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Abstract-The buoyancy-d~ven convection in an open-ended cavity with an ob~t~~ting medium such as 
a porous material is analyzed in this work. The numerical rest&s of the flow and tem~~ture fields for the 
range of Darcy-Rayleigh number, Ru c 350 are given. The importance of the external corners in vorticity 
generation and flow instability augmentation is discussed. The presence of ‘humps’ as well as the periodic 
behavior in the variation of the Nusselt number with time are studied. The effects of important variables 
such as the aspect ratio, the temperature difference, and the Darcy-Rayleigh number on the flow field and 
the cavity Nusselt number are investigated. Comparisons are also made with previously reported studies 

of natural convection in a cavity 6lIed with a porous medium. 

3. INTRDDUCTION 

RUOYAMX-driven natural convection is an important 
mode of heat transfer in many engineering systems. 
Among various problems in natural convection, inter- 
nal Rows within enclosures have been studied exten- 
sively due to its widespread engineering ~pp~cations 
[l-6]. Numerous analytical, numerical and exper- 
imental results are readily available for enclosures 
with rectangular boundaries. The inAuence of impor- 
tant parameters such as the Darcy-Rayleigh number 
and the cavity aspect ratio has been thorou~ly inves- 
tigated for these enclosures. However, relatively few 
studies have been directed to thermally induced 
motion in open cavities or partial enclosures. The 
engineering applications of open cavities are impor- 
tant ; for example, fire spread in rooms, solar thermal 
central receiver systems, connections between res- 
ervoirs, nuclear waste repository, and the brake hous- 
ing commonly employed in a number of aircraft 
models. In recent years the buoyancy-driven con- 
vection in open cavities with a regular medium such as 
air has received some attention [7-91, but the flow and 
heat transfer processes in open as well as open-ended 
cavities with a porous obstructing medium remain to 
be investigated. This paper concentrates on the later 
case which is more general and complicated. The 
results for the open cavity case can be deduced from 
the open-ended cavity problem. 

The impo~ance of flow and heat transfer in open- 
ended cavities is further enhanced due to its basic 
geometry. This is because a number of complex 
geometries can be constructed from this basic 
geometry. An important consideration in an open- 
ended cavity problem is the treatment of the boundary 
conditions. In this study the open boundary conditions 
were taken into account accurately and with relative 
ease in the numerical scheme. 

In the present work the buoyancy-driven Bow and 
heat transfer in an open-ended cavity are modeled as 

a transient tw~dimensional problem. The effects of 
important variables such as the aspect ratio, the 
different temperature levels, and the Darcy-Rayleigh 
number on the Bow field and the Nusselt number are 
investigated. The results are presented in terms of the 
streamlines and the ~mperature contour plots. 

The results show some interesting interaction 
between the flow and temperature fields in an open- 
ended cavity. The results also indicate that the flow 
field inside an open-ended cavity and in the vicinity 
of the aperture planes is relatively insensitive to the 
boundary conditions provided that the computa~onal 
domain is extended far enough from the openings. 
The results also illustrate the dependence of thermal 
losses on temperature levels as well as the existence of 
time-dependent variations in flow and in the NusseIt 
number. The presence of ‘humps’ in the variations of 
the Nusselt number with time is investigated. Fur- 
thermore, the periodic behavior of the Nusselt number 
as a result of the recirculating eddies next to the lower 
block is illustrated and discussed. The results show 
the influence of the external comers in an open-ended 
cavity which augments the flow instabilities. The result 
also indicates that decreasing the aspect ratio has a 
stabilizing effect on the flow field. 

2. MAT~E~A~ICAL F~RMU~TION 

The present study considers an incompressible, 
transient, two-dimensional thermally driven buoyant 
natural convection flow due to the temperature 
differential in an open-ended cavity as shown in Fig. 
1. The geometry corresponds to a two-dimensional 
slot which is exposed to an ambient temperature T,. 
The lower and upper temperatures of the slot are T, 
and T2, respectively. The vertical portions of the two 
blocks are assumed to be adiabatic. The governing 
equations for flow through homogeneous porous 
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NOMENCLATURE 

aspect ratio, h/d .Y spatial coordinate, vertical [m] 
horizontal extent of the open-ended cavity Y dimensionless spatial coordinate, vertical, 

