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Abstract-Fluid flow and heat transfer at the interface region are analyzed in depth for three general and 
fundamental classes of problems in porous media. These are the interface region between two different 
porous media, the interface region between a fluid region and a porous medium, and the interface region 
between an impermeable medium and a porous medium. These three types of interface zones constitute a 
complete investigation of the interface interactions in a saturated porous medium. Detailed analytical 
solutions, for both the velocity and temperature distributions are derived for all of these interface conditions. 
The analytical temperature distributions are found in terms of confluent hypergeometric functions for two 
different regimes, which are found to cover aimost the entire range of real fluids. The numerical and 
analytical results are found to be in excellent agreement. The numerical and analytical results are also 
checked against an empirically based hypothesis for one of the interface conditions, namely the interface 
between a fluid region and a porous medium, and are found to be in excellent agreement with that 

experimental hypothesis. 

1. INTRODUCTION 

THE INTERFACE region can be considered to be a 
boundary layer zone where the fluid flow and heat 
transfer characteristics of two different porous media 
or a porous medium and a fluid or a porous medium 
and an impermeable medium adjust to one another. 
A specific example can be cited from petroleum reser- 
voirs wherein the oil Aow encounters different layers 
of sand, rock, shale, limestone, etc. Similar situations 
are encountered in many other cases of practical inter- 
est such as geothermal operations [ 1,2], nuclear waste 
repositories, water reservoirs, underground coal gasi- 
fication, ground water hydrology, iron blast furnaces, 
solid matrix heat exchangers, etc. Interface inter- 
actions on flow and heat transfer present some inter- 
esting and fundamental problems which require a 
detailed analysis of the velocity and temperature dis- 
tributions. 

Most of the analytical work on fluid flow and heat 
transfer through porous media has been based on 
Darcy’s law which neglects the boundary and inertial 
effects. The recent works which account for either one 
or both of these effects [3-201 stress and validate the 
need to take these effects into consideration, especially 
in heat transfer calculations. 

The present study analyzes a general class of prob- 
lems involving interface interactions on flow and heat 
transfer for three different types of interface zones. 
These are : 

(1) interface region between two different porous 
media ; 

(II) interface region between a porous medium and 
a fluid ; 

(III) interface region between a porous medium and 
an impermeable medium. 

The above three types of interface zones constitute a 
fundamental and complete investigation of the inter- 
face interactions in a saturated porous medium. Of 
the above three categories only the fluid mechanics of 
the second category has been investigated previously 
(211. Prior experimental investigations on this subject 
were based on qualitatively justifying the assumption 
that the velocity gradient at the interface is pro- 
portional to the difference between the slip velocity 
and the Darcian convective velocity within the porous 
medium 1211. Furthermore, prior theoretical inves- 
tigation on the second category is based on a specific 
and artificial mathematical model of the porous 
medium for which the empirically specified velocity 
gradient at the interface was used. 

In the present work in addition to the fluid flow, 
the temperature distribution and the heat transfer at 
the interface region are analyzed in detail for all three 
categories. The intricacies of the boundary layer inter- 
actions at the interface on both the velocity and tem- 
perature fields are discussed in great detail and theor- 
etical solutions are obtained for the velocity and 
temperature distributions as well as the interface vel- 
ocity and tem~rature. Analytical expressions are also 
obtained for the Nusselt numbers for different inter- 
face conditions. Throughout the analysis, the choice 
of the gage parameters involved in the perturbation 
solutions for velocity and temperature is found to 
be inherently tied to the physics of the problem and 
therefore it is found to be very important. This leads 
to the use of a number of different gage functions for 
describing the fluid mechanics and the temperature 
distributions for different interfacial problems. Fur- 
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C, fluid heat capacity p s kg- ’ K- ‘1 a* a proportionality constant in the Beavers 
Da Darcy number, K/L2 and Joseph model [21] 

F, a function that depends on the Reynolds porous media shape parameter, J(6/K) 
number Re, and the microstructure of ; porosity of the porous medium 
the upper porous medium, defined in ref. r,rCcM non-dimensional normal coordinate for 

Bl the channel region, Y , /h 
h channel height [m] I&, non-dimensional normal coordinate for 
J unit vector aligned along the pore velocity the lower medium for the case of fluid 

vector, VP/IV,/ porous interface, y,IJ(K/S) 
K permeability of the porous structure [m”] qcT non-dimensional normal coordinate for 
K, permeability of the upper porous medium the channel region, y, /J(K/Pr,) 

WI t& non~mensional normal coordinate for 
L horizontal extent of the external boundary the porous region, y,/J(K/(S Pr2)) 

[ml ViM non-dimensional normal coordinate for 
NM Nusselt number, hx/ K the upper porous medium, 
P pressure [N m-‘1 YII&WM 
Pr, effective Prandtl number for the ith porous TiT non-dimensional normal coordinate for 

medium, v/a, the upper porous medium for the 
Re Reynolds number based on permeability temperature distribution, 

of the porous medium, p&C”‘/pr Y~IJ(K,/(P~, 6,)) 
Re, Reynolds number based on permeability V:T non-dimensional normal coordinate for 

of the upper porous medium, the lower porous medium for the 

Pi%,K:‘=llrr temperature distribution, 
T temperature [K] Y~l~(K~f(~r~ &)I 
T,,j free stream temperature in the ith medium qr non-dimensional coordinate for the 

WI porous medium 

4 Darcian convective velocity [m s- ‘1 t3 dimensionless temperature, 
u,, Darcian convective velocity for the upper (CT> - T,)l(WLr 

porous medium, - (K,/&(d(P,)f/dx) 1, effective thermal conductivity of the 

&.A interface velocity obtained from the porous medium saturated with stagnant 
analytical solution fluid m ml’ K-‘1 

U,“,iV interface velocity obtained from & effective thermal conductivity of the ith 
numerical solutions porous medium saturated with stagnant 

Unt,exp interface velocity obtained from fluid [w rn’-.’ K-‘1 
experimental data Pf fluid viscosity [kg m- ’ s- ‘1 

V velocity vector [m s- ‘1 Y kinematic viscosity [m’ s- ‘f 

v, pore velocity vector [m s- ‘1 < dimensionless horizontal length scale, x/L 

YI normal coordinate for the upper medium Pf fluid density [kg m- ‘1 

[ml u dimensionless parameter in the Beavers 

Y2 normal coordinate for the lower medium and Joseph model [21]. 

[ml. 
Other symbols 

Greek symbols < ) ‘local volume average’ of a quantity. 

