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Abstract—In this paper, the transient forced convective condensing flow of a gas through a packed bed is
analyzed. The model developed for this analysis does not employ any local thermal equilibrium assumption
between the solid and the fluid phases. Inertial as well as viscous effects are considered in the vapor phase
momentum equation by using the Ergun—Forchheimer relation. Thermal charging of the packed bed for
two different types of boundary conditions and the condensation in the vapor phase are studied. Qualitative
comparisons of the effects of different parameters on condensation reveal that the pressure difference
applied across the packed bed, the particle size of the solid phase, and the heat capacity of the solid phase
are very influential on condensation. It is observed that although two-dimensional modeling is essential
for accurate results in the case of constant wall temperature boundary conditions, one-dimensional model-
ing would be quite satisfactory in the case of insulated boundary conditions.

1. INTRODUCTION

THE FLow of a mixture of a vapor and non-con-
densible gases, such as air and water vapor, through a
porous medium, and the accompanying phase change
(condensation) in the vapor phase and the multi-
phase transport processes involved have received con-
siderable attention through problems related to
different applications, such as phase change in build-
ing insulation materials {1-3], heat pipe technology
[4], and others [5). The condensing flow of a single
vapor phase through a porous medium, on the other
hand, has received relatively little attention [6]. A
rigorous model which includes the basic thermo-
dynamics of the condensation process and the con-
cept of non-thermal equilibrium between the solid and
the fluid phases under the condensing conditions seem
to be completely absent. This fact is the main motiva-
tion for the present investigation, which is aimed at
analyzing the forced convective condensing flow of a
vapor through a packed bed. The need for analyzing
such problems is a pressing issue in a number of con-
temporary applications of the packed beds. Packed
beds which have been classically used in the chemical
industry and for energy storage purposes in the form
of pebble bed or rock pile heat storage units, are
currently being considered for such applications as a
thermal energy storage system for rejection of heat in
pulsed space power supplies and some conceptual
spacecraft thermal management systems. Moreover,
the energy storage effectiveness of the packed beds has
been enhanced with the application of encapsulated
phase change material, which makes use of the latent
heat storage, for the solid particles of the bed [7].
The operating conditions of the packed bed may
require gas/vapor flow at high speeds as well as high
pressures, which in turn may dictate condensation of
the working fluid. This may actually be desirable in
order to enhance the amount of thermal energy stored

in the packed bed. Therefore, the fundamental study
required for analyzing such problems coincides with
the aim of the present work.

In this paper, the transient condensing flow of a
vapor through a fixed bed of regularly sized spherical
solid particles packed in a two-dimensional channel
is studied. The vapor considered as the working fluid
is Freon-12 (dichlorodifluoromethane or R-12) which
is a highly inert and stable compound. It was chosen
due to the fact that its critical temperature is well
above the temperature ranges considered in this inves-
tigation, and because of its relatively high vapor den-
sity that enables it to carry more thermal energy per
unit volume than the typical gases such as air.

The Ergun—Forchheimer relation is employed as
the vapor phase momentum equation in order to
account for the inertia effects in addition to the viscous
effects. This is very essential for non-Darcy regime
flows in porous media. This point has been neglected
in many of the previous studies dealing with multi-
phase transport phenomena in porous media. Like-
wise, the previous works on multi-phase transport in
porous media almost exclusively employ local thermal
equilibrium (LTE) between the solid and fluid phases
considered. This assumption may not be satisfactory
at all for the step change problems in which, during
the early stages of the transport processes there may
be considerable difference between the temperatures
of the flowing fluid and solid particles. This is also
true even during the later stages of the transport pro-
cesses in high speed flows or high permeability porous
media in which the fluid to solid interaction time or
surface area respectively may not be large enough to
bring the temperatures of the fluid and solid phases
close enough for LTE to be a reasonable assumption.
The use of such an assumption can, therefore, result
in very erratic results especially in the amount of con-
densation in the vapor phase. The present study makes
the necessary provisions for analyzing the difference
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a,;  specific surface area common to ¢ and §
phases [m?>m~3

a,,  specific surface area common to ¢ and y
phases [m>m~¥|

A constant in equation (9), 23.4851064

B constant in equation (9), 2969.2287
[K-1

c specific heat at constant pressure
PFkg 'K

d, particle diameter [m]

Da  Darcy number, K/H?
F geometric factor defined in equation (10)
g gravitational acceleration [m s~

G mass velocity [kgm~2s™")

h,s  fluid-to-particle heat transfer coefficient
between ¢ and B phases [Wm~2K ']

h,,  fluid-to-particle heat transfer coefficient
between o and y phases (Wm~2K~']

H height of the packed bed [m]

k thermal conductivity [Wm~'K~']

k.  relative permeability for fluid phase

coefficient of capillary pressure gradient

with respect to temperature [N m~?]

k, coefficient of capillary pressure with
respect to liquid volume fraction

(Nm~?

