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Abstract-In this paper, a numerical study of heat and mass transfer with phase change in porous materials 
is performed. The problem is modelled by a system of transient inter-coupled equations governing the two- 
dimensional multiphase transport process in porous media. The solution algorithm allows full simulation 
without any significant simplifications. The variations and the interrelationship between the temperature, 
vapor density, condensation rate, liquid content and the fluid velocity fields are demonstrated and discussed 
in detail. It is found that the aspect ratio of the porous matrix does not have a significant effect on the 
Nusselt number results. Furthermore, it is found that the one-dimensional model is not valid when the 
boundaries of the porous matrix are subjected to a small or zero pressure difference and that the constant 
pressure simplification would generate significant errors under some circumstances. The present analysis, 
which presents a full simulation of the problem for the first time, can be applied to a class of problems on 

heat and mass transport with phase change through a porous medium. 

1. INTRODUCTION 

A NUMBER of applications in thermal engineering 
require a good working knowledge of heat and mass 
transfer in porous media. Such applications include 
building insulations, heat exchangers, grain storage, 
energy conservation, drying technology, oil extraction 
and geothermal systems, etc. An important topic in 
the area of energy conservation and building insu- 
lation design relates to the influence of condensation 
on the thermal performance of a porous insulation 
matrix. Water vapor condensation can take place any- 
where in a porous insulation when the vapor density 
is greater than the saturation vapor density which 
corresponds to the local temperature at that point. 
The condensation phenomenon has been observed in 
a porous wall insulation especially when the insulating 
material is exposed to large temperature differences 
and high humidity environments. As the condensation 
occurs, the latent heat of vaporization is released act- 
ing as a heat source in the heat transfer process. 
Furthermore, the liquid phase resulting from con- 
densation will cause a significant increase in the energy 
transfer across the insulation and hence it affects the 
thermal performance of the insulation. In addition, 
the condensate deteriorates the quality of the porous 
materials. 

In general, a wet porous insulation consists of three 
phases which are the solid matrix, the liquid water, 
and a binary gas phase composed of air and water 
vapor. In the gas phase, there is vapor diffusion due 
to the vapor concentration gradients, bulk convection 
due to the density variation induced by temperature 
gradients, and air infiltration due to the small differ- 
ence in gas pressure across the insulation. There is 

heat conduction in all three phases, heat convection 
in the gas phase and the liquid phase if the liquid 
phase is mobile. In addition, there is heat transfer 
caused by phase change at the gas-liquid interface. 

There has been some experimental work on this 
subject [l-3]. However, these studies were conducted 
for some specific applications and hence the findings 
can only be applied to some particular problems. In 
the semi-analytical work of ref. [4], the condensation 
process is characterized in terms of three distinct 
regimes. However, analytical solutions [4] based on 
one-dimensional formulation were obtained for the 
second regime (quasi-steady approach) only. In a pre- 
viously related work [5], the condensation problem 
was modelled as one-dimensional multiphase heat 
and mass transport accompanied by phase change. 
The transient as well as the steady-state solutions 
were obtained. In another previous work [6] the 
two-dimensional unsteady transport process was 
considered, however, several important simplifying 
assumptions were made in arriving at the solutions. 
Apparently there is indeed a need for a more rigorous 
and extensive investigation of this subject without any 
significant simplifications. 

This paper investigates transient two-dimensional 
heat and mass transport accounting for phase change 
in a porous matrix. Different versions of numerical 
schemes are thoroughly studied in order to examine 
the stability and accuracy. The variations and the inter- 
coupling effects of the important field variables such 
as temperature, vapor density, condensation rate and 
liquid content are presented. The transient heat trans- 
fer rate through the insulation is quantified and the 
validity of using a one-dimensional or constant pres- 
sure assumption is investigated. The location and 
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NOMENCLATURE 

aspect ratio, Rile 
Biot number referring to heat transfer, 
rZ .r 
Wk,,o 
Biot number referring to mass transfer, 

~*J%fT,, 

Biot number referring to species 
transport, Ii&?,,, 
dimensional heat capacity for the ith 
phase at constant pressure 
[Wskg-‘K-‘1 
reference heat capacity [w s kg- ’ Km ‘1 
average heat capacity [w s kg- ’ K- ‘1 
effective vapor diffusivity coefficient 
[m’s_ ‘1 
dimensionless gravity vector 
heat transfer coefficient yW m- 2 Km ‘1 
mass transfer coefficient [m s- ‘1 
species transfer coefficient [m s- ‘1 
enthalpy of vaporization per unit mass 

IJW’I 
height of the porous insulation [m] 
dimensional thermal conductivity for 
phase i [W m- ’ K- ‘1 
-&&)/a(i;) [Nm-2K-‘] 

-XEj,)I& [Nm-‘1 
dimensional effective thermal 
conductivity [w m- ’ K- ‘1 
permeability [m”] 
effective liquid permeability [m’] 
effective gas permeability [m’] 
relative permeability for the liquid 
phase 
relative permeability for the gas phase 
thickness of the insulation [m] 
Lewis number, &e,,/b, eR 
dimensional condensation rate 

[kgm -3s-‘l 
dimensionless air pressure, &,/j&o 
capillary pressure, p, -pD [N rn- “1 
dimensionless vapor pressure, j$/j&o 
dimensionless gas phase pressure, 

p,lP,. 0 
Peclet number, V,,,~/C&~ 
characteristic length of the porous 
matrix [m] 
air gas constant [N m kg- ’ K- ‘1 

vapor gas constant [N m kg-’ Km ‘1 
scaled fractional liquid saturation, 

isp - s,,)/( 1 - sgpj 
fractional liquid saturation, E&(E~+E.,) 
saturation for the immobile liquid 
dimensionless time, $‘(e2/E,ff,o) 
dimensionless temperature, F/AT 
reference temperature for the hot side 
of the insulation [K] 
reference temperature for the cold side 
of the insulation [K]. 