fm] Y/Q‘ 
~avitational acceleration [m s-l 
vertical extent of the open-ended cavity [m] Greek symbols 
Nusselt number se effective thermal diffusivity [m’ SC’] 
Darcy-Rayleigh number, ~~~~A~/~~~ B coefficient of volume expansion Kc-‘] 
time [s] E accuracy of calculation 
temperature [K] @ dimensionless temperature, 
lower block temperature [K] V- r,)i(r, - rC%J 
upper block temperature [K] K permeability 
free-stream temperature [K] V kinematic viscosity [m2 s - ‘1 
x-component velocity [m s-‘] 5 dimensionless vorticity 
y-component velocity [m s’] G thermal capacitance 
spatial coordinate, horizontal [m] 7 dimensionless time, a&r& 
dimensionless spatial coordinate, C# general dimensionless field variable 
horizontal, .x/d $ dimensionless streamfunction. 

FIG. 1. Schematic of an open-ended cavity with an obstructing porous medium. 
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media with Boussinesq approximation are 

au au _ QJB aT 
ay ax v ax (1) 

This formulation is based on the following assump- 
tions : (a) small temperature difference; (b) constant 
fluid properties except for the temperature effect in 
density variation ; (c) an incompressible fluid ; and (d) 
neglect of viscous heat dissipation. It should be noted 
that Darcy’s law is used to represent the flow field 
which neglects the boundary and inertial effects. These 
effects can become important for convective type flows 
[lo], however, they are neglected in this study. Equa- 
tions (1) and (2) may be made dimensionless by intro- 
ducing 

X=f, Y=$ 

a, a* a, a* 
u=JaY’ v= -7ax 

T- T, 
e=------ 

T,-T,’ 
7=CI,t 

od2 

KgBhA T 
Ra=------. AT= T,-T,. 

u,v ’ 

The resultant field equations in terms of the stream- 

. 

2h 

h 

2h 

function and the vorticity are 

de 
5 = -Raz 

v2* = 5 (4) 

de a+ ae a$ ae 
as+arax-Fxar=v2e. (5) 

The corresponding boundary conditions for an open- 
ended cavity as shown in Fig. 2 are 

$=O,e=l at Y= -5 for -fGX<: (6) 

t+b=o,e=e, 
A 

at Y=z for -f<X<+ (7) 

de 
J/=O,ax=O at X=*4 as Y-, foe (8) 

ae 
V=O,--0 as X-++co, forall Y (9) 

ax 

au 
6r=0,Fy=0 as Y-++co, for all X. (10) 

It should be noted that a number of numerical runs 
were made with several different far field boundary 
conditions. Among which equations (9) and (10) were 
chosen since they provided consistent numerical 
results. 

+aT, 0 
ax 

v-o+ 

+aT, 0 
ax 

FIG. 2. Schematic of the geometry of the problem with symmetry consideration and the boundary conditions 
used. 
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Due to symmetry of the problem, the corresponding 
boundary conditions at the line of symmetry are 

ae A A 
$=0,--O at X=0, for -P<Y<-. ax 2 2 

(11) 

The symmetry conditions were checked by performing 
a number of numerical runs for the entire open-ended 
cavity without using the symmetry conditions. It was 
found that the symmetry conditions do indeed exist. 
A preliminary experimental investigation based on 
the open-ended cavity geometry also confirmed the 
symmetry conditions. As a consequence of the sym- 
metry consideration the geometry of the problem is 
translated to that of an open cavity, i.e. a cavity of 
rectangular cross-section with one side face removed, 
as shown in Fig. 2. Therefore, the results presented 
here are also valid for the natural convection in open 
cavities with a porous obstructing medium subjected 
to the above boundary conditions. The initial con- 

ditions are 

Il/=r=Q=O everywhereat r=O (12a) 

except for 

0=1 at Y= -$, for -+<‘x<: (12b) 

t?=e2 at Y=-t, for :<x<:. (12c) 

The analysis of natural convection in an open- 
ended cavity with porous obstructing medium will 

encompass the simultaneous solution of governing 
equations (3t(5) subject to the boundary and initial 
conditions given by equations (6)-( 12). 

Introducing an overall cavity Nusselt number as 
the sum of the lower and upper blocks Nusselt num- 
bers and employing the dimensionless variables yields 

1 ae 
Nu=- - 

f I o aYY=mA,2 
dX+; ‘!! s I 2 0 3Y Y=A,? 

dX. (13) 

The rate of heat transfer from the lower and upper 
blocks to the fluid inside the open-ended cavity 
requires the solution of equation (13). 