K permeability {m?]

L length of the packed bed [m]

m condensation rate [kgm=3s~']

P pressure [N m~3

R, gas constant for refrigerant-12
Pkg 'K

Re, particle Reynolds number, p,v*d,/u,

s saturation, gy/fe

S normalized saturation, (s— §,n)/(1 —Sim)

t time [s]

T temperature [K]

NOMENCLATURE

u velocity component in the x-direction
[ms=]
v velocity vector [ms~'].
Greek symbols
€ porosity
&g volume fraction of liquid phase
g volume fraction of vapor phase

Eq volume fraction of solid phase

Ah,,, latent heat of vaporization for
refrigerant-12 [J kg~ ']

(O] dimensionless temperature,
(T=To)/(Tia—To)

u absolute viscosity [kgm~'s™ "]

p density [kg m~?]

p,s  saturation vapor density (kg m~3).

Subscripts
f fluid (liquid + vapor)

feff  effective property for fluid

in inlet

0 initial

B liquid

y vapor

G solid

oeff  effective property for solid.
Superscripts

f fluid (liquid + vapor)

B liquid

y vapor

a solid

* reference.
Other symbol

{ > ‘local volume average’ of a quantity.

in the temperatures of the solid and vapor phases by
modeling the problem with no LTE assumption.

It should be noted that the authors have reported
an investigation on transient, single-phase com-
pressible flow of a vapor/gas through a packed bed
[8]. In that study the problem was analyzed by
assuming no LTE between the solid and fluid phases,
and the inertia effects were accounted for in the fluid
phase momentum equation. The conditions under
which local thermal equilibrium and/or one-dimen-
sional modeling could be used with reasonable accu-
racy were thoroughly discussed. In this study, thermal
charging of the packed bed for cases with insulated
wall and constant wall temperature boundary con-
ditions is analyzed for condensing flow conditions.
Qualitative analyses of the effects of different charac-
teristic parameters such as particle Reynolds number,
Darcy number and thermophysical properties on the
condensation of the vapor phase are also performed.

2. ANALYSIS

Figure 1 depicts the schematic diagram of the prob-
lem under consideration. The packed bed is initially
filled with the working fluid (Freon-12) at a slightly
superheated state and the whole vapor and solid sys-
tem is at uniform temperature and pressure. R-12
vapor at a higher temperature and pressure from a
reservoir is suddenly allowed to flow through the
packed bed, thus depositing its thermal energy to the
solid particles of the bed. This basically forms a step
change in the temperature and pressure at the inlet
boundary. In establishing a model for analyzing this
problem, the following assumptions and simplifica-
tions were employed.

(1) The width of the packed bed is significantly
larger than the length and the height, and therefore
the problem is essentially two-dimensional.

(2) The vapor phase behaves as an ideal gas.
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FI1G. 1. Schematic diagram of the problem.

(3) There is no local thermal equilibrium (LTE)
between the solid and fluid phases but there is LTE
between the vapor and liquid phases when there is
condensate present in the packed bed.

(4) Natural convection effects are negligible com-
pared to the forced convection in the vapor phase.
This essentially yields a one-dimensional flow in the
vapor phase.

(5) The solid and liquid phases are incompressible,
and the packed bed has uniform porosity and is iso-
tropic.

(6) Boundary and variable porosity effects are
neglected.

(7) Inter-particle and intra-particle radiation heat
transfer as well as thermal dispersion effects are
neglected.

(8) Variations of physical properties such as ther-
mal conductivities, specific heat capacities, viscosity
and latent heat of vaporization with temperature are
neglected.

2.1. Governing equations

The governing conservation equations as well as
thermodynamic relations were developed by appli-
cation of the well-known ‘local volume averaging’
technique which has been extensively used in devel-
oping the models for transport processes in porous
media. Considerable information may be obtained
with regards to this technique from ref. [9]. The volume-
averaged governing equations can be written in the
following vectorial forms.

