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Abstract—In this paper, a numerical study of heat and mass transfer with phase change in porous materials
is performed. The problem is modelled by a system of transient inter-coupled equations governing the two-
dimensional multiphase transport process in porous media. The solution algorithm allows full simulation
without any significant simplifications. The variations and the interrelationship between the temperature,
vapor density, condensation rate, liquid content and the fluid velocity fields are demonstrated and discussed
in detail. It is found that the aspect ratio of the porous matrix does not have a significant effect on the
Nusselt number results. Furthermore, it is found that the one-dimensional model is not valid when the
boundaries of the porous matrix are subjected to a small or zero pressure difference and that the constant
pressure simplification would generate significant errors under some circumstances. The present analysis,
which presents a full simulation of the problem for the first time, can be applied to a class of problems on
heat and mass transport with phase change through a porous medium.

1. INTRODUCTION

A NuMBER of applications in thermal engineering
require a good working knowledge of heat and mass
transfer in porous media. Such applications include
building insulations, heat exchangers, grain storage,
energy conservation, drying technology, oil extraction
and geothermal systems, etc. An important topic in
the area of energy conservation and building insu-
lation design relates to the influence of condensation
on the thermal performance of a porous insulation
matrix. Water vapor condensation can take place any-
where in a porous insulation when the vapor density
is greater than the saturation vapor density which
corresponds to the local temperature at that point.
The condensation phenomenon has been observed in
a porous wall insulation especially when the insulating
material is exposed to large temperature differences
and high humidity environments. As the condensation
occurs, the latent heat of vaporization is released act-
ing as a heat source in the heat transfer process.
Furthermore, the liquid phase resulting from con-
densation will cause a significant increase in the energy
transfer across the insulation and hence it affects the
thermal performance of the insulation. In addition,
the condensate deteriorates the quality of the porous
materials.

In general, a wet porous insulation consists of three
phases which are the solid matrix, the liquid water,
and a binary gas phase composed of air and water
vapor. In the gas phase, there is vapor diffusion due
to the vapor concentration gradients, bulk convection
due to the density variation induced by temperature
gradients, and air infiltration due to the small differ-
ence in gas pressure across the insulation. There is

heat conduction in all three phases, heat convection
in the gas phase and the liquid phase if the liquid
phase is mobile. In addition, there is heat transfer
caused by phase change at the gas-liquid interface.

There has been some experimental work on this
subject [1-3]. However, these studies were conducted
for some specific applications and hence the findings
can only be applied to some particular problems. In
the semi-analytical work of ref. [4], the condensation
process is characterized in terms of three distinct
regimes. However, analytical solutions [4] based on
one-dimensional formulation were obtained for the
second regime (quasi-steady approach) only. In a pre-
viously related work [5], the condensation problem
was modelled as one-dimensional multiphase heat
and mass transport accompanied by phase change.
The transient as well as the steady-state solutions
were obtained. In another previous work [6] the
two-dimensional unsteady transport process was
considered, however, several important simplifying
assumptions were made in arriving at the solutions.
Apparently there is indeed a need for a more rigorous
and extensive investigation of this subject without any
significant simplifications.

This paper investigates transient two-dimensional
heat and mass transport accounting for phase change
in a porous matrix. Different versions of numerical
schemes are thoroughly studied in order to examine
the stability and accuracy. The variations and the inter-
coupling effects of the important field variables such
as temperature, vapor density, condensation rate and
liquid content are presented. The transient heat trans-
fer rate through the insulation is quantified and the
validity of using a one-dimensional or constant pres-
sure assumption is investigated. The location and
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NOMENCLATURE
A aspect ratio, H/L R, vapor gas constant [Nmkg™ 'K ]
B Biot number referring to heat transfer, s scaled fractional liquid saturation,
h-L/k-eﬂ,O (85— Spp) /(1 — ;)
B* Biot number referring to mass transfer, g fractional liquid saturation, &;/(e4+¢,)
F*Lldg, Spp saturation for the immobile liquid
B, Biot number referring to species t dimensionless time, /(L /3 o)
transport, &, L/d.q , T dimensionless temperature, T/AT
¢ dimensional heat capacity for the ith T, reference temperature for the hot side
phase at constant pressure of the insulation [K]
Wskg= 'K~ ] T, reference temperature for the cold side
Co reference heat capacity [Wskg™ 'K~ of the insulation [K].
c, average heat capacity (Wskg='K ']
D,.; effective vapor diffusivity coefficient
[m?s~ ] Gr?ek symbols . -
g dimensionless gravity vector Tegr. o refererice_ eﬁ'ec?vg lthermal diffusivity,
h heat transfer coefficient [Wm™2K ] kol (Poco) [I.n 71
h* mass transfer coefficient [ms™'] ¢ YOlu.me fractlgn o _—
h, species transfer coefficient [ms™'] He liquid dynamic viscosity [kgfr}*_ ?‘ ]
Ah,,, enthalpy of vaporization per unit mass Hy gas dy‘?am“’ viscosity (kgm 5 ]
ke '] P d1meqsmnal total dfirl}SIty defined in
H height of the porous insulation [m] equathn (16) ke m ] .
k; dimensional thermal conductivity for Pi d%mens%oniess density for phas_e LA o
phase i [Wm~'K-] ;ZV dlmensxonle§s vapor density, p\:/pv:[)
Eors —3{pDTY [Nm—2K 1] Gy, §urface tension a}t the gas and liquid
2 —0¢p.>/0e, [Nm~?] mter.face N m’ ]
ke dimensional effective thermal @ refative humidity.
conductivity [Wm~ 'K~}
K permeability [m?] Subscripts
K, effective liquid permeability [m?] a air phase
K, effective gas permeability [m?] eff effective properties
K relative permeability for the liquid i ith phase
phase s saturation quantities
K, relative permeability for the gas phase v vapor phase
L thickness of the insulz_ition [m] x component in the x-direction
Le Lewis number, &y o/ D, oer B liquid phase
m dimensional condensation rate y gas phase
fkgm™3s7] o solid matrix
Pa dimensionless air pressure, 7,/P. o 0 reference quantities
Pe capillary pressure, j,—p; [Nm™?] o0 ambient quantities in the surroundings.
Py dimensionless vapor pressure, p,/p. o
Dy dimensionless gas phase pressure, Superscript
Py/Pyo il . . ..
Pe I-"yecl/e t number, 5%01: fEuto dimensional quantities.
r characteristic length of the porous
matrix [m] Other symbol
R, air gas constant [Nmkg™ 'K '] O ‘tocal volume average’ of the quantity.