% effective thermal diffusivity [mm’ s- ‘1 

thermore, in some cases even the scaling of the inde- 
pendent variable becomes crucial. A very important 
feature of this type of analysis is that the order of 
magnitude dependencies as well as the relative import- 
ance of the functional dependencies become quite evi- 
dent from the solution. 

The governing equations have also been solved 
n~erically for a range of the material properties and 
different flow conditions. The analytical results have 

been found to be in excellent agreement with the 
numerical results. The ranges of validity of the theor- 
etical model have been explored and their applicability 
discussed at length. The theoretical results are also 
compared with the empirically based hypothesis for 
the interface region between a fluid and a porous 
medium namely, the proportionality of the velocity 
gradient at the interface to the difference between 
the slip velocity and the Darcian velocity within the 
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porous medium. The agreement between these theor- 
etical and experimental results is shown to be excel- 
lent. In addition, a detailed study on the influence of 
the material parameters on the interface slip velocity 
and the temperature distribution has been presented 
over a broad range of their values. 

2. FORMULATION 

The complexity involved in the geometric structure 
of a porous medium does not allow for an exact 
description of the velocity and temperature fields 
inside each individual porous structure. It has been 
customary to employ Darcy’s law to describe the vel- 
ocity field in a porous medium. While Darcy’s law can 
be used to obtain a relation between the pressure 
gradient and the velocity in an unbounded porous 
medium for low speed flows, boundary and inertial 
effects can play a major role on some of the heat 
transfer computations. The governing momentum 
and energy equations, which account for the inertial 
and boundary effects, are given as [3-201 

(Pr/6)<(V.V)V) = -V(P>‘+(~r/~)V*(V) 

<v>*v<T) = (%IW2(T> (2) 

where pr is the fluid viscosity, pr the fluid density, K 

the permeability of the porous medium, 6 the porosity, 
V the velocity vector, V, the pore velocity vector, 
J = V,/]V,] the unit vector aligned along the pore 
velocity vector, (P)’ the average pressure read off a 
pressure gage, y = (S/K))“‘, (r> the temperature, tl, 
the effective thermal diffusivity defined as I,/(prc,), 
1, the effective thermal conductivity of the porous 
medium saturated with a stagnant fluid and cf is the 
fluid heat capacity. The function F depends on the 
Reynolds number Re = pfucK”*/p, and the micro- 
structure of the porous medium as described in ref. 
[l]. Here U, is the Darcian convective velocity in the 
flow direction defined as u, = -(K/p,)d(P)‘/dx. 
Angular brackets represent the local volume aver- 
aging process. The method of local volume averaging 
has been discussed in detail by Whitaker [22,23]. An 
order of magnitude analysis on the momentum equa- 
tion shows that the momentum boundary layer 
thickness is of the order of (K/6)“* and that the 
convective term ((V * V)V) causing boundary layer 
growth is significant only over a length of the order 
of (KuJv) [3,4]. The latter quantity is small for most 
practical situations. Therefore, a fully developed 
momentum boundary layer results beyond a very 
short developing length. For this case, the momentum 
equation (1) reduces to [3,4,6] 

(PfI4wv-(PfIK)(v) 

-pfFs”*y[(v) * (V)]J-V(P)’ = 0. (3) 

This work is primarily concerned with the analysis 
of fluid flow and heat transfer through an interface 

zone composed of at least one porous medium. For 
the problem under study, the velocity field in the 
porous medium will be independent of the flow direc- 
tion and the system of governing equations inside the 
porous medium reduces to [ 131 

(&~)d2(u)/dy2 - @r/x’)(u) 

-PfF~“2y(u)2-d(P)f/dx = 0 (4) 

(u)a(r>lax = (aeia)a*(T>iay*. (5) 

Considering the momentum equation (4), the first 
term represents the viscous resistance offered by the 
boundary to the flow. The second and third terms 
which form a linear combination of the flow velocity 
and the square of the flow velocity, are a measure of 
the frictional resistance offered by the structure of the 
porous body. The last term, the pressure gradient 
along the flow direction, is thus seen to balance the 
inertial and viscous resistances encountered by the 
flow outside the boundary layer. Thus the boundary 
and inertial effects are both considered in this for- 
mulation. The energy equation (5) describes a balance 
between the convected energy, directly influenced by 
the fluid flow and the energy diffusion normal to 
the flow direction, effected by the heat conduction 
process. 

The present work considers fluid flow and heat 
transfer for the general class of interfacial problems 
which includes the interface between two different 
porous media or the interface between a porous 
medium and a fluid or the interface region between a 
porous medium and a solid boundary. These three 
fundamental types of the interfacial problems are 
shown in Fig. 1. Despite the fact that there is a dis- 
continuity of material properties at the interface, the 
fluid flow and the temperature fields need to satisfy 
conditions of smoothness in this zone. More specifi- 
cally, the velocity and temperature fields and the shear 
stress and heat flux distributions should be continuous 
across the interface in order to be physically mean- 
ingful. The present formulation accounts for both 
boundary and inertial effects and the continuity con- 
ditions. 

3. FLUID FLOW ANALYSIS 

AT THE INTERFACE 

As discussed before the general class of the inter- 
facial problems in saturated porous media consists of 
three fundamental categories. In this section the fluid 
mechanics of each of these categories will be inves- 
tigated in depth. 

3.1. Fluid mechanics of the interface region between 
d&erent porous media 

The problem under study consists of two layers of 
porous media with a common interface between them. 
Figure l(a) shows the schematic of the problem. To 
analyze the problem the velocity field is non- 
dimensionalized on the basis of the characteristic Dar- 
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FIG. 1. (a) The interface region between two different porous 
media. (b) The interface region between a porous and a fluid 
region. (c) The interface between an impermeable medium 

and a porous medium. 

cian convective velocity u,, as u, = (u)~/u,~ where (u)~ 
is the velocity in the ith porous medium and u,, = 
-(KL/~,-)d(P,)f/dx, and the subscript i refers to the 
properties and parameters of the ith porous medium. 

The qualitative velocity profile includes a boundary 
layer region at the interface where the two different 
velocity fields of the two porous media adjust to each 
other. In what follows, singular perturbation analysis 
is used to obtain an analytical solution for the velocity 
profiles in the interface region. These velocity profiles 
are then used to obtain an explicit expression for the 
interface velocity in terms of the material properties 
of the two media. The momentum equation (4) for 
the two porous media reduces to 

(Ki/6,)d2u,/dy2-u,--,6i~,2+ 1 = 0 (6) 

where fli = F, Re,. The solution for this equation can 
be found in terms of a cumbersome equation. For this 

reason we have chosen to abandon that solution in 
favor of the matched asymptotic expansions which 
would reveal a lot more of the physics of the problem. 
Since (K,/6,)‘i2 << 1, the velocity field attains a con- 

stant value far from the interface, in both porous 
media. The velocity field in the interface region cor- 
responds to the inner solution and the constant free 
stream values for the velocity correspond to the outer 
solution to equation (6). The solution procedure 
involves the use of the common, unknown interface 

velocity as a boundary condition to solve for the vel- 
ocity fields in each porous medium near the interface. 
This unknown interface velocity is determined by 
employing conditions of continuity of velocity and 
shear stress across the interface. 