Vapor phase continuity equation

0
3 &<PON TV K, (v,2) = =y, (1)

Liquid phase continuity equation

ae,; <’h>

E+V-<vﬁ)—p—ﬂ=0. @)
Vapor phase equation of motion
?Fi
L R I

3
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with assumption (3) above, this equation reduces to

$p,)" F,

12
K?

¢ R ,
—(PY = - ()= %<u.,.>. (3a)

Liquid phase equation of motion

kK .
(Vg = — ‘fﬁ {k,VB+k VST +(pp—<{p,>)8}-
“
Fluid phase energy equation
HTHF
leanales +2,<0, (D) a2 — Gy,

+1pp(cp)s<vs0 +<p, 07 (), <V,0)

s KT = V- keaV{TD']

+hopagg[{T,>" = TN+ hpya, [KT, )" —<T]. (5)
Solid phase energy equation

KT,
8,0.(¢p)s < a:>

X KT,>* =TV —hpyas,[KT, )" —=<TD).  (6)

Volume constraint relation

=V- [koelTV< Tc>a] - huﬂauﬂ

& +&,(0)+es(t) = 1. @)
Eguation of state for vapor phase

(P = Cp, Y RATYY. ®)

Thermodynamic relation for the saturation density of

vapor
B
exp (A - Tr)

Pys = T RT, ©
where 4 and B are constants, T; is in Kelvin and
Py is in kg m~>. These yield nine equations in nine
unknowns, namely &4(¢), &,(¢), {p,>", <V, >, V3D, (P,
<Tf>fs <T,>’, <m>'

The effective thermal conductivities were modeled
in the form
kaeﬂ' = eaku
kfe"‘ = 87k./+sﬂkp. (10)

The permeability of the packed bed of spherical
particles is given in the following form [10]:

372
g'd,

k= 150(1—¢)?

an

where ¢ is the porosity and 4, the particle diameter.

- The permeability of the vapor phase, K, and the geo-

metric factor, F, in the vapor phase momentum equa-
tion can be expressed as functions of 4, and ¢, as [10,
11)
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The relative permeability of the liquid phase follows
from the one suggested in ref. [12] as

(12)

krﬁ = S’
where
5= Sim
§= 1 —Sim
and
= 5
§== =, (13)

where S is the normalized saturation, s the absolute
saturation and s, the ‘immobile’ saturation. The
value of 0.1 used for s;, in ref. [13] will be used in
the present work because of the lack of any better
experimental finding. With this value of s, the critical
value of g; at which liquid phase becomes mobile was
found to be 0.039, with the value of porosity of the
packed bed taken to be 0.39, which is the average
asymptotic value for packed beds in which the particle
diameter to packed bed diameter is below a certain
value [14]. For all the cases studied in the present
investigation the maximum value of &; never reached
&pcrir and therefore the liquid was always immobile (in
the pendular state). It should be noted that the liquid
was not assumed to be immobile in the modeling of
the problem, but the fact that it turned out to be
immobile was the consequence of the governing physi-
cal conditions of the problem.

The fluid-to-solid heat transfer coefficients were
based on the empirical correlations established in pre-
viously performed experimental studies. The empiri-
cal correlations established in ref. [15] were found to
be suitable for use for the ranges of particle Reynolds
numbers (Re,) that were considered in the present
work. The experimental results which were originally
expressed for the Colburn-Chilton j,-factor were
manipulated to yield the following forms for the fluid-
to-solid heat transfer coefficient :

-2/3 -0.41
h,, = 1.064(c,),G, [%], [%Cj]j

for %—g 2 350

-2/3 d -
h.; = 18.1(c,),G, [%]] [—;—G]j

d,G

for T$450 (14)

where G represents the mass flow rate through a unit
surface area perpendicular to the direction of flow and
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the subscript j denotes B or y for the liquid or vapor
phase, respectively.

The specific surface area of the packed bed for the
vapor phase may be expressed in the following form:

- 6(1—&,—-8,)'

=g (s

Strictly speaking, this correlation was derived from
geometric considerations for a fully saturated packed
bed of spherical particles for a single fluid phase, in
the form a = 6(1 —&)/d, in ref. {16]. However, since &,
is very small (<0.01) compared to ¢, (approximately
0.38-0.39) equation (15) provides a very good esti-
mate for a,. Also, due to the fact that the liquid
phase is always immobile, /1,5 is zero for all the cases
considered and therefore there is no need for esti-
mating a,,, although this estimation may be simply
carried out based on a liquid-to-vapor volume
fraction.