3. NUMERICAL SOLUTION 4. RESULTS AND DISCUSSION 

In most natural convection flows of practical in- 
terest, a complete analytical solution is not possible 
and one has to depend on the numerical technique to 
obtain the desired results. The governing equations 
(3t(5) form a coupled non-linear partial differential 
equation that must be solved subject to the boundary 
conditions given by equations (6t( 10). The numerical 
scheme is based on finite difference versions of the 
governing equations. The time-dependent energy 
equation (5) was solved by ADI, a two-step implicit 
method. This method leads to a tridiagonal matrix of 
unknown temperatures which is then inverted by the 

Calculations were performed for values of 
Ra < 350. The bulk of the numerical runs were per- 
formed for an aspect ratio of 4 (which translates to an 
open cavity of square cross-section), a lower block 
temperature of 0, = 1, and an upper block tem- 
perature of e2 = 1. In order to study the effects of 
aspect ratio, numerical solutions for aspect ratios of 
1 and a were obtained. Furthermore, the effects of the 
relative temperature variations between the lower and 
upper blocks were investigated. In all cases the full 
transient behavior of the cavity Nusselt number were 
studied. In the remainder of this work, the term ‘open 

Thomas algorithm. It should be noted that at any 
node, the velocities are evaluated at time n and are 
treated as constant over that time step. The numerical 
solution to the streamfunction equation (4) was 
obtained by SOR, an implicit iteration method. The 

over-relaxation parameter of 1.75 was found to cause 
the optimum convergence rate. The convergence 
criterion for steady state solution was met when 
the relative difference in two consecutive time steps 
satisfied a prescribed tolerance given by 

where di, is a general symbol used for $, 5, and 8. 
The tolerance E was set to 10e3 for all three variables. 
It should be noted that at higher Darcy-Rayleigh 
numbers convergence was significantly faster for both 
temperature and streamfunction than the vorticity. 

To increase the accuracy and stability of the 
numerical scheme, the derivatives at the boundaries 
were incorporated through the governing equations. 
The vorticity boundary conditions were calculated 
directly from the vorticity transport equation (3) which 
is more consistent with the assumptions that are 
inherent in Darcy’s law. Since there are two kinds 

of temperature boundary conditions imposed on the 
convex corners, the numerical temperature evaluation 
of these points requires special consideration. For this 

reason at convex corners a multi-valued procedure 
[1 1, 121 for the temperature calculations was used. 
This method assumes a different temperature value at 
the corner point for each directional derivative. In 
order to simulate the open-ended region, the com- 
putational domain was systematically extended in 
both the horizontal and vertical direction. It was 
found that the reduction of the numerical domain to 
twice the length of the slot (24 in the &-x-direction 
and twice the height of the opening (2h) in the ky- 
direction was sufficient enough to simulate the open 
boundaries without any significant changes of the flow 
field inside the open-ended cavity. It should be noted 
that the effects of open boundaries and their exten- 
sions should be further studied. 
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cavity’, which corresponds to the geometry of half of were used inside the open cavity. The typical time 
an open-ended cavity, wiil be used for convenience. increment used was 3 x 10d3. Due to the uniform grid 

The present results were obtained on an quaI@ spacing employed in this work and the extensions of 
spaced grid of 5 1 x 51 points with 121 points inside the open boundaries, increasing the number of grid 
the open cavity for an aspect ratio of 4. The tota points inside the open cavity would result a large 
number of grid points varied for the cases with differ- increase in computational time. Although for low 
ent aspect ratios, but in all cases. at least 121 points Rayfeigh flows the results are fairly accurate, the 

FIG. 3. ~treamii~es and isotherms for Bz = 1~ A = 4 and Ru = 20 at steady state. 
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results for higher Rayleigh flows Re > 250 do give a 
good qualitative representation of the results. For 
more accurate results we need to employ the variable 
grid spacing. In fact, based on some preliminary runs 
with variable grids, we know that the given results 
especially for lower Rayleigh flows are fairly accurate. 