The velocities ui are expanded in terms of powers 

of the porosities 6, as 

u, = uP+G,u,’ +6,%,2+ . (7) 

The outer solution u* , for the upper porous medium 
can be easily seen to be 

u*, = 1 -fi,s, +2fi:6:-5/?:6:+. . (8) 

The solutions for the first three orders of the inner 
solution for the upper porous medium are found to 
be 

u? = l+(UZ-l)exp(-nlM) (9) 

ut = G exp (-qiM)+B,(-l+exp (-ViM) 

x(l-f/,,(U~-l)-(u~-1)*/3) 

+exp (-~v,~)(G- 1)2/3) (10) 

u? = G exp (-qIM)+tBG-exp (-VM) 

x (qiM +2(W 1)/3)+2 exp (-2~~~) 

x (G- 1)/3)+%(2+exp (-VM) 

~(A,~:~+B,~~~+C,)+exp(-2~i~) 

x(D,?ihd+E,)+exP (-3ViM)(UG1)3/12) 

where 

A, = (U:-l)2/2 

B, = (U;-l)2/3+3(u:- 

C, = 5(U;-l)3/36+2(U:-l)2/3 

(11) 

(12) 

1)/2- 1 (13) 

-2(U;-1)/3-2 (14) 

D, = -2(U:-1)‘/3 (15) 

E, = 2(U:-1)/3(1-(Vi-l)-(U;-1)‘/3) (16) 

and niM = y, /J(K, /S ,) is the non-dimensional nor- 
mal coordinate for the upper medium. 

Typically, for the upper porous medium the inner 
solution, given by equations (7) and (9)(1 I), can be 
seen to match with the outer solution given by equa- 
tion (8) as the inner variable, qiM, goes to infinity. 

An explicit expression for the interface velocity is 
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found from the inner solutions for the two porous 
media, employing conditions of continuity across the 
interface. This interface velocity is solved in terms of 
ratios of material properties and parameters of the 
two porous media, such as permeability, porosity, 
friction factor and pressure gradients [24]. The com- 
parisons between the theoretical and numerical inter- 
face velocities are given in the discussion section. 

3.2. Fluid mechanics of the interface region between a 
porous medium and afruid 

Here the problem consists of a porous medium 
exposed to a fluid layer as depicted in Fig. l(b). In 
this case the governing equation in the channel region 
is simple and is given by the simplified Navier-Stokes 
equation. The solution for the channel flow is found 
to be 

%I = ~o+rlcMU-~O)-?cZh (17) 

where qCM is a non-dimensional length variable for the 
channel region given by y 1 / h, where h is the channel 
height, and UO is the unknown interfacial slip velocity. 

the gage par- In the porous medium introducing 
ameter 

(18) & CM = 

the governing equation becomes 

h’e,:, d2Uc2 - uC2 
dv: 

- uu,i + 26ae,z, = 0 (19) 

The unknown UO is then found from the channel and 
inner solutions, equations (17) and (22)-(24). Direct 
comparison between the theoretical and the exper- 
imental as well as numerical results is given in the 
discussion section. 

3.3. Fluid mechanics of the interface region between a 
porous medium and an impermeable medium 

The interface region for this part is shown in Fig. 
l(c). The solutions for the first three orders of inner 
velocity components are found to be much simpler 
for this case and are given by 

U: = 1 -exp (-qiM) (25) 

u’ =p 
[ 

-l+exP (-Vid i +h 
( ) 

+ i ev (-2ViM) 
1 

(26) 

u2 = /3’ 

-exp (-3rliM)/12 1 (27) 

where CI = FGRe, Re = (u,, JK)/v and uC2 = (u)Ju,,,. 
Since the true characteristic Darcian velocity in the 
porous medium is much smaller than the charac- 
teristic velocity in the channel, uC2 is expanded as 

UC2 = &MU, +&U,+E&,U3+ . (20) 

The inner equation for the porous medium can be 
written from equation (19) as 

d’u,z ~ -uc,-uu,22+28&,2hl = 0 
d&.i (21) 

where r&, is the non-dimensional normal coordinate 
for the lower medium given by y, /,/(K,/6,). The first 
three orders of the inner solution for the porous sec- 
tion are found to be 

uI = exp (-%$A (22) 

u2=26- ia+1 exp(-rj&)+iexp(-2f&) 
( > 

(23) 

uj = 
[ 

(*-26)+~1:+~cr’+2.6(-q,‘,-:)] 

xexp (-t&- ix :cr+l exp (-2~:~) 
( > 

+ $ exp (- 3r]&). (24) 

and where qiM = y, /,/(K, /a,), is, as before, the non- 
dimensional coordinate into the porous medium. 

4. HEAT TRANSFER ANALYSIS 

AT THE INTERFACE 

In this section analytical expressions are obtained 
for temperature distributions for all interface con- 
ditions. The governing energy equation in a porous 
medium is given by equation (5). In obtaining an 
analytical expression for the temperature distribution 
it is crucial to account for the different temperature 
and velocity boundary layer thicknesses. 

4.1. Temperature distribution at the interface region 
between a porous medium and an impermeable medium 

The physical problem is shown in Fig. l(c). The 
energy equation can be written as 

ae K/S a% 
‘z’ Re Pr,/Da aY” 

(28) 

In general the temperature at the boundary is a func- 
tion of < which is the dimensionless horizontal length 
scale, x/L, therefore, the boundary conditions for this 
case are taken as 

WAY) = 0 

wt> 0) = f (5) 

R&Y -+ 00) = 0 

(29) 
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lb) 

FIG. 2. (a) Comparison between the MBL and TBL for low 
Prandtl number fluids. (b) Comparison between the MBL 

and TBL for high Prandtl number fluids. 

where 0 is the dimensionless temperature distribution 
given by ((r>-T,)/(A&r where (AT),, is some 
reference temperature related to the temperature 
difference between the interface and the core of the 
porous medium, Da the Darcy number, K/L*, and 
Pr the Prandtl number, v/a,. As mentioned previously 
the differences between the momentum and thermal 
boundary layers should be fully accounted for in the 
analysis. The viscous boundary layer (MBL) is of con- 
stant thickness and is of the order of Ed = ,/(K/6). 
The thermal boundary layer (TBL) will be of the 
order of ar = J((K/G)/Pr). Two limiting cases will 
now be considered. 