regions of high liquid accumulation are analyzed.
Also, the interesting effects of variations of the aspect
ratios and humidity levels on the condensation rate,
liquid accumulation and the energy transfer are also
discussed in detail.

2. ANALYSIS

The governing equations for the multiphase trans-
port process in a porous medium are derived by using

the local volume averaging technique. An averaging
volume V¥ which is bounded by a closed surface in the
porous medium is composed of three phases, the solid
phase V,, the liquid phase ¥(z), and the gas phase V().
The spatial average for a quantity W is defined as

(‘P):;J‘/‘PdV. H

Another important averaging quantity of interest is
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the intrinsic phase average which is given by

1 f
=70 me av )

where W, is a quantity associated with phase a.

The derivation of the governing equations for heat
and mass transport in a porous insulation is based on
Whitaker’s work [7] which involves a significant
amount of mathematical manipulation. The only
major assumptions which are made in order to arrive
at the governing equations are: (1) the porous insu-
lation material is homogeneous and isotropic; and (2)
the porous system which consists of the solid, liquid,
and gas phases is assumed to be in local thermo-
dynamic equilibrium. Aside from these assump-
tions, the governing equations are very general and
the results which are presented and discussed in this
paper can be applied to a class of problems in heat
and mass transfer in porous media with phase change.
The governing equations after nondimensionaliz-
ation are given as follows:

& %

thermal energy equation
KT 4 PiPaPus P Psz

\2¢4
= OB
P,P,P; Pe
=g Py V(D)
P
+ 5o Kriy = PrVTy + —‘EVPw WTY; Q)
19
liquid phase equation of motion
vp> = —Kp(Veg +yrV<T)—¥,8) ; @
liquid phase continuity equation
38,3
il A <V,g>+———<rn> 0; &)

gas phase equation of motion

{v)) = Pk (=V{p, )"+ Ps{p,>'8);  (6)

gas phase continuity equation

7 1
5 E<PON+PeV - ((p,) WD) — ﬁ;(m) =0;

™
gas phase diffusion equation
é
— ¥ . ' — >
51 &P+ PV (p, Y1) = 55
1 <pv>’)]
=—V-|<pyV ;@
Le [@y) ((pm ®
volume constraint
e t+egte, =1; )
thermodynamic relations
{p>? = Polp,)KT) 10

1263

(p.Y = Pypy (T an
() =PuCoy +Pukpy (12
<p'y>7 = P13<pv>v+Pl4<pa>v (13)
1 P15+P16 Plﬁ
P = Py P (‘ Tyt <To>> 9

where the dimensionless variables and the controlling
parameters are defined in the Appendix. The variable
properties in the porous insulation are

- (k. {ps)" +kalPa))
R A T S PRvAT I
= 8,0, + 83 +6,((p.)"+<>")  (16)
C, = 8,PsCo+8PpCs +8};§<pv>ycv +4P.)"C) a7
- chf
fur = 555 (18)