2.2. Boundary and initial conditions

The problem considered in the present investigation
deals with a packed bed which is initially filled with
R-12 which is at uniform temperature and pressure
and in thermal equilibrium with the solid particles.
The initial conditions, therefore, take the following
mathematical form:

Te(x,y,t=0)=T,
T,(x,p,t=0)=T,
Py(x)yst=0)=P0' (16)

The pressure on the right boundary is kept at a
value equal to the initial pressure in the packed bed
while vapor at a fixed high temperature and pressure
is supplied at the left boundary. The mathematical
form of the left and right boundary conditions may
be expressed as

Ti(x=0,y,0)=T,
P(x=0,y,0) = P, at
P7(x=Lvyvt)=Poul=P0 (17)

Also, when insulated boundary conditions are used at
the top and bottom boundaries, we have

or
ﬂ'ay

t>0".

k. L =0 forboth T;and T, (18)
-0y=H

and when constant temperature boundary conditions
are used at the top and bottom walls, the boundary
conditions can be expressed as

Tix,y=0,) =T,(x,y=0,) = To = T
Tr(x,)’ = H9 ’) = Ta(xvy = Hr t) = Tmp = TO' (19)

The numerical values of different parameters used
as initial and boundary conditions are given as
follows:

To=300K, P,=796kPa,
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T,,=350K, P,,=796kPa

and the value of P, was different for different cases
ranging between 800 and 866 kPa. The numerical
values of the other physical data used in computations
are as follows:

k,=00097Wm-'K~', (c,),=710Jkg"'K"",
p,=12.6x10"°kgm™'s"",

R, = 0.0687588 kg~ 'K,
Ahp=1113x10°Tkg™", ks =00545Wm~'K"",
(c)p=1115Tkg™ 'K,
pp=179.2x10"%kgm~"'s™",
pp=1190.35kgm™?,
k,=35Wm™'K~", p,=11340kgm™>,
(c,), =129Tkg"'K~"' (for lead)
k,=43Wm~'K~!, p,=7800kgm3,

(¢,)s =473Tkg~'K~" (for steel).
2.3. Solution

The governing equations for the problem under
consideration are coupled, making analytical solution
impossible. For this reason it was necessary to utilize
numerical solution techniques, namely the finite
difference method. Due to the nature of the governing
equations, the more appropriate explicit schemes were
utilized. Forward differencing was used in the tem-
poral derivative terms whereas central differencing
was used for the spatial derivatives except for the con-
vective terms for which upwind differencing was em-
ployed. The spatial derivatives on the left and right as
well as top and bottom boundaries were formed by for-
ward or backward differencing whichever appropriate.

Depending on whether phase change (conden-
sation) takes place in the vapor phase or not, the
set of unknown variables and governing equations
change. The vapor phase continuity equation plays
an important role in determining the solution format
of the governing equations. It should be emphasized
here that the basic criterion which governs the phase
change (condensation) is the attainment of the satu-
ration density. At any point where the vapor density
reaches the saturation density, at that point con-
densation will occur.

The stability of the numerical scheme was insured
by choosing a proper combination of Ax, Ay and At.
A systematic decrease in the grid size was used to
obtain the convergence of the numerical scheme, and
the corresponding stable At was employed. A compro-
mise, however, had to be made between the accuracy
and the computer CPU time required for the com-
putational runs. A 41 x 21 grid configuration (which
gives a dimensionless Ax of 0.025) was found to yield
qualitatively and quantitatively good results for the
condensation period and very good results for the
later stages of the problem. It was found that the
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results obtained by using the 41 x21 mesh did not
differ more than 2% from the results obtained by
using an 81 x 41 mesh. The largest difference was in the
results related to the computation of the condensation
rates and total condensate accumulation both of
which involved integration over the associated grid
volume. This volume was in turn dependent on the
grid spacing. Since the CPU time for these runs
becomes excessive even on a CRAY XMP/28, the
accuracy obtained by using a 41 x21 mesh was
deemed to be sufficient.