Case I. Low Prandtl numberjluids 
The analysis for this case is composed of two phys- 

ically distinct regions in the fluid flow regime (see Fig. 
2(a)). These are the region inside the TBL but outside 
the MBL and the region inside the MBL. Physically 
these regions are so distinct that they have to be 
treated separately. 

Inside the MBL. The normal coordinate is scaled as 
qM = y/aH and in the limit of Pr --f 0, the temperature 
distribution is derived to be 

thus showing that the MBL region is essentially trans- 
parent to the boundary condition at the impermeable 
wall. 

Outside the MBL. The normal coordinate is scaled 
as nT = y/aT. In this region, the velocity field attains 

its free stream value U, which is found to be 

u = -l+J(l+486) 
cu 

2gs 
(30) 

where B = FRe. 
Thus the energy equation and boundary conditions 

are written as 

(31) 

Here 

w, UT) = 0 

@(5,vr+oo)=O 

tx<,O) =f(O 

R = U, ReJDa. 

(32) 

Taking a general form for the variation of the bound- 

ary temperature as 

f(5) = A? (33) 

the solution for the energy equation is obtained in 

terms of the parabolic cylinder function D_ +, as 

(I(& qr) = Al++ 1) 2p+ “‘n- “‘lp 

xexp(-%)D_,_, (,,/@))I. (34) 

Comparison between this theoretical result and the 
numerical solution is given in the discussion section. 

Case ZZ. Large Prandtl number fluids 
Here the thermal boundary layer is completely 

inside the momentum boundary layer (see Fig. 2(b)). 
Therefore, the region inside the TBL requires a smaller 
scale than the region inside the MBL but outside the 
TBL. 

Outside the TBL. The normal coordinate is scaled 
as qM = ~/a~ and in the limit of Pr -+ co, it can be 
shown that the temperature distribution corresponds 
to the free stream temperature boundary condition, 
i.e. 

(I(& %l) = 0. 

Inside the TBL. The normal coordinate is scaled as 
nr = y/&r. The velocity distribution, very close to the 
impermeable wall and inside the TBL is found to be 
linear and given by 

The energy equation and the corresponding boundary 
conditions can be written as 

(36) 
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where 

Re,/(DalPr). 

The final temperature dist~bution for this case is 
obtained in terms of the Whitaker function 

3 ““PQ + l)I-(2/3) 
@(5, %f = ~-~ 2 (AC) 

where W denotes the Whitaker function and r 
denotes the gamma function. 

4.2. Temperature distraction at the interface region 
between two porous media with d@erent free steam 
temperatures 

The temperature fields in the two porous media in 
the interface region are nondimensionalized as 

and 

@, 
1, 

= CT,>-- 7-a.1 
T m.2 -T,., 

O, 
12 

= (T,>-T,,, 
T co, I - Tm.2 

where T,., and Tm.2 are the free stream temperatures 
in the upper and lower porous media, respectively. 
The unknown interface temperature (7;) is written 
as 

@, (r 0) 5= 9(r) = 5X- Tm., 
82 t 

TW,i -C2‘ 

The interface temperature, used as a boundary con- 
dition, is solved using continuity conditions across the 
interface. 

Case I. Low Prandtf number fluids 
The basic components of this case are composed of 

four distinct regions in the flow field. These are : two 
regions in the upper and lower porous media which 
are inside the MBL, and two regions in the TBL 
but outside the MBL in the upper and lower porous 
media. Again, it can be shown that the temperature 
distribution inside the MBL regions is constant and 
equals the interface temperature. The temperature dis- 
tributions in the upper and lower porous media inside 
the TBL are obtained in terms of the complementary 
error functions 

xerfc (:Jr+)) (40) 

where rl = Ks/K2, r2 = 6, JS,, r5 = &,j&, and 
r6 = R, /Q, are the ratios of material properties and 
parameters of the two porous media. Here 

Q, =r: J(l +4F2 Rez &) _______ -.-.-- -- _ 1 
2Fdz I 

Joa, _ (42) 

Dimensionless coordinates ViT and ~2 for the upper 
and the lower porous media are respectively given by 
y,l~(~,lPr~~,~ and y2/J(K,/Pr,82). It is found 
that for low Prandtl number fluids even though the 
temperature profiles do change as we move down- 
stream, the interface temperature is invariant with r. 
This situation is analogous to the transient contact 
heat conduction problem, for which the temperature 
profiles do change as a function of time, while the 
interface temperature remains constant. As it will be 
shown in the next section, the situation is quite differ- 
ent for the high Prandtl number fluids. 

Case II. High Prandtl numberj?uids 
For this case, the analysis for the region inside the 

TBL becomes quite involved. However, outside the 
TBL region the temperature distributions in the two 
media attain the free stream temperature values. 
Inside the TBL region, the velocity distribution is 
linear and the governing equation for the upper 
porous medium is derived to be 

deil a*t& 
($1 fA2fh Pr;“*) -at- = arl,‘, (43) 

where 

(44) 

-ll(U~)2-62~~~72) 11 Re, ,/Da, (45) 

and 

!!I, = v~ts,v~+s:u;. (46) 

Using a double perturbation expansion, the tem- 
perature field is expanded in terms of (Pr,)-i’2 as 

~i,(~,~i~) =: ~~(~,~i~~+~,(~, h-)Pr;"2 

+@*(<,~i~)Pr;'+ . . . (47) 
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with the interface temperature expanded as 

A(C) = A~(~)~A~(~)~~~“2+. . . (48) 

V(r) = v,(e) +v 1 (T)PrZ I’* + . . . (49) 

As mentioned before, the interface temperature itself 
is solved using continuity conditions. The first- and 
second-order temperature distributions in the upper 
domain are found to be 

where 

II/: = V,, Re2 ,fDa2 

-11(~)2-62~+72) RezJDa, 11 
vo= vg+s,v~+s:v~ 
A0 = [I + (r2r5)‘/‘J- ’ 

V. = [l+(rzr5)-“2J-1. 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(561 

(57) 

A similar solution can also be written for the lower 
porous medium. The analysis reveals that for the high 
Prandtl number fluids, the interface temperature does 
vary with 5. Therefore, in contrast to the low Prandtl 
number fluids the interface temperature is a function 
of the downstream distance for high Prandtl number 
fluids. 