As shown in Fig. 3 for Ra = 20, the heat transfer 
mechanism inside the open cavity is conduction domi- 
nated. However, the convection mode of heat transfer 
is not totally insignificant, as indicated by the dis- 
tortion of the temperature field in Fig. 3. This dis- 
tortion lowers the conduction heat transfer in the 
vicinity of the aperture plane, where the convection 
contribution is responsible for most of the heat trans- 
fer. The flow field inside the open cavity is almost 
symmetric about the mid-height plane. Since the 
streamlines cannot cross over, the symmetry line 
serves to turn the flow 180”. The hot fluid exiting the 
open cavity will rise due to buoyancy and is faster 
than the flow inside the open cavity. The cold 
incoming fluid is sucked inside the open cavity from 
the lower part of the aperture at an angle. This is 
primarily because of the replacement of hot fluid exit- 
ing from the upper part of the open cavity. This suc- 
tion mechanism is responsible for an almost parallel 
flow along the lower block due to the replacement of 
fluid rising up along the symmetry line. At the same 
time as this flow travels along the lower block, the 
fluid is also heated from below due to the higher 
temperature of the lower block. As a result, there 
exists a conflict between the buoyancy forces and hori- 
zontal driving forces acting on the fluid particles with 
respect to time. These conflicting driving mechanisms 
are expected to cause ‘humps’ in the transient vari- 
ations of the cavity Nusselt number. This effect is 
indeed observed, as it is discussed in more detail later 
on. 

As Ra increases (20-100) the cold fluid penetrates 
further inside the open cavity. The streamlines and 
isotherms are spaced closer together in the vicinity of 
the lower block, as shown in Fig. 4. As a result of 
larger temperature gradient, the heat transfer from 
the lower block increases. The heat transfer from the 
upper block, which is mainly by conduction, also 
increases. The outgoing flows are much faster than 
the incoming flows. As a result, the flow field is no 
longer symmetric since the incoming flows occupy a 
larger portion of the open cavity. The approaching 
flow from the far field is either sucked into the open 
cavity or is carried up due to the viscous effect. As 
the Darcy-Rayleigh number increases, the horizontal 
temperature gradient for the outgoing flows close to 
the upper block decreases. As shown in Fig. 4 for 
Ra = 100, the isotherm near the upper block is almost 
horizontal and the thermally-stratified flow occurs 
along the upper block. The outgoing streamlines are 
also spaced closer together along the vertical insulated 
wall. This indicates the early stage of the wall plume 
formation. The interaction of the wall with the plume 
is to attract the plume toward it. as shown in Fig. 4. 

As Ra increases from 100 to 350, the incoming cold 
fluid penetrates much further inside the open cavity. 
Comparison of Figs. 4 and 5 shows that the streamlines 
and isotherms near the lower block are more clustered 
together for higher Ru. It also indicates that, as Ra 
increases, the incoming flow enters the open cavity at 
much faster rates. As a result of these higher velocities, 
the thermal boundary layer development along the 
lower block, which was witnessed for the case of 
Ru = 100, becomes thinner, as shown in Fig. 5. As it 
can be seen from Figs. 5 to 7, as Ra increases, the 
number of horizontal isotherms close to the upper 
block increases, resulting in a thicker region of the 
thermally-stratified flow in the upper part of the open 
cavity. The outgoing hot fluid also exits the aperture 
and rises up at much faster velocities, leading to a 
thinner wall plume along the upper insulated vertical 
boundary. 

As discussed earlier, there are two conflicting driv- 
ing mechanisms, i.e. horizontal driving forces and 
buoyancy forces, acting on the fluid particles along 
the lower block. For larger Ru, the buoyancy forces 
become more important and are responsible for the 
shape of isotherms close to the lower block, as shown 
in Figs. 6 and 7. This effect eventually leads to thermal 
instabilities for Ra = 350, where it was not possible 
to reach the steady state solution. Figure 7 shows the 
formation of a vortex in the central region of the open 
cavity. This is due to the viscous effect associated with 
the high velocities of the incoming and outgoing fluids. 
This vortex formation causes the incipience of the 
temperature distribution instabilities in the vicinity of 
the lower corner. 