Greek 

&K, 0 

Pi 

PY 
6fi 

w 

symbols 
reference effective thermal diffusivity, 

%R,o/(~~~o) [m’ S- ‘I 
volume fraction 
liquid dynamic viscosity [kg mm ’ s- ‘1 
gas dynamic viscosity [kgm- ’ s- ‘1 
dimensional total density defined in 
equation (16) [kg m- ‘1 
dimensionless density for phase i, ~,/p,,~ 
dimensionless vapor density. pV/pV,o 
surface tension at the gas and liquid 
interface [N m- ‘1 
relative humidity. 

Subscripts 
a air phase 
eff effective properties 
i ith phase 
S saturation quantities 
V vapor phase 

; 

component in the x-direction 
liquid phase 

Y gas phase 

FI 
solid matrix 
reference quantities 

cc ambient quantities in the surroundings. 

Superscript 
dimensional quantities. 

Other symbol 

0 ‘local volume average’ of the quantity. 

regions of high liquid accumulation are analyzed. the local volume averaging technique. An averaging 
Also, the interesting effects of variations of the aspect volume V which is bounded by a closed surface in the 
ratios and humidity levels on the condensation rate, porous medium is composed of three phases, the solid 
liquid accumulation and the energy transfer are also phase V,, the liquid phase V,(Z), and the gas phase V,,(t). 
discussed in detail. The spatial average for a quantity Y is defined as 

2. ANALYSIS <‘i’>=; YdV. 
s 

(1) 
The governing equations for the multiphase trans- V 

port process in a porous medium are derived by using Another important averaging quantity of interest is 
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the intrinsic phase average which is given by 

Y’,dV (2) 

where Y’, is a quantity associated with phase a. 
The derivation of the governing equations for heat 

and mass transport in a porous insulation is based on 
Whitaker’s work [7] which involves a significant 
amount of mathematical manipulation. The only 
major assumptions which are made in order to arrive 
at the governing equations are : (1) the porous insu- 
lation material is homogeneous and isotropic; and (2) 
the porous system which consists of the solid, liquid, 
and gas phases is assumed to be in local thermo- 
dynamic equilibrium. Aside from these assump- 
tions, the governing equations are very general and 
the results which are presented and discussed in this 
paper can be applied to a class of problems in heat 
and mass transfer in porous media with phase change. 
The governing equations after nondimensionaliz- 
ation are given as follows : 

thermal energy equation 

___ ~~,<vV<T> 
a<v + PlP2P18 

at P 

+ P~P~~~pe(pJyvy)~v(T) 
19 

++rir) = P,,V2(T)++‘P,,*V(T); (3) 
19 

I:-..:A ,&,,a ,,..,+:,, ,.C+..,-.t:,... 
llyulu puasz G;cll.ulU”ll “1 ll‘“Cl”ll 

(~8) = -K,B(V&B+*TV<T>-Jlgg); (4) 

liquid phase continuity equation 

gas phase equation of motion 

<v,> = PzoKr/(-V(Pg)y+Pl,<py)yg); 

gas phase continuity equation 

(6) 

~(~y<Py)*)+PeV~(<py~y<vy))- k(k) = 0; 

gas phase diffusion equation 

= ~V-[<PJ~V($$]; (8) 

volume constraint 

E,+E#q+E, = 1 ; 

thermodynamic relations 

<pv>’ = f’s<~vY<T) 

(9) 

(10) 

<pa>’ = J’,<P,)~<T) 

<P,>’ = - LL \rv, P.. (0~ \y +P;&$ 

0,)’ = p,3<P”)y+p,4<Pa)y 

(11) 

(!2) 

(13) 

<PJ = &exp ( - p1$,‘t6 + 3 > (14) 

where the dimensionless variables and the controlling 
parameters are defined in the Appendix. The variable 
properties in the porous insulation are 

D = &b~..+&B~B+&y(<P”)Y+<~~a>Y) (16) 

c 

P 

= %7P& +QP& +~y((i%Y~” + <PaYc3) 
kj 

(17) 

(18) 