4.3. Interface region between two porous media with 
surface heat generation at the interface 

This case can correspond to some energy related 
problems, such as, underground coal gasification. The 
surface heat generation will lead to a temperature 

distribution along the interface. To consider a some- 
what general case, this surface temperature variation 
is denoted by a power law variation such as BtQ. The 
analysis and solution procedure for this problem are 
similar to those for a porous medium with an imper- 
meable boundary. For this case, only the results for 
the upper porous medium are given. For the low 
Prandtl number fluids the solution inside the TBL is 
obtained in terms of the ~itaker function as 

(58) 

For very large Prandtl numbers, the temperature dis- 
tribution in the upper porous medium inside the TBL 
is obtained in a different form but stili in terms of the 
Whitaker function, W, as 

4.4. Interface region between a porous medium and n 
fluid 

The schematic for this case is shown in Fig. I(b). 
For high Prandtl number fluids, the temperature fiefd 
outside the TBLs in the fluid and the porous medium 
attains the free stream values T,,, and Tm,2, respec- 
tively. Again, the analysis and solution procedure for 
this problem are similar to those for two porous media 
with different properties. The temperature fields Tr, 
and ( T2) in the channel and the porous medium are 
nondimensionalized as 

e,, = T” -_T;sl 
co,2 a.1 

e _ <T2)-Tm,2 
cz- T co.1 - Tm.2 

Again the expansions for the above temperatures 
and the interface temperature are written as 

eC, =Bco+&,Pr;‘/*+ .,, (60) 

e,, =e,$te,:Pr;‘~2+ . . . (61) 

d,=&+&,Pr;“2+... (62) 

V,=V~+V,,Pr;‘12+... (63) 

The first- and second-order temperature distributions 
in the channel region are found to be 
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x ( *_ &A, dT, ~T)+herfc (d(F)) 
Q Jci + Q,:Aco 

x- ~ ( 2 4J/d ) 

(65) 

and the first- and second-order temperature dis- 
tributions in the porous medium are found to be 

G~<~rl,*,~= (l+6,1zrY,,2)erfc(\/(~)) 

(661 

Ha(t,~~~~=\i(S)exp(-~) 

x(&&&)-~xerfc(~) 

x 

( 
4 Jvv +&'a, 

2 4$,: 
) 

. (V 

Here qcT and & are non-dimensional normal coor- 
dinates for the channel and the porous region which 
are given respectively by y, /J(K/Pr,) and y2/ 
J(K/6 Pr,) and 

$5 = uO Re,h JDa (68) 

I\,: = -[EIIII&+ ((d+l)a2b+l+~n')c~~] 

x Re,‘,,/Da (69) 

AC2 = (1 - UrJ 

J( > 

h”; Rech JDa (70) 

AC0 = [I +6- “2r:‘2]- ’ (71) 

v,,, = [1+6”%~“2]- (72) 

*= 
[ 

M2 rs JL&+J 
j&l-Ac+jT 2$,7 Ii’ 

[ Ju:~+$TJ~G (73) 1 
@J = [ r,6-“2 $(l -V,)-- SV& 

cl C1 Ii w:"2 +r:'26-"21(1c:]. (74) 

For this case, as in the case of the interface between 
two porous media, the interface temperature is found 
to be dependent on 5. 

5. NUSSELT NUMBERS FOR DIFFERENT 

INTERFACE REGIONS 

In this section explicit analytical expressions are 

obtained for the heat flux at the interface for all three 
cases. These expressions are obtained in part from the 
theoretical analysis which was done in the previous 
section. The heat flux quantities are then expressed in 
the non-dimensional form as the Nusselt numbers. 

First considering the interface between an imper- 

meable medium and a permeable medium the Nusselt 
number is derived for the low and high Prandtl num- 
ber fluids. For the low Prandtl number fluids the 
Nusselt number is obtained as 

Pr6 “2 
Nu, = C-4 JQ nP+1) ,,2 

Da rQ+1/2)5 
(75) 

where I is the gamma function. For the high Prandtl 
number fluids the Nusselt number is obtained as 

Nu 

c 
= 3”3W/3) &+,I 

r(u3) r(p+2/3) 
52/3 (76) 

where, as mentioned before, 1 is a parameter which 
is explicitly related to the friction factor, Reynolds 
number, porosity, Darcy number, and the Prandtl 
number, whereas Q is not dependent on the Prandtl 
number. The analysis shows that for high Prandtl 
number fluids the Nusselt number is proportional to 
Pr”3 and for low Prandtl number fluids the Nusselt 
number is proportional to Pr’12. As it becomes evident 

in the next section the Nusselt number expressions are 
extremely accurate even for Prandtl numbers where 
the analytical temperature distribution shows some 
deviations. This is because the analytical temperature 
distribution is extremely accurate close to the interface 
region even for Prandtl numbers where the tem- 
perature distribution deviates slightly outside the 
interface region. However, it should be mentioned 
that the temperature distributions, in general, are also 
very accurate and the deviations, if any, are quite 
small. 

The Nusselt number for the interface region 

between two different porous media with different free 
stream temperatures is also derived for the low and 
high Prandtl number fluids based on the temperature 
distributions that were derived in the previous section. 
For the low Prandtl number fluids the Nusselt number 
is obtained as 

Nq = (ST2 @) t’12. (77) 

It should be noted that the 5 dependence for the low 
Prandtl number fluids is the same for the two types of 
interfaces. 

For the high Prandtl number fluids the Nusselt 
number for the interface region between two different 
porous media with different free stream temperatures 
is obtained as 
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Nu, = 

For the interface region between a high Prandtl 
number fluid and a porous medium the Nusselt num- 
ber is found to be 

Nu, = 

6. RESULfS AND DISCUSSIONS 

In this section the flow and heat transfer results for 
different types of interface conditions are discussed. 
The analytical solutions for the velocity and tem- 
perature distributions are compared with the cor- 
responding numerical solutions for different interface 
conditions. The explicit expression for the interface 
velocity for the case of the interface region between a 
porous medium and a fluid, which was derived theo- 
retically, is compared with the pseudo interface vel- 
ocity extracted from the Beavers and Joseph model 
[21] as well as the numerical results. 

The numerical results are obtained by finite 
differencing the governing equations. A central dif- 
ferencing scheme is used to evaluate the second deriva- 
tives while the non-linear terms are replaced by a 
suitable linearized approximation. The analytical 
solutions for the velocity distributions are evaluated 
from the corresponding theoretical results presented 
in Section 3. The analytical temperature distributions 
are obtained by evaluating the explicit theoretical 
results presented in Section 4. 