Figures 8 and 9 illustrate the time evolution of the 
flow and temperature fields for Ru = 200 at con- 
secutive times within a cycle of 3Ar apart. The effect 
of the external corners in vorticity generation is clearly 
depicted in Fig. 8. As the time progresses, the central 
vortex moves out of the upper part of the aperture 
plane. The shapes of isotherms along the three bound- 
aries of the open cavity in Fig. 8 clearly show the 
presence of thermal instabilities inside the open cavity. 
These thermal instabilities may be explained by the 
two conflicting driving mechanisms acting on the fluid 
particles traveling along the lower block of the open 
cavity, as discussed earlier, i.e. horizontal driving 
forces and buoyancy forces. As a result, there exist 
small recirculating flow regions, or eddies, which are 
convected along the lower block and vertically up- 
ward along the symmetry line. Figure 9 indicates 
that, as the circulating flows move out of the top 
boundary of the computational domain, their viscous 
effects tend to smear out, giving rise to a parallel 
flow coming from the right boundary. The presence 
of the parallel flow clearly verifies the existence of 
rotational flow away from the openings and the 
accuracy of the far field boundary conditions used. 

In order to study the effects of different temperature 
levels on the flow and temperature fields, numerical 
runs were performed with upper block temperatures 
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FIG. 4. Streamlines and isotherms for O2 = 1, A = 1 and Ra = 100 at steady state. 
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FIG. 5. Streamlines and isotherms for 0 2 = 1, A = f and Ra = 200 at steady state. 
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FIG. 10. Streamlines and isotherms for C?* = 2, A = t and Ra = 100 at steady state. 
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FIG. I 1. Streamlines and isotherms for O2 = 4, A = f and Ru = 100 at steady state. 
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of (I2 = 2 and i. The results were obtained for an 
aspect ratio of i and lower block temperature of 
6 t = 1, and the Darcy-Rayleigh number of I&r = 100. 
These results are presented in Figs. 10 and 11, respec- 
tively. 

As the upper block temperature increases (0, = 2), 
the general observations made for the case of (!I2 = 1 
are also valid for this case with few remarks. Com- 
parison of Fig. 10 with its corresponding case of 
e2 = 1, shown in Fig. 4 indicates that, as Q2 increases, 
the the~ally-strati~ed flow region in the upper part 
of the open cavity is much thicker and forms at lower 
Darcy-Rayleigh number. Consequently, due to higher 
buoyancy forces associated with the outgoing tlows, 
they rise up with higher velocities, resulting in a 
thinner wall plume. 

As the upper block temperature decreases (0, = 3, 
most of the general observations made for the case of 
e2 = 1 are also valid for this case with few exceptions. 
The major difference lies in the rate of heat transfer 
from the upper block to the fluid particles inside the 
open cavity. In general, the major heat transfer con- 
tribution due to the tem~rature difference between 
the upper block and that of the environment is by 
conduction. However, for the case of t12 = 1, the con- 
duction effect is only limited to the early parts of the 
flow development when the initially cold fluid particles 
have not yet assumed high enough temperature levels. 
Once the fluid inside the open cavity reaches the tem- 
perature levels above that of the upper block, then the 
direction of heat transfer is reversed and heat would 
be transferred from the fluid to the isothermal upper 
block. But, for the case of e2 = 1, the direction of the 
heat transfer from the upper block to the fluid remains 
unchanged. This is basically due to the fact that the 
temperature of fluid particles everywhere inside the 
open cavity is less than the upper block temperature. 
Consequently, as it can be seen from Fig. 11, the 
formation of the thermally-stratified flow region along 
the upper block does not occur for the case of 8, = 4. 

Numerical runs with aspect ratios of I and ! were 
performed to investigate the effects of aspect ratio on 
the flow and temperature fields. The solutions were 
obtained for a fixed Darcy-Rayleigh number of 
Ra = 100, lower block temperature of e1 = 1, and 
upper block temperature of e2 = 1. The cor- 
responding streamlines and isotherms are presented 
in Figs. 12 and 13. Comparison of these results with 
the corresponding case of A = 4 (Fig. 4) indicates that, 
as the aspect ratio increases, the incoming cold fluid 
penetrates further inside the open cavity. As a result, 
the fluid flow instabilities are expected to occur 
earlier. This fact has been indeed confirmed by the 
numerical results. The above compa~son also indi- 
cates that, as the aspect ratio increases from f to I, 
the thickness of the thermally-stratified flow region 
increases while, for the case of A = a, the thermal 
stratification does not occur. It should be noted that, 
for the case of A = i, a stagnant fluid region exists 
where the heat transfer mechanism is conduction 

dominated. An increase in aspect ratio also has an 
effect on amplifying the unsteady behavior of the heat 
transfer from the lower block. 