3. RESULTS AND DISCUSSION

As mentioned earlier, the analysis of the transient
forced convective condensing flow of a single vapor
through a packed bed, for a non-thermal equilibrium
case and in which inertia effects are considered, has
not been modeled and solved rigorously in the way it
is done in the present investigation. Consequently the
solution of the different field variables undertaken
here has not been carried out before. Therefore, there
is no suitable reference in the literature for comparing
the results of this study for all the field variables
involved. It is, however, possible to benchmark the
results of the computer program which was devel-
oped, against the most pertinent analytical solutions
for different aspects of the transport phenomena in
porous media, which are limiting cases for the cur-
rent problem.

This benchmarking was performed in two main
parts for the limiting case of no phase change in the
vapor phase. The first part dealt with the energy trans-
fer in an incompressible fluid flow through a porous
medium in which there is no local thermal equilibrium
between the solid and the fluid phases. The second
part dealt with the momentum transport (pressure
and velocity distribution) in an isothermal flow of an
ideal gas through a porous medium. These were the
most relevant sources, with field variables translatable
to those of the present work, that could be located.
For benchmarking the energy transport, our numeri-
cal results were compared against the analytical solu-
tion of the Schumann model which was presented in
ref. [17]. Figure 2 depicts this comparison for the solid
and fluid phase temperature distributions in terms of
the dimensionless variables used in ref. [17]. The figure
shows excellent agreement between the analytical and
numerical solutions. Benchmarking of the momentum
transport was carried out against the analytical solu-
tion of a one-dimensional isothermal flow of an ideal
gas through a semi-infinite porous medium that has
been obtained in ref. [18] by the use of perturbation
methods. Although this analytical solution was for a
semi-infinite porous medium, comparison of the
results of the numerical code was safely performed for
small times during which the pressure propagation in
the packed bed takes place only up to the exit of the
bed. Figure 3 shows the comparison of the analytical
solution with the solution of the present numerical
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Dimensionless temperature

0.4

Dimensionless distance

F1G. 2. Comparison of the numerical results with the analytical results in ref. [17].

scheme in terms of the dimensionless pressure as it
appears in ref. [18]. As may be seen from this figure,

the agreement between the two solutions is very good. '

The results that will be presented for the com-
putational runs performed, will be in terms of non-
dimensionalized variables. Variables {P,)’, {p,)?, and
{v,> are non-dimensionalized by using the cor-
responding reference quantities, namely P*, p*, and
v*. P* was chosen to be 100 kPa, p* was calculated
from the equation of state by using P* and the initial
temperature T,. The reference velocity, v*, was com-
puted from the vapor phase momentum equation
using a pressure gradient which was based on the
global pressure difference applied across the packed
bed and a density which was calculated from the equa-
tion of state by using T, and P,, (the average of the

inlet and exit pressures). Temperatures of the solid
and fluid phases are nondimensionalized in the form
@ = (T-T)/(Tn—T,). Time, t, is kept in dimen-
sional form for giving an insight of the actual mag-
nitudes of the durations involved. The same thing is
done for the condensation rate data and the total
condensate variations as well as for the thermal charg-
ing data of the packed bed.

Two distinctly noticeable stages were observed in
the solution of the problem considered. These were
namely the early stage and the later stage. The early
stage usually lasts for a very short period of time
during which sharp changes in the distribution of
certain field variables, such as (P,)’, {p,)’, and {u,),
occur due to the step change boundary conditions
which cause very strong transient effects.

1.1 r T T r Y Y
1.0} J
‘s
& e.9fF 4
e .
>~ { 1. t=0.10x104s
¢ o.8f -
3 2 2.t =0.18x104s
I/ 3. t=035x1043
& o 4 t=053x1045 1
oo -
i
"5 eshyf . present work 7
—— analytical solution
0.4 -
e.3 I 2L A 1 N 1
0.0 o.1 0.2 0.3 0.4 0.5 0.6 0.7
Distance {(m)

F1G. 3. Comparison of the numerical results with the analytical results in ref. {18].
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FiG. 4. Distribution of field variables during the early stage.