The main variables of interest in the above equa- 
tions are the temperature T, the liquid volume fraction 
Ed, the vapor density pv, the gas density py, the gas 
volume fraction E,, and the condensation rate ti. The 
quantities with a subscript ‘0’ denote the reference 
quantities, and the variables with a bar on top of 
them refer to dimensional quantities. The controlling 
parameters PI, Pz, P,, P,, Pg, and P,,-PI.,, which 
are defined in the Appendix, are constants and are 
Iixed by the choice of the reference quantities. P3, P,, 
and P,g are the parameters which vary with the vari- 
,+:,.. ,.Fti., ,..,...,..L,” D “..A rl -..a *Lx “a” rl;m.v. ‘LU”ll “I LUG ~L”,.XX UGD. 1 , =, ‘UlU 1 ,6 ‘Xl57 C”c. IIVII-L”lIIcil‘- 
sional parameters which appear in the Clausius- 
Clapeyron equation. P, 5 accounts for the Kelvin 
effect and is far less dominant than PI6 in determining 
the saturation vapor density. P,, Pe and Pzo have a 
direct influence on the gas phase convective terms. P5 
accounts for the body force, and Pe and P2,, affect the 
numerical stability. $g and $T describe the relative 
imnnrtan,.~ nf m.nvitv snrl thmmol nrsA;nmt~ ;n tronn- ““y”‘cYl.vI “1 6-u 1 I%, UIlU CI1WL11AcaA ~‘UUnw”CO 111 CIUIIU- 

porting the liquid phase. Finally Le and $, are the 
controlling parameters which characterize the import- 
ance of the vapor diffusion and liquid transport 
relative to the energy transport. 

It should be noted that non-Darcian effects are 
assumed to be negligible in this study. This assump- 
tion is justified due to the following reasons. Vasseur 
et al. [8] used the results of ref. [9] to examine the 
validity of Darcy’s law. Two conditions which respec- 
tively characterize the inertia and the boundary 
effects, should be satisfied if the results obtained from 
Darcy’s law are to be within a 10% error band 

_ 6~10-~J 

‘< (1 --E,)F,/R 
and t > Pr,/(K/(l-6,)) (19) 

where ii is the characteristic fluid velocity, j the kin- 
ematic viscosity, (1 -E,) the porosity, F a coefficient 
related to the inertia parameter, g the permeability, 
E the characteristic length of the porous material, and 
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Pr is the Prandtl number. Based on the data used in 
the calculation, these two conditions are apparently 
satisfied. The dispersion effects are also neglected in 
this study. It is also noted that the effective gas per- 
meability KY and the effective liquid permeability for 
partially liquid saturated media I?8 can be expressed 
as the multiplication of the permeability R and the 
relative permeabilities, KrB and Kryr as 

KY = K,,I? 

Kp = K&. (20) 

Based on the relative permeability model suggested 
by Wyllie [lo] which agrees well with the data in Fatt 
and Klikoff [l l] and is also used in Udell [12], the 
relative permeabilities are taken to have the following 
forms : 

KTp = s3 

Kry = (1-s)’ (21) 

where 

s _ SP -s/b 
1 --s/Q 

and 

% 

s/J = ---- Ep+t$ 

(22) 

(23) 

The variable ssp is the saturation of the liquid in the 
pendular state in the porous medium. Below this satu- 
ration, the liquid is essentially immobile due to no 
inter-pore connections. There were no concrete exper- 
imental data available for sgp, however a value of 0.1 
was found to be a reasonable one. This value was also 
used in Kaviany and Mittal’s work on drying [13]. 

2.1. Convective boundary conditions 
In addition to the specified-value type of boundary 

conditions, another type of boundary conditions is 
also frequently encountered. The convective bound- 
ary conditions at the porous media-surrounding gas 
interface were obtained in a way which was similar to 
the derivation of the governing equations [14]. The 
non-dimensional boundary conditions for the mass. 
energy and species balance are written as follows : 

mass balance 

(PIJ/E(vP)+PeP,(p,.>‘(v,>).n 

= B*P,(<P;>’ -P,) ; (24) 

energy balance 

P,P,$,(vs)‘n+P,,VT*n = B(T,-CT)): (25) 

species balance 

I PI~,<v,~)+PeP,PII(p,)‘(v,) 

P‘lP,, - -Le(Py)YV $$ 
( 11 *n Y 

= B$‘2,, (<P,)’ -pm) (26) 

where n is the unit normal vector which points out 
from the porous medium into the surrounding gas 
phase, and B*, Band B, are the Biot numbers referring 
to, the mass transfer, heat transfer, and species trans- 
port, respectively. In particular for the impermeable 
and insulated boundary conditions, all of these three 
Biot numbers are equal to zero, and hence the right- 
hand sides of equations (24)-(26) reduce to zero. 

3. PROBLEM STATEMENT 

To investigate two-dimensional transient heat and 
moisture transport accounting for phase change in a 
porous insulation, a systematic study has been per- 
formed on a case which is important from a fun- 
damental point of view as well as the application side. 
The schematic diagram is shown in Fig. 1. The top and 
bottom boundaries are insulated and impermeable, 
while the left and right boundaries are exposed to two 
different environments. a hot and humid environment 
on the left-hand side and a cooler environment on 
the right-hand side. The boundary conditions on the 
temperature, relative humidity, liquid content and the 
gas phase pressure for the ieft and right boundaries 
are specified as 

T, = T(X = o,)?. t) = 15.4 

T, = 7’(x = l,~, t) = 14.65 (27) 

0 < Wh = 0(X = 0.J. C) < 1 

w, =w(x= l,v,t) = 1 (28) 