4.1. Heat transfer results 
The cavity Nusselt number calculations were per- 

formed by numerically integrating expression (13) 
using Simpson’s rule. The transient behavior of 
the Nusselt number for t?* = 1, A = f and different 
Davy-Rayleigh numbers are shown in Fig. 14. 

Initially, the sharp gradients near the lower and 
upper blocks are responsible for a rapid rate of heat 
transfer and their corresponding high Nusselt 
numbers. As shown in Fig. 14(a), for Ra < 200, the 
cavity Nusselt number oscillates with a decaying 
amplitude. These oscillations are due to the existence 
of thermal instabilities in the early stages of the flow 
development, as previously discussed. As time increases, 
the cavity Nusselt number asymptotically approaches 
a steady state value. Figure 14(a) shows that an 
increase in Ra will result in earlier presence of ‘humps’. 
This is expected since the time for the heating process 
of the Auid particles along the lower block to take 
place decreases for the higher Ra flows. For higher 
Darcy-Rayleigh numbers, as these ‘heat bubbles’ 
move, diffusion effects have less chance to smear 
out their thermal identities. Consequently, as Ra 
increases, the frequency of the oscillations in the cavity 
Nusselt number increases. For values of Ra 2 250, 
the unsteadiness appears as a sequence of recirculating 
eddies, or ‘hot spots’, with respect to time. As a result, 
the Nusselt number exhibits a periodic behavior with 
respect to time, as illustrated in Fig. 14(a). It should 
be noted that this type of quasi steady fluctuations of 
the Nusselt number is characteristic of an open cavity 
system with a porous obstructing medium and does 
not appear to occur in a closed cavity system. 

Figures 14(b) and (c) present the typical transient 
behavior of the upper block, lower block and cavity 
Nusselt numbers for Ra = 200 and 350, respectively. 
As it can be seen from the above figures, the bottom 
block Nusselt number, Nz+, is higher than the one for 
the top block, A&. This is primarily due to the fact 
that the heat transfer from the upper block is mainly 
by conduction, whereas the heat transfer from the 
lower block is convection dominated. As discussed 
earlier, due to thermal instabilities along both blocks, 
the corresponding Nusselt numbers would exhibit an 
oscillatory behavior, which are shown in Fig. 14(b). 
Figure 14(c) shows that the periodic behavior of both 
the upper and lower block Nusselt numbers have 
the same period, which leads to an overall periodic 
behavior of the cavity Nusseit number having an 
amplitude equal to the sum of each individual ampli- 
tude. Figure 14(c) also shows that the amplitude of 
the upper block Nusselt number is greater than the 
corresponding one for the lower block. This effect is 
explained by the fact that the flow along the upper 
block starts out with an inherent instability passed on 
from the flow situation over the lower block. Figure 
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FIG. 12. Streamlines and isotherms for B2 = 1, A = I and Rn = 100 at steady state, 
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FIG. 13. Streamlines and isotherms for e2 = 1, A = f and RQ = 100 at steady state. 

15(a) indicates that, as f12 increases, the oscillatory 
behavior of the cavity Nusselt number becomes more 
pronounced. Figure 15(b) presents the effect of aspect 
ratio on the Nusselt number. It can be seen from Fig. 
15(b) that decreasing the aspect ratio has a stabilizing 
effect on the iiow fluid. 

A summary of the upper block, lower block and 
cavity Nusselt number is presented in Table 1 for a 
variety of different conditions. The results show that, 
in general, the cavity Nusselt number increases with 
increasing Darcy-Rayleigh number, increasing the 
upper block temperature and increasing aspect ratio. 
The influence of different upper block temperature 
levels on the heat transfer from the lower and upper 
blocks is complex. As 13~ increases, the upper block 
Nusselt number increases considerably due to the 
larger temperature gradients. At the same time, the 

689 

lower block Nusselt number increases slightly. This is 
explained by analyzing the heat transfer from the 
lower block to the fluid inside the open cavity. The 
heat transfer from the lower block encounters two 
opposing effects. The first effect is due to the nature 
of flow along the lower block, which is more vigorous 
for higher O2 that initially gives rise to higher heat 
transfer to fluid elements. Secondly, due to higher core 
temperature for higher e2, the capacity of the fluid 
particles next to the lower block to remove heat from 
the block is decreased. Consequently, as 6* increases, 
the lower block Nusselt number slightly increases. 