The main variables of interest in the above equa-
tions are the temperature 7, the liquid volume fraction
&p, the vapor density p,, the gas density p,, the gas
volume fraction &,, and the condensation rate r2. The
quantities with a subscript ‘0’ denote the reference
quantities, and the variables with a bar on top of
them refer to dimensional quantities. The controlling
parameters P,, P,, P,, P,, Py, and P, —P,,, which
are defined in the Appendix, are constants and are
fixed by the choice of the reference quantities. Ps, Py
and P,, are the parameters which vary with the vari-
ation of the properties. P, and P, are the non-dimen-
sional parameters which appear in the Clausius-
Clapeyron equation. P,; accounts for the Kelvin
effect and is far less dominant than P, in determining
the saturation vapor density. Ps, Pe and P,, have a
direct influence on the gas phase convective terms. P
accounts for the body force, and Pe and P,, affect the
numerical stability. ¥, and ¥, describe the relative

imbortance of nrnvﬂy nnr‘ th

importance of ermal nrnrhonfc in trane.

porting the liquid phase. Finally Le and ¥y, are the
controlling parameters which characterize the import-
ance of the vapor diffusion and liquid transport
relative to the energy transport.

It should be noted that non-Darcian effects are
assumed to be negligible in this study. This assump-
tion is justified due to the following reasons. Vasseur
et al. [8] used the results of ref. [9] to examine the
validity of Darcy’s law. Two conditions which respec-
tively characterize the inertia and the boundary
effects, should be satisfied if the results obtained from
Darcy’s law are to be within a 10% error band

7 < 6x1073%7
(1-¢)F/K
where U is the characteristic fluid velocity, ¥ the kin-
ematic viscosity, (1 —e&,) the porosity, F a coefficient

related to the inertia parameter, K the permeability,
L the characteristic length of the porous material, and

and L> Pr(K/(1-¢,)) (19)
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Pr is the Prandtl number. Based on the data used in
the calculation, these two conditions are apparently
satisfied. The dispersion effects are also neglected in
this study. It is also noted that the effective gas per-
meability K, and the effective liquid permeability for
partially liquid saturated media K, can be expressed
as the multiplication of the permeability K and the
relative permeabilities, K,z and K, as

R =K,k

Ty

K, = K,K. (20)

Based on the relative permeability model suggested
by Wyllie [10] which agrees well with the data in Fatt
and Klikoff [11] and is also used in Udell [12], the
relative permeabilities are taken to have the following
forms:

Ky=s’
K, = (1-s)* 21)
where
Sp—Spp
5= . (22)
and
&
g te, (23)

The variable s, is the saturation of the liquid in the
pendular state in the porous medium. Below this satu-
ration, the liquid is essentially immobile duc to no
inter-pore connections. There were no concrete exper-
imental data available for s,,, however a value of 0.1
was found to be a reasonable one. This value was also
used in Kaviany and Mittal’s work on drying [13].

2.1. Convective boundary conditions

In addition to the specified-value type of boundary
conditions, another type of boundary conditions is
also frequently encountered. The convective bound-
ary conditions at the porous media-surrounding gas
interface were obtained in a way which was similar to
the derivation of the governing equations [14]. The
non-dimensional boundary conditions for the mass,
energy and species balance are written as follows:

mass balance

(P v+ PePilp, ' (v,>)'m

= B*P,({p,D)"—p.); (24
energy balance
P1P6w5<vﬂ>'n+Pl9vT'n=B(Too_<T>): (25)
species balance
[Pll/]£<vli>+PeP4P11<pv>}<vy>

PPy y (<Pv>y>:|
— V . .
Le <py> <py>7 ’
=B, PP ({p,)' —pvx) (26)
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where n is the unit normal vector which points out
from the porous medium into the surrounding gas
phase, and B*, Band B, are the Biot numbers referring
to, the mass transfer, heat transfer, and species trans-
port, respectively. In particular for the impermeable
and insulated boundary conditions, all of these three
Biot numbers are equal to zero, and hence the right-
hand sides of equations (24)—(26) reduce to zero.

3. PROBLEM STATEMENT

To investigate two-dimensional transient heat and
moisture transport accounting for phase change in a
porous insulation, a systematic study has been per-
formed on a case which is important from a fun-
damental point of view as well as the application side.
The schematic diagram is shown in Fig. 1. The top and
bottom boundaries are insulated and impermeable,
while the left and right boundaries are exposed to two
different environments, a hot and humid environment
on the left-hand side and a cooler environment on
the right-hand side. The boundary conditions on the
temperature, relative humidity, liquid content and the
gas phase pressure for the left and right boundaries
are specified as

T, =T(x=0,y.1) = 154

T.=T(x=1,y,t) = 14.65 27
O<op=wx=0,)1) <1

o, =wx=1y10=1 (28)
gy(x=0,p,0) =50x10""°
glx=1y,0)=0 29

L

Insulated
and
Impermeable

T, T,
H
@, @,
Insulated
and
Impermeable
_H
A=T

FiG. 1. Schematic diagram of a two-dimensional porous
matrix.
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p(x=0,y,0=1
p(x=1y0=1 (30

It should be noted that the above non-dimensional
temperatures translate into 7, = 308 K and T, = 293
K which are based on physical grounds. For the top
and bottom walls, equations (24)-(26) were
employed. Since the top and bottom boundaries are
subjected to insulated and impermeable boundary
conditions, the Biot numbers, B*, B and B,, are set
equal to zero in equations (24)—(26).