&6(X = o,L’. 1) = 5.0 x 1o-5 

+(x= I,y,t) =o (29) 

’ Insulated 
and 

/ Impermeable 

and 
Impermeable 

FIG. 1. Schematic diagram of a two-dimensional porous 
matrix. 
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P$ = O,Y, 0 = 1 Nu,, = 

p&c = l,y, t) = 1. (30) 

It should be noted that the above non-dimensional 
temperatures translate into F,, = 308 K and pc = 293 
K which are based on physical grounds. For the top 
and bottom walls, equations (24)-(26) were 
employed. Since the top and bottom boundaries are 
subjected to insulated and impermeable boundary 
conditions, the Biot numbers, B*, B and B,, are set 
equal to zero in equations (24)-(26). 

The Nusselt number, as defined in equation (32), 
accounts for the contribution of heat conduction, 
infiltration and bulk convection. The physical data 
used in the numerical experiments, which were based 
on the use of a fibrous insulation, are listed in Table 
1. It should be noted that even though the Kelvin 
effect has been taken into account in equation (14), a 
surface tension of 0.07 kg m-* translates into 
P,, << P,, if O(P) > lo-‘m. This fact was also given 

in ref. [ 151 where it was mentioned that surface tension 
presented very little effect on the saturation vapor 
pressure. 

3.1. Initial conditions 

T&y, t = 0) = 14.65 

w(x,y,t=O) = 1 

Efi(X?_Y? t = 0) = 0 

py(x,y,t=O) = 1. (31) 

To evaluate the heat transfer across the porous 
insulation matrix, the non-dimensional heat transfer 
rate at the hot surface, Nu,,, which includes both the 
heat as well as the mass transfer is given as 

APIP(T~-- T,) 

(32) 

4. SOLUTION METHODOLOGY 

At first, it seemed that the governing equations were 
well suited to be solved by the MacCormack method 

Table 1. Physical data 

(a) Reference quantities 

PO 50 
(kg m-‘) (J kg-’ K-‘) (k$-3) 

&I 
(kg m- ‘) 

A.0 
(kg m-‘) 

(Np1y;I-~) 
f 

(w m2°K- 1) 

76.89 842 0.03966 1.08216 1.12182 308 1.013 x IO5 0.026 

(b) Solid phase 

8, 

0.03 

PO 
(kg m-7 

(Jkg?K-‘) wm$-‘) 

2563 835 0.043 

(c) Liquid phase 

“! (J kg- K-‘) (W rn” K-l) (kg rn’l SC’) 

1000 4182 0.603 0.8 x lo-’ 

(d) Gas phase 

(J kg%‘) 
E 

(Jkg?K-l) (Wm-+) (Wm&) (Jkg:'K-,) (J kg’aK- ‘) (kg rn” s-‘) 

1866 1000 0.0191 0.0262 462 287 1.846 x 1O-5 

(e) Other quantities 

(2) 
&>ca 

(m’ s- ‘) 

7.25 x lo-” 2.8 x 1O-5 20 2.4425 x 106 0.07 



1266 K. VAPAI and H. C. TIEN 

(either explicit or implicit) or the Beam-Warming 
method, which are used to solve Navier-Stokes equa- 
tions 1161. However, the difficulty in employing such 
numericai schemes to solve these governing equations 
is twofold. First, these transport equations are so com- 
plicated that they cannot be rearranged into con- 
servative form without a loss of accuracy, as both the 
MacCormack and the Beam-Warming methods can 
be used only when the equations are cast in the con- 
servative form. Furthermore, the source terms in some 
of the governing equations add on an additional 
difficulty when we applied such schemes to solve the 
governing equations. These problems were also en- 
countered by Reddy et al. [17]. Based on the above 
reasons, an explicit finite difference method was used 
in order to obtain the most accurate results. This 
numerical scheme consists of two different formats in 
time and space depending on whether the phase 
change occurs or not. According to the experimental 
results of Langlais et al. [3], those values of s8 < lo--’ 
are considered to be part of the adsorbed water. 
Therefore, the condensation rate is set equal to zero 
at any time and location where .sa < lo-‘. When 
es < lo- 5: vapor cannot be regarded as being at the 
saturation state any more and hence no bulk con- 
densation is possible. The detailed description of this 
two-phase algorithm is given in Vafai and Whitaker’s 
work 161. 

In the forementioned numerical scheme, the spatial 
derivatives are discretized by the central differencing 
except for most of the convective terms which are 
approximated by several different forms of upwind 
differencing. Since the physical phenomenon for this 
problem is highly transient and complicated, the 
required time step size must be quite small. Numerical 
experimentation was conducted for different versions 
of upwind differencing methods such as first-order 
upwind, third-order upwind, and third-order upwind 
plus fourth-order artificial viscosity, etc., to determine 
the accuracy and numerical stability of each scheme. 
After extensive numerical experimentation was per- 
formed on all of these different forms of the upwind 
differencing, the first-order upwind difference scheme 
was chosen to approximate the convective terms, 
except in the gas continuity equation, due to its 
numerical stability. This numerical scheme was 
further compared with several semi-implicit schemes 
(i.e. the implicit schemes were used in solving some of 
the transport equations which have strong convective 
terms). It was found that the total computational 
time could not be reduced by using the semi-implicit 
schemes. As a side product of these extensive com- 
parisons it was found that the results from all of the 
above-mentioned schemes (explicit or semi-implicit) 
were in very good agreement with each other. 