In order to check the validity and the accuracy 
of the numerical scheme used, the computer pro- 
gram was slightly modified through its boundary 
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FIG. 14. {a) Time history of the cavity Nusselt number for 8,: = 1, A = $ and different Darcy-Rayleigb 
numbers. (b) Time history of the lower, upper block and cavity Nusselt numbers for 8, = 1, A = f and 
Ra = 200. (c) Time history of the lower, upper block and cavity Nusselt numbers for O2 = 1, A = 4 and 

Ra = 350. 

conditions. This modification was done by imposing 
the adiabatic far field boundary condition at the aper- 
ture plane of the open cavity and changing its orien- 
tation by 90” in the ctockwise direction. The new 
~~~ra~on is the familiar porous medium problem, 
which is enclosed by rectangular boundaries. 

Comparisons were made with the work of Bankvall 
[S] using the grid sizes of 21 x21, aspect ratio of 1, 
and Ra d 200. The results indieate a deviation of 
about 14% in the worst case (Ra = 200) from that of 
Bankvall’s. Due to the explicit scheme employed in 
ref. [S], this type of deviation can be expected. 

Furthermore, comparisons were also performed 
with the work of Shiralkar et aE. [6] for the grid sizes 

of 81 x 51, an aspect ratio of I, and Ra 6 IfNO. As 
mentioned in ref. [6] beyond a value of Ra > 1000, 
convergence was not possible due to numericai insta- 
bilities associated with higher rates of convection. The 
~rnp~t~d Nusselt numbers from this investigation 
and the corresponding ones reported in ref. [6] are 
tabulated in Table 2. As can be seen from Tabie 2 the 
agreement is quite good, 

5. CONCLUSIONS 

Buoyancy-driven flow in an open-ended cavity with 
obstructing porous medium is investigated in this 
work. A detailed study of the flow characteristics as 



Natural convection in open-end& cavities with a porous obstructing medium 691 

FIG. 15. (a) Time history of the cavity Nusselt number for Ru = 100, A = f and different 02. (b) Time 
history of the cavity Nusselt number for Ru = 100, O2 = 1 and different A. 

well as the heat transfer analysis inside the open-ended 
cavity is performed. Steady state as well as transient 
results have been obtained through solution of the 
moments and energy equations for various Darcy- 
Rayleigh numbers, aspect ratios and different tem- 
perature levels. 

The numerical results indicate that the flow field 
inside the open-ended cavity and in the vicinity of the 
aperture plane is relatively insensitive to the far field 
boundary conditions provided that the boundaries are 

set far enough from the opening. The results also 
show that the external corners in an open-ended cavity 
present a crucial influence on the flow pattern and the 
heat transfer process. Their influence is identified as 
the vorticity generation and flow instabilities aug- 
mentation at the corners. The transient results show 
that thermal instabilities initially develop along the 
lower block but disappear at later times as the flow 
penetrates further into the open cavity. The transient 
results also indicate that the vorticity is fed into the 
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Table 1. Summary of’the steady-state Nusselt numbers for different cases 

Ra (A = ;I& = ;, 0, = I. II, = 2) (A = l/O, = 1) (A = :/sz = 1) 

10 2.496t 
1.5761 
0.92oQ 

20 3.664 
2.445 
1.219 

50 0.449 6.578 10.831 
4.271 4.541 4.873 

-3.822 2.037 5.958 
100 1.183 10.168 15.622 

6.742 6.870 7.018 
-5.559 3.298 8.604 

200 2.590 14.884 21.643 
9.416 9.439 9.463 

- 6.826 5.445 12.180 
250 18.93-16.20 

11.83-10.78 
7.1e5.42 

350 23.60-22.28 
14.41-13.17 
9.19-7.11 

13.412 5.054 
7.543 3.668 
5.869 1.386 

t The cavity Nusselt number. 
$ The lower block Nusselt number. 
§The upper block Nusselt number. 