3.1. Initial conditions
T(x,y,t = 0) = 14.65
o(x,y,t=0) =1
g(x,p,t=0)=0
py(x,y,t=0)=1 3D

To evaluate the heat transfer across the porous
insulation matrix, the non-dimensional heat transfer
rate at the hot surface, Nu,, which includes both the
heat as well as the mass transfer is given as

1265
Nuh =
4 or
_P”a_x +P3P,Pep, T+P Py, T) dy
s x=0
AP (T,—T.)
(32

The Nusselt number, as defined in equation (32),
accounts for the contribution of heat conduction,
infiltration and bulk convection. The physical data
used in the numerical experiments, which were based
on the use of a fibrous insulation, are listed in Table
1. It should be noted that even though the Kelvin
effect has been taken into account in equation (14), a
surface tension of 0.07 kg m~? translates into
P, « Psif O(F) > 10~° m. This fact was also given
in ref. [15] where it was mentioned that surface tension
presented very little effect on the saturation vapor
pressure.

4. SOLUTION METHODOLOGY

At first, it seemed that the governing equations were
well suited to be solved by the MacCormack method

Table 1. Physical data

(a) Reference quantities

Pro T 0 E,f[

170 50 pv,o ﬁa‘o p-'y.O 0
kgm™®) (kg 'K) (kgm?) (kgm~?) (kgm™?) X) (Nm-3) (Wm K™
76.89 842 0.03966 1.08216 1.12182 308 1.013x 10° 0.026
(b) Solid phase
l-' ﬁﬂ Ea Ea
& (m) kgm ™) (Jkg'K") (Wm'K™
0.03 0.12 2563 835 0.043
(c) Liquid phase
Py % ky I
(kgm™?) Jkg''K™) Wm'K™) (kgm'sY
1000 4182 0.603 0.8x 103
(d) Gas phase
é, g, K, K, R, R, i,
Okg'K™) (kg 'K) Wm'K) Wm'KYH) (Jkg!'KH ( kgT'K™H)  (kgm~'s"Y)
1866 1000 0.0191 0.0262 462 287 1.846 x 10-*
(e) Other quantities
K 5v.eﬁ AT Aﬁvsp 6157
(m?) (m’s™") X) (Jkg™h (kgs™?
7.25%x 1010 2.8%x10°° 20 2.4425x 10° 0.07
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(either explicit or implicit) or the Beam-Warming
method, which are used to solve Navier—Stokes equa-
tions [16]. However, the difficulty in employing such
numerical schemes to solve these governing equations
is twofold. First, these transport equations are so com-
plicated that they cannot be rearranged into con-
servative form without a loss of accuracy, as both the
MacCormack and the Beam—Warming methods can
be used only when the equations are cast in the con-
servative form. Furthermore, the source terms in some
of the governing equations add on an additional
difficuity when we applied such schemes to solve the
governing equations. These problems were also en-
countered by Reddy et al. [17]. Based on the above
reasons, an explicit finite difference method was used
in order to obtain the most accurate results. This
numerical scheme consists of two different formats in
time and space depending on whether the phase
change occurs or not. According to the experimental
results of Langlais et al. [3], those values of g5 < 107
are considered to be part of the adsorbed water.
Therefore, the condensation rate is set equal to zero
at any time and location where ¢; < 10™°. When
&g < 1073, vapor cannot be regarded as being at the
saturation state any more and hence no bulk con-
densation is possible. The detailed description of this
two-phase algorithm is given in Vafai and Whitaker’s
work {6].

In the forementioned numerical scheme, the spatial
derivatives are discretized by the central differencing
except for most of the convective terms which are
approximated by several different forms of upwind
differencing. Since the physical phenomenon for this
problem is highly transient and complicated. the
required time step size must be quite small. Numerical
experimentation was conducted for different versions
of upwind differencing methods such as first-order
upwind, third-order upwind, and third-order upwind
plus fourth-order artificial viscosity, etc., to determine
the accuracy and numerical stability of each scheme.
After extensive numerical experimentation was per-
formed on all of these different forms of the upwind
differencing, the first-order upwind difference scheme
was chosen to approximate the convective terms,
except in the gas continuity equation, due to its
numerical stability. This numerical scheme was
further compared with several semi-implicit schemes
(i.e. the implicit schemes were used in solving some of
the transport equations which have strong convective
terms). It was found that the total computational
time could not be reduced by using the semi-implicit
schemes. As a side product of these extensive com-
parisons it was found that the resuits from all of the
above-mentioned schemes (explicit or semi-implicit)
were in very good agreement with each other.