It was found that the higher the gas permeability 
is, the stronger the convection terms will be, and hence 
a smaller time step size is required. This is because the 
gas phase permeability directly affects the advection 
terms and hence it has a very signi~~ant effect in 

determining the time step size. This fact can be easily 
seen after examining the expression for P,, in the 
Appendix. For this reason, the value of permeability 
used in this work was chosen to represent a typically 
high porosity insulation material so that, in addition 
to corresponding to a very important application, it 
will also highlight some of the pertinent features of 
the analysis. For such a highly porous material, the 
required time step size is relatively small. Of course 
the time step size is also affected by the number of 
grids. The required time step size becomes much 
smaller as we refine the grids. 

5. RESULTS AND DISCUSSION 

As mentioned earlier, this work is aimed at a fun- 
damental investigation of the thermal behavior of the 
porous material and the dynamic response and the 
interaction between the field variables such as tem- 
perature, liquid content, vapor density, and the con- 
densation rate in a two-dimensional porous medium. 
It is also aimed at investigating the effects of the aspect 
ratios, humi~ty levels and some other pertinent physi- 
cal parameters. 

Figure 2 shows the temperature distribution inside 
a porous matrix at four different times. As shown 
in Fig. 2 the interior temperature of the insulation 
material is found to increase with time when the tem- 
perature is suddenly increased at the left boundary. 
The temperature rise results from simultaneous heat 
conduction and heat convection along with con- 
densation which acts as a local heat source. The 
increase in temperature starts from the region which 
is close to the external boundary which is at a higher 
tem~rature and then gradually moves inwards into 
the porous matrix. This wuue-hike propagation was 
also observed for the vapor density, liquid content 
and condensation rate as it can be seen in Figs. 3-5. 
For brevity, the contours for the gas phase density are 
not presented here. However, the same type of waue- 
Iike propagation was observed for (&J. It should be 
mentioned that in all of the three-dimensional plots 
for the condensation rate, a positive (rir) corresponds 
to condensation whereas a negative (ti) corresponds 
to evaporation. The times t,, t?, t, and f4 in Figs. 
2-5 were chosen so as to demonstrate the significant 
regimes and variations of the field variables. A very 
impo~ant result which becomes apparent from this 
investigation is that the common assumption of set- 
ting (p,)’ = const. is not valid at all. This of course, 
is to be expected as this assumption does not satisfy 
the continuity equation and hence it does not even 
yield convergent solutions. The validity of this 
ass~ption was discussed in detail in ref. [S]. 

The Lewis number, a measure of the relative 
importance of heat transport to the vapor transport, 
affects the relative movement of the temperature wave 
front compared to the vapor concentration wave front. 
For the case under investigation with a Lewis number 
less than one, as it can be seen in Figs. 2 and 3 tbe 
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FIG. 2. Spatial variation of temperature inside the porous material for A 
times: t, = 0.0005; t2 = 0.0015; t3 = 0.005; t4 = 

(T) 
t3 

q, = 1.0, at four different 

vapor concentration wave front moves faster than 
the temperature wave front as expected. For a Lewis 
number greater than one, the opposite effect was 
observed. Another important result which can be 
observed in Fig. 5 is that the liquid accumulates in the 
region which is next to the hot and humid environ- 
ment much more than the rest of the porous matrix. 

Figure 6 depicts the velocity field distribution for 
the gas phase. As it can be seen the flow starts from 
both the right- and left-hand sides and then moves 
toward the interior region of the porous insulation 
since the top and bottom walls are impermeable. Due 
to the effect of gravity, the fluid moves downward and 
finally flows out of the porous matrix. This is the only 
flow configuration that satisfies the gas continuity as 
well as the gravity requirements. Figure 6 is presented 
for times t , and f., only since the velocity distributions 
at t2 and t3 are similar to the velocity distributions at 
t, and t4. The contours in Figs. 2, 3 and 5 clearly 
indicate that the physically pertinent variables are 

dependent on both dimensions of the porous matrix 
especially in the mid-region. Therefore, a one-dimen- 
sional analysis would lead to errors especially in the 
mid-region of the insulation, The two-dimensional 
behavior results mainly from the fluid motion in the 
porous matrix. It should be noted that the presented 
results are for moderate temperature differences 
imposed across the porous matrix. For larger tem- 
perature differences, these two-dimensional dis- 
tortions will become more pronounced. It should also 
be noted that higher pressure gradients significantly 
reduce these two-dimensional distortions. For the 
sake of brevity, the results for higher pressure gradi- 
ents are not presented here. 

