Fluid Mech. 147, 233-259 (1984).

. D. A. Nield, The boundary corrections for the Rayleigh—

Darcy problem: limitations of the Brinkman equation,
J. Fluid Mech. 128, 3746 (1983).

. D. A. Nield, Non-Darcy effects in convection in a satu-

rated porous medium, Proceedings of Institute of Physi-
cal Sciences, Wairakei, New Zealand (1984).

D. Poulikakos and A. Bejan, The departure from Darcy
flow in natural convection in a vertical porous layer,
Physics Fluids 28, 3477-3484 (1985).

M. Kaviany, Gradient destruction in flow through a
rigid matrix, J. Fluid Mech. 165, 221-230 (1986).

K. Vafai, R. L. Alkire and C. L. Tien, An experimental
investigation of heat transfer in variable porosity media,
J. Heat Transfer 107, 642-647 (1985).

R. Friedrich and N. Rudraiah, Similarity solutions of
Brinkman equations for a two-dimensional plane jet in
a porous medium, J. Fluids Engng 105, 474-478 (1983).
J. G. Georgiadis and I. Catton, Free convective motion
in an infinite vertical porous slot: the non-Darcian
regime, Int. J. Heat Mass Transfer 28, 2389-2392 (1985).
G. S. Beavers and D. D. Joseph, Boundary conditions
at a naturally permeable wall, J. Fluid Mech. 30, 197-
207 (1967).

S. Whitaker, Advances in theory of fluid motion in
porous media, Ind. Engng Chem. 61, 14-28 (1969).

S. Whitaker, Diffusion and dispersion in porous media,
AILCh.E. J1. 13, 420427 (1967).

R. Thiyagaraja, Interface interaction in fluid flow
through a two layered porous medium, Thesis, Ohio
State University, Columbus, Ohio (1985).

ANALYSE DE L’ECOULEMENT ET DU TRANSFERT THERMIQUE DANS LA REGION
INTERFACIALE D’UN MILIEU POREUX

Résumé—L écoulement d’un fluide et le transfert de chaleur dans la région interfaciale sont analysés pour
trois classes fondamentales de problémes concernant les milieux poreux: la région interfaciale entre deux
milieux poreux différents, entre la zone fluide et le milieu poreux et entre un milieu imperméable et un
milieu poreux. Ces trois types de régions interfaciales recouvrent complétement les interactions d’interface
dans un milieu poreux saturé. Des solutions analytiques détaillées, a la fois pour les distributions de vitesse
et de température sont obtenues pour ces conditions. Les résultats numériques et analytiques sont en bon
accord. Ces résultats sont aussi mis a I’épreuve d’hypothéses empiriques pour une des conditions a
l'interface, celle de la jonction d’une zone de fluide et d’un milieu poreux, et ils sont en excellent accord
avec les hypothéses déduites de I'expérience.

UNTERSUCHUNG VON STROMUNG UND WARMEUBERGANG AN
GRENZFLACHEN VON POROSEN MEDIEN

Zusammenfassung—Stromung und Wirmeiibergang an Grenzflichen von porosen Medien werden fiir drei
grundlegende Fille detailliert untersucht. Die Fille sind: die Grenzfliche zwischen zwei verschiedenen
pordsen Medien, zwischen einem Fluid und einem porésen Medium und zwischen einem porésen Medium
und einer undurchlissigen Wand. Die Untersuchung dieser drei Arten von Grenzflichen deckt alle in einem
gesiittigten pordsen Medium vorkommenden Grenzflichen ab. Analytische Losungen fiir Geschwindig-
keits- und Temperaturverteilungen werden fiir alle Grenzfliichen hergeleitet. Numerische und analytische
Ergebnisse stimmen sehr gut iiberein. Die numerischen und analytischen Ergebnisse werden auch mit
ciner auf Versuchsergebnissen beruhenden Hypothese fiir eine der drei Grenzflichen zwischen pordésem
Medium und Fliissigkeit verglichen. Die Ubereinstimmung ist ausgezeichnet.
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AHAJIM3 TEYEHMSA U TEIUIOTIEPEHOCA HA FPAHMLE PA3JEJIA B IIOPUCTON
CPEJIE

Amsoramus—Hccienyercs Tevenne ®HAKOCTH H TCIUIONEPEHOC Ha rpaHHIle pa3jiesia B MOPHCTOl cpene
IV Tpex OGILMX OCHOBHBIX KJACCOB 384a4: MEXKAY JBYMA NODHCTBIMH CPEAAMH, MEXIY XHIKOCTBIO H
nopucToil cpenol, MeXAy HeMpOHHUACMON M MOPHCTOM cpeaaMH. Yxa3aHHbIe THAB IPAHMYHBIX obnac-
Tell DOCTATOMHBI AN MOJIHOIO HMCC/IEHOBAHHSA B33MMOREHCTBHA Ha rpaHMUE B HACHIICHHOH mopHCTOM
cpene. [ BCEX BHILEYKA3aHHKIX CJIy4aeB YCJIOBHI Ha IPaHHMIE DOJXYHEHH! NOAPOOHLIE aHATATHYECKHE
pelleHns A PachpedeNicHRH CKOPOCTH H TeMIepaTypbl. UHCIEHHHE B aHATHTHUCCKHE PE3YJILTATHI
xopowo cornacyrorcs. IIpu nposepke NONYYEHHBIX Pe3yJIBTATOB ¢ IMIMPHYECKHMH LAHHbLIMH NS
ONHOTO H3 CAy4aeB IPaHHYHHIX YCIOBHHt, 2 AMEHHO XHMAKOCTH M MOPHCTOHR cpelbi, NONYYEHO Xopotulee
COOTBETCTBHE.
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