It was found that the higher the gas permeability
is, the stronger the convection terms will be, and hence
a smaller time step size is required. This is because the
gas phase permeability directly affects the advection
terms and hence it has a very significant effect in
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determining the time step size. This fact can be easily
seen after examining the expression for P,, in the
Appendix. For this reason, the value of permeability
used in this work was chosen to represent a typically
high porosity insulation material so that, in addition
to corresponding to a very important application, it
will also highlight some of the pertinent features of
the analysis. For such a highly porous material, the
required time step size is relatively small. Of course
the time step size is also affected by the number of
grids. The required time step size becomes much
smaller as we refine the grids.

5. RESULTS AND DISCUSSION

As mentioned earlier, this work is aimed at a fun-
damental investigation of the thermal behavior of the
porous material and the dynamic response and the
interaction between the field variables such as tem-
perature, liquid content, vapor density, and the con-
densation rate in a two-dimensional porous medium.
Itis also aimed at investigating the effects of the aspect
ratios, humidity levels and some other pertinent physi-
cal parameters.

Figure 2 shows the temperature distribution inside
a porous matrix at four different times. As shown
in Fig. 2 the interior temperature of the insulation
material is found to increase with time when the tem-
perature is suddenly increased at the left boundary.
The temperature rise results from simultaneous heat
conduction and heat convection along with con-
densation which acts as a local heat source. The
increase in temperature starts from the region which
is close to the external boundary which is at a higher
temperature and then gradually moves inwards into
the porous matrix. This wave-like propagation was
also observed for the vapor density, liquid content
and condensation rate as it can be seen in Figs. 3-5.
For brevity, the contours for the gas phase density are
not presented here. However, the same type of wave-
like propagation was observed for {p,>’. It should be
mentioned that in all of the three-dimensional plots
for the condensation rate, a positive {#1> corresponds
to condensation whereas a negative {»1) corresponds
to evaporation. The times ¢, ¢,, t; and 7, in Figs.
2~5 were chosen so as to demonstrate the significant
regimes and variations of the field variables. A very
important result which becomes apparent from this
investigation is that the common assumption of set-
ting {p,»’ = const. is not valid at all. This of course,
is to be expected as this assumption does not satisfy
the continuity equation and hence it does not even
yield convergent solutions. The validity of this
assumption was discussed in detail in ref. [5].

The Lewis number, a measure of the relative
importance of heat transport to the vapor transport,
affects the relative movement of the temperature wave
front compared to the vapor concentration wave front.
For the case under investigation with a Lewis number
less than one, as it can be seen in Figs. 2 and 3 the
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FiG. 2. Spatial variation of temperature inside the porous material for 4 = 1, w, = 1.0, at four different
times: ¢, = 0.0005; ¢, = 0.0015; ¢, = 0.005; ¢, = 0.01.

vapor concentration wave front moves faster than
the temperature wave front as expected. For a Lewis

C WInporailic wave Ont 43 € CLACE.

number greater than one, the opposite effect was
observed. Another important result which can be
observed in Fig. 5 is that the liquid accumuiates in the
region which is next to the hot and humid environ-
ment much more than the rest of the porous matrix.
Figure 6 depicts the velocity field distribution for
the gas phase. As it can be seen the flow starts from
both the right- and left-hand sides and then moves
toward the interior region of the porous insulation
since the top and bottom walls are impermeable. Due
to the effect of gravity, the fluid moves downward and
finally flows out of the porous matrix. This is the only
flow configuration that satisfies the gas continuity as
well as the gravity requirements. Figure 6 is presented
for times 7, and ¢, only since the velocity distributions
at ¢, and ¢, are similar to the velocity distributions at
t, and f,. The contours in Figs. 2, 3 and $ clearly
indicate that the physically pertinent variables are

dependent on both dimensions of the porous matrix
especially in the mid-region. Therefore, a one-dimen-
sional analysis would lead to errors especially in the
mid-region of the insulation. The two-dimensional
behavior results mainly from the fluid motion in the
porous matrix. It should be noted that the presented
results are for moderate temperature differences
imposed across the porous matrix. For larger tem-
perature differences, these two-dimensional dis-
tortions will become more pronounced. It should also
be noted that higher pressure gradients significantly
reduce these two-dimensional distortions. For the
sake of brevity, the results for higher pressure gradi-
ents are not presented here.