The peculiar signature of the contours, with respect 
to their curvatures, for the temperature, vapor density 
and the liquid content can be explained as follows. 
For the early times such as t,, t2 and t3, the wavefronts 
of the contours are essentially in the left half of the 
spatial domain. Due to the fluid motion, the propa- 
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I( 
I 

: 

- 

I I 
I 

(P “jr 
t3 

FIG. 3. Vapor density distributions for A = I, wh = I .O, at four different times corresponding to Fig. 2. 

gation of the upper half of the wave jkonts is enhanced 
whereas the propagation of the lower half of the wave 
fronts is depressed. Therefore, the upper parts of the 
wave fvonts are moving faster than the lower parts. 
Furthermore, the top and bottom walls are imper- 
meable and insulated, making the contours per- 
pendicular to the top and bottom boundaries. The 
combination of these two effects results in the cur- 
vatures which are observed in Figs. 2, 3 and 5. For 
later times such as t4, the wavefronts of the contours 
are in the right half of the porous insulation. The 
fluid motion hinders the diffusion phenomenon in the 
upper right region while it assists the diffusion in the 
lower right region. However, the diffusion in the left 
rlnm~in ic dill affm-ted hv the f&lid ~_&QD_ from_ t&e ..“lllU.ll 1” UC..& I..v_.__ -, 

left. Therefore, even though the curvilinear shape of 
the contours experience a gradual change, their overall 
characteristics are still maintained. It should be noted 
that the gradual change in the shape of the contours, 
such as temperature and vapor density contours, 
might not be so apparent, when the wave fronts move 

into the right half domain. But at the later times ts 
and t,, which will be discussed later on, changes in the 
signature of these contours become more apparent. 
As a result of this type of curvature at the same x 
locations in the insulation, the values of the tem- 
perature and vapor density in the upper region are 
higher than the corresponding values in the lower 
region. It should also be noted that one might expect 
that the liquid content values in the lower region 
should be larger than the values in the upper region 
as a result of the gravitational force. That this is not 
so is due to the small amounts of liquid which are 
formed inside the porous slab, i.e. when Ed < csP where 
.sgp denotes the liquid content below which the liquid 
is immobile? the liquid is essentially trapped in the 
pores. Therefore, the gravity will not have a significant 
role on ss and the liquid cannot pile up in the bottom 
region of the porous material. However, the current 
solution scheme did account for and incorporated the 
possibility of the liquid mobility. 

Figures 24 are based on the case with an aspect 
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FIG. 4. Three-dimensional condensation rate plots for A = 1, oh = 1 .O, at four different times corresponding 
to Fig. 2. 

ratio of one and a relative humidity of one at the left 
boundary. For the case with an aspect ratio of two, 
the flow field was found to be qualitatively similar to 
that of an aspect ratio of one. The distributions of the 
important variables such as the temperature, vapor 
density, condensation rate, and the liquid content are 
also qualitatively similar to the case for an aspect ratio 
of one, and hence they are not presented here. In Fig. 
7, the transient non-dimensional heat transfer rates 
across the hot wall for A = 1, w,, = 1.0 and A = 2, 
icih = 1 .O are depicted. As it can be seen, there is aimost 
no difference between the two cases. This is due to the 
similarity between the two configurations, and the 
identity of the boundary conditions in both cases. A 

close examination of Fig. 7 reveals the presence of 
very small amplitude oscillations, around t = 0.0014, 
in the Nusselt number. This type of oscillating 
phenomenon was also reported by Patterson and 
Imberger [18], Penot [19] and Staehle and Hahne [20] 
in studying transient natural convection flows. 

All of the results which were discussed so far were 
for w,, = 1.0. To examine the effect of different 
humidity levels, the results for the vapor density dis- 
tributions and condensation rate are presented for 
ah = 0.8 and A = i in Pigs. 8 and 9. As expected, 
the humidity levels at the exterior boundaries have a 
dir&t infkrence on the vapor transport, condensation 
rate, and hence the liquid content. By comparing Figs. 
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FIG. 5. Liquid content distributions at four different times. corresponding to Fig. 2, for A = 1, wh = 1.0. 
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FIG. 6. Gas phase velocity plots for A = 1. wh = 1 .O, at two different times : t, = 0.0005 ; t4 = 0.01. 
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FIG. 7. Effects of the aspect ratio on the transient Nusselt number distribution. 
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FIG. 8. Vapor density distributions for A = 1, w,, = 0.8, at four different times corresponding to Fig. 2. 
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FIG. 9. Three-dimensional condensation and evaporation rate plots for A = 1, wh = 0.8, at four different 
times corresponding to Fig. 2. 

8 and 9 with Figs. 3 and 4, respectively, it can be 
found that decreasing the humidity level depresses the 
vapor transport, the condensation rate and the liquid 
content. It is also quite interesting to examine the 
effect of changing the humidity levels on the tem- 
perature field while the boundary conditions for the 
temperature are kept unchanged. If we carefully com- 
pare the temperature distributions in Fig. 10 which is 
for oh = 0.8, A = 1 with the temperature distributions 
in Fig. 2 which is for oh = 1 .O, A = 1, we find that the 
temperature contours are altered due to the change 
of humidity boundary conditions. For example, the 
temperature wavefront for wh = 1 .O in Fig. 2 is moving 
faster than the temperature waoefiont for w,, = 0.8. 
This is because increasing the humidity level enhances 
the vapor transport, and the enhancement in +&POT 
transfer will also cause an increase in energy transfer. 

This again indicates another aspect of the complex 
interaction between the temperature and moisture 
fields. 