Figure 3 compares the analytical and the numerical 
solutions for the interface region between two differ- 
ent porous media for Re, = 0.1, 2 and 3. The upper 
porous medium physical properties were chosen as: 
K, = 10-7m2, F, = 0.07 and 6, = 0.98. The property 
ratios rir r2, and r3 used in Fig. 3 were 2, 1.5 and 1, 
respectively. The analyticat and numerical solutions 
are seen to be in quite good agreement. It has been 
found through numerous numerical experimentation 
that reasonable agreement between the numerical and 
analytical results is obtained for many practical situ- 
ations. 

Figure 4 presents the velocity distributions for the 
interface region between an impermeable medium and 
a porous medium. The velocity distributions are pre- 
sented for two different Reynolds numbers which are 
Re, = 0.1 and 3. As it can be seen, although the agree- 
ment in general is good, it is better for lower Reynolds 
numbers. It should be noted that the results of the 
interface region between two porous media and the 

FIG. 3. The velocity distribution for the interface region 
between two different porous media for Re, = 0.1, 2, and 3 

and property ratios r, = 2, rz = 1.5 and rx = 1 
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FIG. 4. The velocity distributions for Re = 0.1 and 3 for the 
interface region between a porous medium and an imper- 

meable medium. 

interface region between an impermeable medium and 
a porous medium can very easily combine to produce 
the velocity distribution inside a bounded channel 
filled with two different porous media. The complete 
velocity distribution inside the bounded channel for 
the same property ratios as in Fig. 3 is shown in Fig. 
5 for two different Reynolds numbers. As it can be 
seen in Fig. 5 inside the channel four distinct boundary 
layers exist. These are the two boundary layers along 
the two impermeable boundaries and the two bound- 
ary layers interconnected at the interface along each 
of the two porous media. Furthermore, the results 
obtained in Sections 3 and 4 can be easily combined 
to produce the velocity and temperature distributions 
in a multi-layered porous medium as for example the 
flow of oil in different layers of sand, rock, shale and 
limestone. 

The explicit anaiytical expression for the interface 
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FIG. 5. The complete velocity distribution inside a bounded 
channel filled with two different porous media for Re, = 1 

and 2. 
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FIG. 6. The variations of the interface velocity between two 
porous media as a function of their corresponding per- 

meability ratios. 

velocity for the interface region between two different 
porous media is compared with the numerical results 
in Fig. 6. In the numerical runs, to obtain an accurate 
value for the interface velocity, the number of grid 
points and successive iterations are increased till con- 
vergence is achieved. In the theoretical analysis the 
interface velocity was uniquely determined by the 
material properties of the two porous media and the 
flow parameters. 

The variations of the interface velocity for different 
values of the permeability ratios are presented in Fig. 
6. The material properties of the upper porous 
medium used in this figure were K, = 10-gmz, 6, = 0.7 
and F, = 0.07 and the property ratios were rz = 0.9, 
r3 = 1. As it can be seen from Fig. 6 the agreement 
between the numerical result and the explicit ana- 
lytical expression for the interface velocity is excellent. 

Furthermore, the variations of the interface velocity 
is in accordance with physical principles. From 
numerous numerical experimentations it is found that 
the interface velocity decreases when r, is increased 
because the permeability of the lower porous medium 
is decreased. The interface velocity will tend asymptot- 
ically towards zero when both the permeability and 
the porosity of the lower porous medium tend towards 
zero. This represents the limiting case of the lower 
medium being an impermeable solid boundary. On 
the other hand since r, is the ratio of the friction 
functions F, and F2, an increase in r3 implies a 
decrease in F2, which in turn signifies a decrease in 
the resistance offered by the porous structure. This 
influences the interface velocity directly as the overall 
flow in the lower porous medium increases causing an 
increase in the interface velocity. 

Next, the explicit theoretical expression for the 
interface velocity obtained from the present analytical 
work for the interface region between a fluid region 
and a porous medium is compared with the empirical 
model proposed by Beavers and Joseph [21] which 
states that the velocity gradient at the interface is 
proportional to the difference between the slip velocity 
and the Darcian convective velocity. For purposes of 
comparison, a new parameter is introduced, namely 

0 = h/,/K. W’) 

Beavers and Joseph proposed that the interface con- 
dition is given by 

- = * (ur - a,) 
duf 
dyi ,/K 

at the interface (81) 

where 

CC* E the proportionality constant 

K dp . 
u, = - - - IS the Darcian convective velocity 

Pf dx 

uf = fluid velocity. 

Based on their proposed shear condition the following 
quantity 

can be obtained as the interface velocity. 
In what follows for a given value of 0, the analytical 

interface velocity, the numerical interface velocity 
(based on the numerical solution of the governing 
equations) and the interface velocity from the empiri- 
cal results of ref. [21] are computed and compared for 
the same pressure gradient and in the linear regime 
which was used in the Beavers and Joseph experi- 
ments. The results of such a comparison are given in 
Table 1. Upon examining Table 1 it can be seen that 
the analytical interface velocity, the numerical inter- 
face velocity and the pseudo-interface velocity 
obtained from Beavers and Joseph are in excellent 
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Table 1. Comparison between the analytical, numerical and 
empirical interface velocities 

U”,, 
(from the 
explicit 

analytical 
(r = h/,/K expression) 

u ,“,.N 
(numerical 

solution 
of the 

governing 
equations) 

U”W, 
(interface 
velocity 
obtained 
from the 

experimental 
results) 

4 
8 

12 
16 
20 
24 
28 
32 
36 
40 
44 
48 
52 
56 
60 
64 
68 
72 
76 
80 
84 
88 
92 
96 

100 

0.3045 0.2940 
0.1438 0.1436 
0.0935 0.0935 
0.069 1 0.069 1 
0.0548 0.0548 
0.0454 0.0454 
0.0387 0.0387 
0.03378 0.03378 
0.02995 0.02995 
0.02689 
0.02440 
0.02234 
0.02059 
0.01910 
0.01781 
0.01668 
0.01569 
0.01481 
0.01402 
0.01331 
0.01267 
0.01209 
0.01156 
0.01108 
0.01063 

0.02689 
0.02441 
0.02234 
0.02060 
0.0191 I 
0.01782 
0.01669 
0.01570 
0.01482 
0.01403 
0.01332 
0.01268 
0.01210 
0.01157 
0.01108 
0.01064 

0.2940 
0.1436 
0.0935 
0.0691 
0.0548 
0.0454 
0.0387 
0.03379 
0.02996 
0.02690 
0.02442 
0.02235 
0.02060 
0.01911 
0.01782 
0.01669 
0.01570 
0.01482 
0.01403 
0.01332 
0.01268 
0.01210 
0.01157 
0.01109 
0.01064 

agreement. Furthermore, the results of the analysis 
given in Table 1 confirm the hypothesis proposed by 
Beavers and Joseph, namely, the velocity gradient at 
the interface is proportional to the difference between 
the slip velocity and the Darcian convective velocity 
within the porous medium. 