The peculiar signature of the contours, with respect
to their curvatures, for the temperature, vapor density
and the liquid content can be explained as follows.
For the early times such as ¢,, 7, and ¢, the wave fronts

of the contours are essentially in the left half of the
spatial domain. Due to the fluid motion, the propa-
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FiG. 3. Vapor density distributions for 4 = I, w, = 1.0, at four different times corresponding to Fig. 2.

gation of the upper half of the wave fronts is enhanced
whereas the propagation of the lower half of the wave
fronts is depressed. Therefore, the upper parts of the
wave fronts are moving faster than the lower parts.
Furthermore, the top and bottom walls are imper-
meable and insulated, making the contours per-
pendicular to the top and bottom boundaries. The
combination of these two effects results in the cur-
vatures which are observed in Figs. 2, 3 and 5. For
later times such as ¢4, the wave fronts of the contours
are in the right half of the porous insulation. The
fluid motion hinders the diffusion phenomenon in the
upper right region while it assists the diffusion in the
lower right region. However, the diffusion in the left
domain is still affected by the fluid motion from the
left. Therefore, even though the curvilinear shape of
the contours experience a gradual change, their overall
characteristics are still maintained. It should be noted
that the gradual change in the shape of the contours,
such as temperature and vapor density contours,
might not be so apparent, when the wave fronts move

into the right half domain. But at the later times ¢
and 74, which will be discussed later on, changes in the
signature of these contours become more apparent.
As a result of this type of curvature at the same x
locations in the insulation, the values of the tem-
perature and vapor density in the upper region are
higher than the corresponding values in the lower
region. It should also be noted that one might expect
that the liquid content values in the lower region
should be larger than the values in the upper region
as a result of the gravitational force. That this is not
so is due to the small amounts of liquid which are
formed inside the porous slab, i.e. when g; < &5, where
&4, denotes the liquid content below which the liquid
is immobile, the liquid is essentially trapped in the
pores. Therefore, the gravity will not have a significant
role on ¢; and the liquid cannot pile up in the bottom
region of the porous material. However, the current
solution scheme did account for and incorporated the
possibility of the liquid mobility.

Figures 2-6 are based on the case with an aspect
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FIG. 4. Three-dimensional condensation rate plots for 4 = 1, w, = 1.0, at four different times corresponding
to Fig. 2.

ratio of one and a relative humidity of one at the left
boundary. For the case with an aspect ratio of two,
the flow field was found to be qualitatively similar to
that of an aspect ratio of one. The distributions of the
important variables such as the temperature, vapor
density, condensation rate, and the liquid content are
also qualitatively similar to the case for an aspect ratio
of one, and hence they are not presented here. In Fig.
7, the transient non-dimensional heat transfer rates
across the hot wall for 4 =1, w,=1.0and 4 =2,
oy, = 1.0 are depicted. Asit can be seen, there is ailmost
no difference between the two cases. This is due to the
similarity between the two configurations, and the
identity of the boundary conditions in both cases. A

close examination of Fig, 7 reveals the presence of
very small amplitude oscillations, around ¢ = 0.0014,
in the Nusselt number. This type of oscillating
phenomenon was also reported by Patterson and
Imberger [18], Penot [19] and Stachle and Hahne [20]
in studying transient natural convection flows.

All of the results which were discussed so far were
for w, =1.0. To examine the effect of different
humidity levels, the results for the vapor density dis-
tributions and condensation rate are presented for
@, =0.8 and 4 =1 in Figs. 8 and 9. As expected,
the humidity levels at the exterior boundaries have a
dire¢t influence on the vapor transport, condensation
rate, and hence the liquid content. By comparing Figs.
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FiG. 5. Liquid content distributions at four different times, corresponding to Fig. 2, for 4 = 1, , = 1.0.
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FiG. 6. Gas phase velocity plots for 4 = 1, w, = 1.0, at two different times: ,
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FiG. 7. Effects of the aspect ratio on the transient Nusselt number distribution.
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F1G. 9. Three-dimensional condensation and evaporation rate plots for 4 = 1, w, = 0.8, at four different
times corresponding to Fig. 2.

8 and 9 with Figs, 3 and 4, respectively, it can be
found that decreasing the humidity level depresses the
vapor transport, the condensation rate and the liquid
content. It is also quite interesting to examine the
effect of changing the humidity levels on the tem-
perature field while the boundary conditions for the
temperature are kept unchanged. If we carefully com-
pare the temperature distributions in Fig. 10 which is
for w, = 0.8, 4 = 1 with the temperature distributions
in Fig. 2 which is for @, = 1.0, 4 = 1, we find that the
temperature contours are altered due to the change
of humidity boundary conditions. For example, the
temperature wave front for ey, = 1.0in Fig. 2 is moving
faster than the temperature wave front for w, = 0.8.
This is because increasing the humidity level enhances
the vapor transport, and the enhancement in Vapor
transfer will also cause an increase in energy transfer.

This again indicates another aspect of the complex
interaction between the temperature and moisture
fields.