Since there were no available analytical or exper- 
imental results which could be used for direct com- 
parison, the numerical scheme was benchmarked 
through various physically pertinent alternatives. 
First, runs were made for a case dealing with a square 
porous matrix which is subjected to step-change 
boundary conditions from all four sides of the matrix. 
Physically, at the steady state, we would expect that 
the condensation rate would go to zero everywhere in 
the matrix and that the variations for all of the field 
variables would die out and approach t& &Ad values 
at the periphery of the matrix. These expectations 
were completely verified by our numerical results. It 
was also found that for this case, the common con- 
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FIG. 10. Temperature distributions for A = 1, wh = 0.8, at four different times corresponding to Fig. 2. 

stant pressure approximation can yield results which 
are quite close to the ones without such approxi- 
mation. In fact the constant pressure approximation 
for this case reduced the CPU time by several orders 
of magnitude. This was because the magnitude of the 
gas phase convection terms, which were only gravity 
driven, in the governing equations was significantly 
reduced. However, this simplification was found not 
to be valid for the case under investigation since the 
gas phase velocity field was totally different from the 
velocity field which was obtained without employing 
the constant pressure approximation. Secondly for 
the limiting case with pure conduction where there is 
nn Fnnrr0rt;nn nnrl ,.nnfL%nnot;nn ;+ .X,40 fmrnA +h.st tl.c. L&v VVII.~.,U”II u-u ““.I.L~IIUcL~I”II, 1s *I~~l"U~Ls CIIc&b Cllr 

numerical results agreed very well with the analytical 
conduction results. Next, the approach toward steady 
state at longer times was analyzed. Figure 11 shows 
the temperature and the vapor density contours at 
later times t, and t6 for the case A = 1, wh = 1. The 
approach toward the steady state for the temperature 

and vapor density distributions can be clearly 
observed in these figures. The three-dimensional plots 
for the condensation rate in Fig. 12 further confirm 
the above argument as it can be seen that the con- 
densation rate is significantly diminished as time 
passes by. Furthermore, as mentioned earlier the 
results for all of the different explicit and semi-implicit 
schemes which were investigated in this work, were in 
good agreement with each other. 

Finally, the accuracy of the numerical scheme was 
checked by decreasing the time step size and increasing 
the number of grids. The results obtained by using 
different time step sizes while keeping the number of 
“&A” _,.^“+.,..* . .._..a I ̂ .._ _4 A.. L- :- _^^A ^^--^---L B”UJ V”IIJC(ILlC YVGIG l”ullcl C” “ci 111 guou aprGG11KX& 
both quantitatively and qualitatively. When the 
number of grids was increased, say from 11 x 11 to 
15 x 15 and then to 21 x 21, the required time step 
size PFreased drastically even though per time step 
computational time did not increase that much since 
the computation routine was highly vectorized. 
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FIG. 11. Temperature and vapor density distributions for A = 1. cq, = 1.0. at later times : t, = 0.02; 
t6 = 0.03. 

Although the quality of contours was improved by 
increasing the number of grids, the primary features 
of contours were not changed. Therefore, most runs 
were done based on a grid size of 15 x 15 for A = 1 
and 15 x 29 for A = 2 except for the results in Figs. 
11 and 12, which are based on grids of 11 x 11. It 
should be noted that the numerical computations for 
these types of problems are extremely intensive. For 
example after full optimization and strong vec- 
torization of the computation routine, it took about 
5.1 h of Cray X-Mp/28 to generate a single curve in 
Fig. 7. To the authors’ knowledge, this type of analysis 
which fully simulates the multiphase transport process 
with phase change is presented for the first time. 

6. CONCLUSIONS 

The phase change process in a porous material was 
thoroughly analyzed in the present investigation. 

The problem which deals with multiphase heat and 
mass transfer accompanied by phase change in porous 
media was modelled by a system of transient inter- 
coupled equations. The problem was analyzed with- 
out making any significant simphfications. A final 
version of an explicit upwind difference scheme which 
consists of two different formats in time and space 
accounting for phase change was devised. This 
scheme was chosen for its better numerical stability 
compared to the other upwind explicit schemes. The 
convective terms in the gas phase continuity and diffu- 
sion equations were found to be responsible for deter- 
mining the time step size. Extensive comparisons were 
made between this scheme and several semi-imphcit 
schemes. It showed that the total CPU time was not 
reduced by using such semi-implicit schemes. In what 
follows some of the more significant conclusions are 
summarized. 

(1) The wave-like propagation phenomenon was 
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FIG. 12. Three-dimensional condensation rate plots for A = 1, o,, = 1.0, at later times corresponding to 
Fig. 11. 

observed for all of the important field variables such 
as the temperature, liquid content, vapor density and 
the condensation rate. 

(2) The liquid accumulation was found to be heavily 
concentrated in the region which was adjacent to the 
hot and humid environment compared to the remain- 

der of the porous insulation. 
(3) The aspect ratio had an insignificant effect on 

the Nusselt number. 
(4) The humidity levels had a direct effect on the 

vapor transport and condensation process. Increasing 
the humidity level enhanced the vapor transport, con- 
densation rate, liquid content as well as the energy 
transfer. 