The temperature profiles for the interface region 
between an impermeable and a porous medium are 
shown in Figs. 7-9. For all these figures a linear sur- 
face temperature variation is assumed. All of the 
results are presented at 5 = 1 except in Fig. 9. Figure 
7(a) presents the temperature profiles for low Prandtl 
number fluids at three different Reynolds numbers. 
These are Re = 0.1, 1 and 10. As expected, the higher 
the Prandtl number the thinner the thermal boundary 
layer. As seen in Fig. 7(a) the agreement between the 
analytical and numerical results is excellent. Figure 
7(b) presents a comparison between the theoretical 
results for the low Prandtl number fluid and the 
numerical results for two Prandtl numbers 0.73 and 
8. Again the agreement is excellent. It is worth noting 
that the low Prandtl number solution predicts accu- 
rately the temperature distribution even for a Prandtl 
number as high as 8. 

In Fig. 8(a), the high Prandtl number analytical 
results are compared with the numerical results at 
three different Reynolds numbers. All other factors 
being the same, higher velocities lead to thinner ther- 

- Analytical 
oooo Numerical 

‘1M 

(a) 

(0) 

0.8 

0.6 

- Analytical 

OC-X Numerical 

%t 

(b) 

FIG. 7. (a) Comparison between the analytical and numerical 
temperature distributions for a low Prandtl number fluid at 
three different Reynolds numbers for the interface region 
between an impermeable medium and a permeable medium. 
(b) Prandtl number effect on the low Prandtl number ana- 

lytical temperature distribution. 

ma1 boundary layers. Also as seen in Fig. 8(a), the 
agreement between the analytical and numerical 
results is quite good. Figure 8(b) shows the tem- 
perature profiles at three different Prandtl numbers. 
As expected the higher the Prandtl number the thinner 
the thermal boundary layer. As seen in Fig. 8(b) the 
agreement between the analytical and numerical 
results is not good for Prandtl numbers around eight. 
However, since the low Prandtl number solution easily 
covers Prandtl numbers around eight, it can be said 
that the two Prandtl regimes cover most of the prac- 
tical situations. 

For the cases where the theoretical temperature dis- 
tribution is not in excellent agreement with the 
numerical results the theoretical Nusselt number 
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results are still found to be in excellent agreement 
with the numerical results. This fact becomes apparent 
upon closer examination of Fig. 8. The temperature 
profiles at different locations are presented in Fig. 9. 
It should be noted that the temperature is non- 
dimensionalized with respect to the temperature 
difference between the surface and free stream at 
5 = 1. This type of nondimensionalization causes a 
downshift in the temperature profiles as seen in Fig. 
9. Again as seen in Fig. 9 there is excellent agreement 
between the analytical results for high Prandtl number 
fluids and the numerical results. 

Finally the comparison between the experimental, 
theoretical and numerical interface velocity, given in 
Table 1, is plotted also in Fig. 10. Again, it can be 
seen that there is an excellent agreement between the 
theoretical and experimental results. 

A major advantage of the present work is that the 
analytical solutions which are presented here can be 
of significant help in refining the equations for the 
porous media. This is because these fundamental 

‘I# 
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FIG. 8. (a) Comparison between the high Prandtl number 
analytical solution and the numerical results for different 
flow regimes. (b) The variations of the Prandtl number on 

the high Prandtl number analytical solution. 

(9) 

‘Im 

FIG. 9. Temperature distributions at different downstream 
locations. 

analytical solutions can be easily used to readily 
analyze the functional dependencies and the effects of 
the different coefficients and properties of the porous 
media in the governing equations, thereby enabling a 
more accurate correlation and evaluation of the future 
experimental studies. 

7. CONCLUSIONS 

A complete and thorough analysis of the fluid flow 
and heat transfer at the interface region of a porous 
medium is presented. The physics of the interface 
region is discussed in detail for three general and 
fundamental classes of problems in porous media. 
Theoretical solutions are obtained for the velocity 
and temperature distributions for all cases. Explicit 
expressions for the interface velocity and temperature 
can be easily obtained for all cases from the theoretical 
solutions. The theoretical solutions are shown to be 
in excellent agreement with the numerical results. The 
analytical results are also checked against an empir- 
ically based hypothesis for the interface region 
between a fluid and a porous medium and are found 
to be in excellent agreement. 
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FIG. 10. Comparison between the empirically based interface 
velocity with the theoretical and numerical interface velocity. 



1404 K. VAFAI and R. THIYAGARAJA 

Acknowledgement-The authors are grateful to Mrs Barbara 11. P. Ranganathan and R. Viskanta, Mixed convection 
G. Dole for her excellent work in typing this manuscript. boundary-layer flow along a vertical surface in a norous 

medium; J. kumer. Heat %ansfer 7, 305-3 17 (l&4). 
12. M. L. Hunt and C. L. Tien. Non Darcian convection 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

REFERENCES 

P. Cheng, Heat transfer in geothermal systems, Adv. 
Heat Transfer 14, I-105 (1978). 
P. Cheng and J. Minkowycz, Free convection about a 
vertical flat plate embedded in a porous medium with 
application to heat transfer from a dyke, J. Geophys. 
Res. 82,2040-2044 (1977). 
K. Vafai and C. L. Tien, Boundary and inertia effects 
on flow and heat transfer in porous media, Znt. J. Heat 
Mass Transfer 24, 195203 (1981). 
M. Kaviany, Laminar flow through a porous channel 
bounded by isothermal parallel plates, Int. J. Heat Mass 
Transfer D&851-858 (1985). 
C. T. Hsu and P. Cheng, The Brinkman model for con- 
vection about a semi-infinite vertical flat plate in a porous 
medium, Int. J. Heat Mass Transfer 28,683-697 (1985). 
C. L. Tien and M. L. Hunt, Boundary-layer flow and 
heat transfer in porous beds, Chem. Engng Processing 
21, 5363 (1987). 
M. Kaviany, Thermal convective instabilities in a porous 
medium, J. Heat Transfer 106, 137-142 (1984). 
J. T. Hong, C. L. Tien and M. Kaviany, Non-Darcian 
effects on vertical-plate natural convection in porous 
media with high porosities, Int. J. Heat Mass Transfer 
28,2149-2157 (1985). 
T. W. Tong and E. Subramanian, A boundary-layer 
analysis for natural convection in vertical porous enclos- 
ures-use of the Brinkman-extended Darcy-model, Int. 
J. Heat Mass Transfer X$563-571 (1985). 
K. Vafai and C. L. Tien, Boundary and inertia effects 
on convective mass transfer in porous media, Znf. J. Hear 
Mass Transfer 25, 1183-l 190 (1982). 