Since there were no available analytical or exper-
imental results which could be used for direct com-
parison, the numerical scheme was benchmarked
through various physically pertinent alternatives.
First, runs were made for a case dealing with a square
porous matrix which is subjected to step-change
boundary conditions from all four sides of the matrix.
Physically, at the steady state, we would expect that
the condensation rate would go to zero everywhere in
the matrix and that the variations for all of the field
variables would die out and approach the field values
at the periphery of the matrix. These expectations
were completely verified by our numerical results. It
was also found that for this case, the common con-
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Fi1G. 10. Temperature distributions for 4 = 1, w, = 0.8, at four different times corresponding to Fig. 2.

stant pressure approximation can yield results which
are quite close to the ones without such approxi-
mation. In fact the constant pressure approximation
for this case reduced the CPU time by several orders
of magnitude. This was because the magnitude of the
gas phase convection terms, which were only gravity
driven, in the governing equations was significantly
reduced. However, this simplification was found not
to be valid for the case under investigation since the
gas phase velocity field was totally different from the
velocity field which was obtained without employing
the constant pressure approximation. Secondly for
the limiting case with pure conduction where there is

yace foimd that tha
no convection and condensation, it was found that the

numerical results agreed very well with the analytical
conduction results. Next, the approach toward steady
state at longer times was analyzed. Figure 11 shows
the temperature and the vapor density contours at
later times ¢5 and ¢4 for the case 4 = 1, w, = 1. The
approach toward the steady state for the temperature

and vapor density distributions can be clearly
observed in these figures. The three-dimensional plots
for the condensation rate in Fig. 12 further confirm
the above argument as it can be seen that the con-
densation rate is significantly diminished as time
passes by. Furthermore, as mentioned earlier the
results for all of the different explicit and semi-implicit
schemes which were investigated in this work, were in
good agreement with each other.

Finally, the accuracy of the numerical scheme was
checked by decreasing the time step size and increasing
the number of grids. The results obtained by using
different time step sizes while keeping the number of
grids constant were found to be in good agreement,
both quantitatively and qualitatively. When the
number of grids was increased, say from 11x 11 to
15x 15 and then to 21 x21, the required time step
size decreased drastically even though per time step
computational time did not increase that much since
the computation routine was highly vectorized.
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F1G. 11. Temperature and vapor density distributions for 4 = 1. w, = 1.0, at later times: ¢; = 0.02;
1, =0.03.

Although the quality of contours was improved by
increasing the number of grids, the primary features
of contours were not changed. Therefore, most runs
were done based on a grid size of 15x15for 4 = 1
and 15x29 for 4 = 2 except for the results in Figs.
11 and 12, which are based on grids of 11x11. It
should be noted that the numerical computations for
these types of problems are extremely intensive. For
example after full optimization and strong vec-
torization of the computation routine, it took about
5.1 h of Cray X-Mp/28 to generate a single curve in
Fig. 7. To the authors’ knowledge, this type of analysis
which fully simulates the multiphase transport process
with phase change is presented for the first time.

6. CONCLUSIONS

The phase change process in a porous material was
thoroughly analyzed in the present investigation.

The problem which deals with multiphase heat and
mass transfer accompanied by phase change in porous
media was modelled by a system of transient inter-
coupled equations. The problem was analyzed with-
out making any significant simplifications. A final
version of an explicit upwind difference scheme which
consists of two different formats in time and space
accounting for phase change was devised. This
scheme was chosen for its better numerical stability
compared to the other upwind explicit schemes. The
convective terms in the gas phase continuity and diffu-
sion equations were found to be responsibie for deter-
mining the time step size. Extensive comparisons were
made between this scheme and several semi-implicit
schemes. It showed that the total CPU time was not
reduced by using such semi-implicit schemes. In what
follows some of the more significant conclusions are
summarized.

(1) The wave-like propagation phenomenon was
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F1G. 12. Three-dimensional condensation rate plots for 4 = 1, w, = 1.0, at later times corresponding to
Fig. 11.

observed for all of the important field variables such
as the temperature, liquid content, vapor density and
the condensation rate.

(2) The liquid accumulation was found to be heavily
concentrated in the region which was adjacent to the
hot and humid environment compared to the remain-
der of the porous insulation.

(3) The aspect ratio had an insignificant effect on
the Nusselt number.

(4) The humidity levels had a direct effect on the
vapor transport and condensation process. Increasing
the humidity level enhanced the vapor transport, con-
densation rate, liquid content as well as the energy
transfer.

(5) The Lewis number was found to be a very good
yardstick for characterizing the relative movement of
the temperature wave front compared to the vapor
density wave front. For Lewis numbers less than one,
the vapor density wave front moves faster than the
temperature wave front. For Lewis numbers greater
than one, the reverse trend was observed.

(6) The one-dimensional model is not valid for a
number of situations. This is especially true when the
porosity is high and the pressure gradient is very small
or zero. However, higher pressure gradients sig-
nificantly reduce the two-dimensional distortions.