(5) The Lewis number was found to be a very good 
yardstick for characterizing the relative movement of 
the temperature wuw front compared to the vapor 
density wave front. For Lewis numbers less than one, 
the vapor density wave front moves faster than the 
temperature waue front. For Lewis numbers greater 
than one, the reverse trend was observed. 

(6) The one-dimensional model is not valid for a 
number of situations. This is especially true when the 
porosity is high and the pressure gradient is very small 
or zero. However, higher pressure gradients sig- 
nificantly reduce the two-dimensional distortions. 

(7) The constant pressure simplification was found 
to be a good approximation for a case dealing with a 
porous matrix subjected to step-change boundary 
conditions on all four sides. Making such a sim- 
plification can reduce the CPU time drastically. How- 
ever, this simplification is not valid for the general 
case which is considered in this work. This common 
assumption should be employed with extreme caution 
for this type of phase change problems. 
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APPENDIX 

The dimensionless variables are defined as 

and the dimensionless parameters are defined as 

(AZ) 

(A41 

(.45) 

c.47) 

(AX) 

(A9) 

(AlO) 

ETUDE NUMERIQUE DES EFFETS DE CHANGEMENT DE PHASE DANS LES 
MATERIAUX POREUX 

R&mr&--On developpe une etude numerique du transfert de chaleur et de masse avec changement de 
phase dans des materiaux poreux. Le probleme est mod&t par un systeme d’equations couplees qui 
reprtsente le mecanisme de transport bidimensiomrel et multiphasique dam les milieux poreux. La solution 
est une simulation complete sans aucune simplification. On d&age et discute en detail les variations et les 
interdependances entre la temperature, la densite de vapeur, le taux de condensation, la fraction liquide et 
les champs de vitesse du fluide. On trouve que l’accroissement du facteur de forme de la matrice poreuse 
diminue sensibiement ie nombre de Nusseit et que i’augmentation du niveau d’humidite accroit ia con- 
densation, le transport de vapeur et le transfert d’energie. On trouve que le modele monodimensionnel 
n’est pas valable quand les front&es de la matrice poreuse sont soumises a une difference de pression faible 
ou nulle et que la simplification dune pression uniforme conduit a des erreurs sensibles dans certaines 
circonstances. L’analyse, qui prtsente une simulation complete pour la premiere fois, peut dtre appliquee 
a une classe de problemes de transport de chaleur et de masse avec changement de phase a travers un milieu 

poreux. 

NUMERISCHE UNTERSUCHUNG DER PHASENANDERUNG IN PORGSEN 
MATERIALIEN 

Zuaanuuenfsssung-Diese numerische Untersuchung behandelt die W&me- und Stoffiibertragung mit 
Phasenwechsel in porijsen Materialien. Dies wird durch ein System von gekoppelten, instatioaaren Differ- 
entialgleichungen modelliert und umfal3t eine zweidimensionale Betrachtung der mehrphasigen Trans- 
portvorgiinge. Der Algorithmus erlaubt eine vollstandige Simulation ohne wesentliche Vereinfachungen. 
Die Zusammenhiinge zwischen Temperatur, Dampfdichte, Kondensationsrate, Fliissigkeitsanteil und 
Geschwindigkeitsfeld werden ausfiihrlich diskutiert und demonstriert. Eine VergrX+erung des Seiten- 
verhlltnisses der poriisen Matrix senkt die Nusseltzahl erheblich, eine Erhijhung der Feuchtigkeit 
verbessert die Kondensation, den Dampftransport und die Energietibertragung. AuBerdem hat sich gezeigt, 
daD ein eindimensionales Model1 dann nicht verwendet werden darf, wenn die Druckdifferenz am Rand 
der Matrix klein ist, und dal3 die Annahme eines konstanten Drucks unter Umsmnden sehr grofle Fehler 
mit sich bringt. Die Analyse ermiighcht zum ersten Mal eine vollstiindige Simulation und kann auf viele 

Phasenwechselprobleme in porijsen Medien angewandt werden. 
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Y&KJIEHHOEHCCJIE,IjOBAHHE 3WBKTOB@A3OBOl-OllEPEXO&iBIIOPHCTbIX 
MATEPkiAJIAX 

xoHAeHCaAm, CoAepxaHsia xiumom~ H ec cxopocmi. 06HapyxeH0, wo np~ ynemvema 0THoweHm 
CTOpOH tlOpRCTOti MaTptiUbI 3HaWTeAbHO yMCEbUlaCTCn ¶ECAO HyCCWbTa, a IlpE BO3paCraHHH BJ'Iax- 
mcr~ y~rmmawrca rorZIIeHmum nepe~ocnapa H s~epmi. Tanxeymmome~o,wo oAHob4epBar 
MOAe~Henp~eHHMa,KOrAaHa~AenOpHCTOiMaTp~nepen~A~eHAnMan~~~HHy~, 
anpennoAo*eHEIenocroaacreanaaneRanana HeroTopbmczymes~oxernpmecr~ P 3Ha=nrrwbw 
nO~~HocT~M.~HHbl~~~MOx~~BMeAllTbCllHU~O~~~y3aAa~Te~O-HMa~~~H~ 
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