13 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

in cylindrical packed beds, ASME-JSME Conference 
(1987). 
K. Vafai, Convective flow and heat transfer in variable 
porosity media, J. Fluid Mech. 147,233-259 (1984). 
D. A. Nield, The boundary corrections for the Rayleigl- 
Darcy problem : limitations of the Brinkman equation, 
J. Fluid Mech. 128,3746 (1983). 
D. A. Nield, Non-Darcy effects in convection in a satu- 
rated porous medium, Proceedin.qs of Institute of Physi- 
cal Sciences, Wairakei, New Zealand (1984). _ 
D. Poulikakos and A. Beian. The denarture from Darcv 
flow in natural convection ‘in a vertical porous layer, 
Physics Fluids 28,3477-3484 (1985). 
M. Kavianv. Gradient destruction in flow through a 
rigid matrix;‘J. Fluid Mech. 165,221-230 (1986). - 
K. Vafai. R. L. Alkire and C. L. Tien. An exuerimental 
investigation of heat transfer in variable porosity media, 
J. Heaf Transfer 107,6422647 (1985). 
R. Friedrich and N. Rudraiah, Similarity solutions of 
Brinkman equations for a two-dimensional plane jet in 
a porous medium, J. Fluids Engng IO&474478 (1983). 
J. G. Georgiadis and I. Catton, Free convective motion 
in an infinite vertical porous slot: the non-Darcian 
regime, Int. J. Heat Mass Transfer 28,2389-2392 (1985). 
G. S. Beavers and D. D. Joseph, Boundary conditions 
at a naturally permeable wall, J. Fluid Mech. 30, 197- 
207 (1967). 
S. Whitaker, Advances in theory of fluid motion in 
porous media, Znd. Engng Chem. 61, 1428 (1969). 
S. Whitaker, Diffusion and dispersion in porous media, 
A.I.Ch.E. Jl. 13,42(X427 (1967). 
R. Thiyagaraja, Interface interaction in fluid flow 
through a two layered porous medium, Thesis, Ohio 
State University, Columbus, Ohio (1985). 

ANALYSE DE L’ECOULEMENT ET DU TRANSFERT THERMIQUE DANS LA REGION 
INTERFACIALE DUN MILIEU POREUX 

R&nn&L’~oulement d’un fluide et le transfert de chaleur dans la region interfaciale sont analyses pour 
trois classes fondamentales de problemes concemant les milieux poreux : la region interfaciale entre deux 
milieux poreux differents, entre la zone fluide et le milieu poreux et entre un milieu impermeable et un 
milieu poreux. Ces trois types de regions interfaciales recouvrent completement les interactions d’interface 
dans un milieu poreux saturb. Des solutions analytiques detail&s, a la fois pour les distributions de vitesse 
et de temperature sont obtenues pour ces conditions. Les resultats numbriques et analytiques sont en bon 
accord. Ces rtsultats sont aussi mis a l’epreuve d’hypotheses empiriques pour une des conditions a 
l’interface, celle de la jonction dune zone de fluide et dun milieu poreux, et ils sont en excellent accord 

avec les hypotheses dtduites de l’exptrience. 

UNTERSUCHUNG VON STRdMUNG UND WARMEUBERGANG AN 
GRENZFLACHEN VON PORGSEN MEDIEN 

Zusamnrenfassung-Stromung und Warmeiibergang an Grenzthichen von poriisen Medien werden fur drei 
grundlegende Falle detailliert untersucht. Die Fllle sind: die Grenzfhiche zwischen zwei verschiedenen 
porijsen Medien, zwischen einem Fluid und einem porijsen Medium und zwischen einem poriisen Medium 
und,einer undurchlassigen Wand. Die Untersuchung dieser drei Arten von Grenzflachen deckt alle in einem 
geslttigten poriisen Medium vorkommenden Grenztlbhen ab. Analytische Liisungen fur Geschwindig- 
keits- und Temperaturverteilungen werden fur alle Grenzfliichen hergeleitet. Numerische und analytische 
Ergebnisse stimmen sehr gut t&rein. Die numerischen und analytischen Ergebnisse werden such mit 
einer auf Versuchsergebnissen beruhenden Hypothese fiir eine der drei Grenzflachen zwischen poriisem 

Medium und Fhissigkeit verglichen. Die Ubereinstimmung ist ausgezeichnet. 
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AHAJIH3 TEYEHHII &i TEIIJIOIIEPEHOCA HA TPAHHW PA3AEJIA B l-iOP%KTOfi 
CPEAE 

Amomqm-Hccnenyewfl TeYemie r+zmwcm H Ten.nonepemc xa rpamiqe pasnena B nopwxofi cpene 
.UJIa TpeX 061mix OCHOBHhlX KJIBCCOB 3@Wi:MePcnyAByMn l'lOpHCTbtMH~JW4H,MelKJty XCHAKOCTblO U 

IlOpHCTOi ~~O~,Me;erny Xiel'ipOHHUaeMO# H IIOpHCTOfi C~JlaMH.%%UWHbIe THllbI rpaHHYHbIX o6nac- 
Teii LlOCTaTO'iHbl JlJIil IIOllHOl-0 BCWIeLlOBaHHX B3aHMOAeikTBHfi Ha rpUiHl.le B HlWbIlUeHHO% IlOptiCTOii 
cpene. &~a ~cex ebnueyrasamwx cnflaee ycnoelrft Ha rpawiqe nonyreHbI nonpo6iawe amumTn’U4ecxHe 
pememis nnn pacnpenenemil cropocrr A TehuxepaTypu. %icnennbre w am-i.n5iwwxHe pe3ynbTaTbi 

XOpOIUO COrJIaCyrOTCx. npH IIpOBepxe ~OJQ”leHHbIX Pe3yJIbTaTOB C 3MIlZpWeCKHMEi JJaHHblMH ,MS 

OJtHOl?O H3 cnysaes rpaHsiwbrx ycJxoBHl,a memo H(HnxocTH H nopsmok cpemi,nony~eHo XOpOUIee 

CQOTBCTCTBHe. 