aperture plane by the lower block eddies, causing the 
oscillatory behavior in both the lower and upper block 
heat transfer rates. The results also illustrate that flow 
unsteadiness arises from values of Ra > 250. The 

unsteadiness appears as a sequence of recirculating 
eddies, which originate at the corner of the lower 

block. These eddies flow along the lower block toward 
the symmetry line, where they rise. This phenomenon 
has a periodic effect on the heat transfer inside the 
open cavity. It is found that decreasing the aspect 
ratio has a stabilizing effect on flow field. The influence 
of an increase in the temperature of the upper block 
is to considerably enhance the heat transfer from the 
upper block while slightly increasing that of the lower 
block. 

Table 2. Comparison of the Nusselt numbers for various 
Darcy-Rayleigh numbers 

Ra NU NU* 

100 2.967 3.115 
200 4.774 4.976 
500 8.938 8.944 
700 11.125 10.969 

1000 14.140 12.534 

The asterisk (*) indicates the values from ref. [6]. 
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COME-ON NATURELLE DANS DES CAVITES OUVERTES AVEC UN MILIEU 
POREUX OBSTRUANT 

R&m&-La convection naturelle dam une cavite a extremite ouverte avec un milieu obstacle tel qu’un 
mat&au poreux est analyd dam ce travail. Les resultats numeriques de 1’4coulement relatifs aux champs 
de vitesse et de temperature sont don& pour le domaine de nombre de Darcy-Rayleigh Rn 6 350. On 
discute l’importance des coins extemes dans la generation de tourbillon et d’augmentation d’instabilitt 
d’ecoulement. On etudie la presence de “bosses” et le comportement ptriodique dans la variation du 
nombre de Nusselt avec le temps. I.es effets des variables importantes comme le rapport de forme, la 
difference de temperature et le nombre de Darcy-Rayleigh sur le champ de vitesse et sur le nombre de 
Nusselt de la cavitt sont analyses. Des comparaisons sont aussi faites avec des etudes anterieures de 

convection naturelle dans une eavite remplie par un milieu poreux. 

NATtiRLICHE KONVEKTION IN OFFENEN, MIT EINEM POROSEN MEDIUM 
GEFULLTEN HOHLR~UMEN 

Znsammenfassung-In dieser Arbeit wird die nattirliche Konvektion in einem offenen, mit einem poriisen 
Medium geffillten Hohlraum untersucht. Es werden numerische Ergebnisse fur Stromungs- und Tem- 
peraturfelder bei Darcy-Rayleigh-Zahlen Ra < 350 angegeben. Die Bedeutung von aul3eren Ecken bei der 
Wirbelbildung und bei der VergrGBerung der Striimungsinstabilitat wird diskutiert. Der Einflug von 
‘H&kern und das periodische Verhalten bei der zeitlichen Andenmg der Nusselt-Zahl werden untersucht. 
Es werden die Einfliisse wichtiger Parameter wie das Seitenverhlltnis, die Temperaturdifferenz und die 
Darcy-Rayleigh-Zahl auf das Striimungsfeld und die Nusselt-Zahl im Hohlraum untersucht. Vergleiche 
mit frilher veriiffentlichten Studien iiber die natiirliche Konvektion in einem Hohlraum, der mit einem 

poriisen Medium gefiillt ist, werden angestellt. 

E~E~TBEHHA~ KOHBEK~H~ B OTKPbITbIX IIOJIGCTl;lX, 3A~O~HEHHbIX 
I-IOPHCTO~ CPEJIOR, ~PE~~T~BY~~~ TEYEHMIO 

Amoraum+Amumssrpyercx abr3btaaeMax nonae~~oii cn_noL ~o~nexttmr B o~xpbrroii ~OJIOCTH, sanon- 
wemioii nopmmm k4aTepmnohf,ro~oparP npennTcrsy~reqeHalo.npHeeneHsr wcnentndepe3ynbTam 

_II,JM noneii TeSeHxn ti TeMnepaTypar np~ 3Ha9emnx wcna fiapcn-P3nes Ra?; 350.06cyrmacrcn ponb 

ewyqmwix yrnoe nonocm B rewepkipomim 3amxpemocm H ycmemm weycroS+umxm Teqeftm. 

Mwnenywrcn nonaneme “rop6oa” wa KPHEMX H nep~ommcme H3bietieHm BO epebtew wcna Hyc- 
cenbTa. W3paeTcn mwmte Tamx ~azfimx nepebietnmqwax omomeme pa3Mepoe nonocrrt,pa3sccrb 
TeMneparyp n qncno Aapcri-P3nen, na none reeSennn n 9ncno HyccenbTa nm noncern. Hpoaeneno 
cpaetiennec ~3~~bl~~pe3ynbTaTa~~nomr"enosax~w,ecrecrBe~~o#ro~Ben~~anon~~,3anon- 

Hemioii nopmmdhsh+aTepuanoh4. 