(7) The constant pressure simplification was found
to be a good approximation for a case dealing with a
porous matrix subjected to step-change boundary
conditions on all four sides. Making such a sim-
plification can reduce the CPU time drastically. How-
ever, this simplification is not valid for the general
case which is considered in this work. This common
assumption should be employed with extreme caution
for this type of phase change problems.
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ETUDE NUMERIQUE DES EFFETS DE CHANGEMENT DE PHASE DANS LES
MATERIAUX POREUX

Résumé—On développe une étude numérique du transfert de chaleur et de masse avec changement de
phase dans des matériaux poreux. Le probléme est modélisé par un systéme d’équations couplées qui
représente le mécanisme de transport bidimensionne! et multiphasique dans les milieux poreux. La solution
est une simulation compléte sans aucune simplification. On dégage et discute en détail les variations et les
interdépendances entre la température, la densité de vapeur, le taux de condensation, la fraction liquide et
les champs de vitesse du fluide. On trouve que I’accroissement du facteur de forme de la matrice poreuse
diminue sensiblement le nombre de Nusselt et que 'augmentaiion du niveau d’humidité accroit la con-
densation, le transport de vapeur et le transfert d’énergie. On trouve que le modéle monodimensionnel
nest pas valable quand les frontiéres de 1a matrice poreuse sont soumises & une différence de pression faible
ou nulle et que la simplification d’une pression uniforme conduit 2 des erreurs sensibles dans certaines
circonstances. L’analyse, qui présente une simulation compléte pour la premiére fois, peut étre appliquée
4 une classe de problémes de transport de chaleur et de masse avec changement de phase a travers un milieu
poreux.

NUMERISCHE UNTERSUCHUNG DER PHASENANDERUNG IN POROSEN
MATERIALIEN

Zusammenfassung—Diese numerische Untersuchung behandelt die Wirme- und Stoffiibertragung mit
Phasenwechsel in pordsen Materialien. Dies wird durch ein System von gekoppelten, instationiren Differ-
entjalgleichungen modelliert und umfaBt eine zweidimensionale Betrachtung der mehrphasigen Trans-
portvorgiinge. Der Algorithmus erlaubt eine vollstindige Simulation ohne wesentliche Vereinfachungen.
Die Zusammenhinge zwischen Temperatur, Dampfdichte, Kondensationsrate, Fliissigkeitsanteil und
Geschwindigkeitsfeld werden ausfiihrlich diskutiert und demonstriert. Fine VergroBerung des Seiten-
verhiltnisses der pordsen Matrix senkt die Nusseltzahl erheblich, eine Erhohung der Feuchtigkeit
verbessert die Kondensation, den Dampftransport und die Energieiibertragung. Aulerdem hat sich gezeigt,
daB ein eindimensionales Modell dann nicht verwendet werden darf, wenn die Druckdifferenz am Rand
der Matrix klein ist, und daB die Annahme eines konstanten Drucks unter Umstdnden sehr grofle Fehler
mit sich bringt. Die Analyse erméglicht zum ersten Mal eine vollstindige Simulation und kann auf viele
Phasenwechselprobleme in pordsen Medien angewandt werden.
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YUCJIEHHOE UCCIEAOBAHHE 3®®EKTOB ®A30BOI'O INEPEXOJA B NOPUCTBIX
MATEPHUAJIAX

Amporasms—YnCIeHAO HCCeI0BaH TeII0- H MAacconepeHoc ¢ ¢pa3oBhIM IEPEXoJOM B MOPHCTRIX MaTe-
pHanax. JipymepHuili MHorodasHsili mepeHOC MOIETHPYETCH CHCTeMON B3aHMOCBA3AHHLIX YPABHCHHIA.
ANTOPHTH HAXOX/EHHS PCHIeHHs MO3BOJIAeT MPOBOMHTL MOJCIHPOBalHe G¢3 CYUICCTBEHHBIX YNPOILE-
unil. TloxpoGuo o6cyxmaeTcs B3aMMOCBA3L MEKIY NMONSMH TEMNEPATYPH, IULIOTHOCTH 1apa, CKOPOCTH
KOHJICHCAIHA, CONEpXaHRA XHAKOCTH H ee CKOpOcTH. OOHApYyXKeHO, YTO NPH YBEAHYCHHHE OTHOIICHMN

oTODnoH “c?“c-rcé MaTpHIL AU TENLHO y\lpm"'nﬂrnu qucio "vmpnurn a IPH BO3IPACTAHHW BlIax-

HOCTH YCHIMBRIOTCA KOHZCHCAUH#, NEPEHOC Napa H SHCPIHH. Taxxe YCTAHOBJICHO, YTO OJHOMEpHAS

MozieJIb HEMPAMCHAMA, KOTa Ha rpaHuile NOPACTOH MAaTPHIIL Nepenaji BaBJICHHS MaJl HJIA PaBeH HYmo,

a NPeoNokKeHne NOCTONHCTBA NaBIEHHS JUIA HEKOTOPLIX CIyYaeB MOXET NDHBECTH K 3HAYHTE/LHRMM

norpetHocTAM. JlauHbIi aHATA3 MOXET IPEMEHATLCA K 1EIOMY KJIaccy 3a4ad TeIUo- H MacCONnepeHoca
¢ (a30BBIM NEPEXOIOM B IIOPUCTOH Cpeile.

HMT 32:7-f