Solution of the problem with insulated wall boundary
conditions. Figure 4 depicts the variations of the
density, velocity and pressure of the vapor as well as
the variation of the liquid fraction during the early
stage at the mid-plane of the packed bed for insulated
wall conditions for a case in which lead was used as
the solid phase. It was found that, for cases with
insulated boundary conditions, one-dimensional for-
mulation would be very accurate since the variation
of the main field variables in the y-direction did not
exceed 1%. Figure 4(a) shows that the vapor pressure
distribution evolves and becomes almost linear during
the early stage. There is no appreciable thermal pene-
tration during this period and the spatial variation
of the vapor density follows the same trend as the
vapor pressure as dictated by the equation of state.
The temporal increase in the density is a result of the
transient effects dictated by the vapor phase con-
tinuity equation. At points where vapor density
reaches the saturation vapor density, condensation
occurs and the liquid phase accumulates, thus yielding
the variation of the liquid fraction as shown in Fig.
4(d). In Fig. 4 the early stage was extended to include
the time during which more than 99% of the con-
densation took place for this case.

W7 33:6-0

Beyond the early stage, the changes in the field
variables are mainly caused by the development of the
thermal penetration depth since the pressure dis-
tribution remains almost unchanged. Variation of the
field variables of interest by time during the later stage
are shown in Fig. 5. In Fig. 5(a) the solid lines depict
the solid phase temperature distribution while the
dotted lines depict the fluid phase temperature distri-
bution. During the early stage, the effect of the tran-
sient term as well as the condensation (source) term
in the vapor continuity equation dies away and, there-
fore, the vapor density variation in time during the
later stage becomes dependent on the convective term
in this equation. The mass flow rate in the packed bed
becomes constant requiring an inverse relationship
between the vapor density and velocity. Figures 5(c)
and (d) clearly shows this behavior as a mirror image
type of trend in the variations of the vapor density and
vapor velocity at any instant. The spatial variation in
the vapor density, on the other hand, can be explained
from the equation of state. At any instant before the
packed bed is fully charged, the slope of the vapor
temperature profile will be larger than the slope of
the vapor pressure profile for a certain length of the
packed bed (meaning a sharper decrease in tem-
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FiG. 5. Distribution of field variables during the later stage.

perature than in pressure) causing an increase in the
vapor density, whereas exactly the opposite behavior
can be seen at the locations where the slope of the
vapor temperature profile is smaller than that of the
vapor pressure profile (meaning a sharper decrease in
pressure than in temperature). When the packed bed
becomes thermally fully charged, the vapor density
variation follows exactly the same trend as that of the
vapor pressure as dictated by the equation of state.
The overall condensation rate in the packed bed was
computed by integrating the individual condensation
rates at all the grid points over the associated volumes
at each time step. The average overall condensation
rate per unit width of packed bed for the case for
which the early and later stage results have been
presented is depicted in Fig. 6(a). It can be seen that
the overall condensation rate is higher at the begin-
ning when the transient effects are very strong, and
dies away as the sharp changes in the vapor density
variation die away. The accumulative condensate in
the packed bed was also computed by integrating the
condensation rates at all grid points over the associ-
ated volumes at each time step and totaling with the
previous sum. Figure 6(b) shows the variation in time
of the amount of total condensate in the packed bed
per unit width of the bed. As may be seen from this

figure, the accumulation is fast at the beginning due
to a high condensation rate, and builds up quickly
reaching an asymptotic value in a short time.

The variation in the amount of thermal energy
flowing into and out of the packed bed per unit width
is depicted as a function of time in Fig. 7(a). These
were computed by integrating the mass fluxes of the
vapor flowing into and out of the packed bed over the
inlet and the exit cross-sections. A very short section
of the history of the thermal charging process at the
beginning was left out in this figure in order to obtain
a better scale that shows the variation of the heat flow
rates clearly for the whole charging duration. Figure
7(b) shows the net energy stored per unit width of the
packed bed as a function of time. The value of the
total net energy stored in the packed bed was also
determined by a thermodynamic balance analysis
between the initial and the final (fully charged) states
of the packed bed. The result of the numerical com-
putation was found to be in very good agreement with
this analytical result.

Solution of the problem with constant temperature
wall boundary conditions. The same problem was
solved for constant temperature top and bottom wall
boundary conditions. As expected, strong two-dimen-
sional behavior was found in the variations of many
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F1G. 6. (a) Variation of the average overall condensation rate
in the packed bed per unit width. (b) Variation of the amount
of total condensate in the packed bed per unit width.

of the field variables. Therefore, rather than pre-
senting the results in the format of the previous section
we will revert to two-dimensional contour plots for
the field variable distributions. It should be noted that
the solution of this problem has early stage and later
stage parts just as in the case of insulated boundary
conditions. For space economy, however, the dis-
tribution of three field variables at three time levels in
the later stage will be presented here. These will be
sufficient to show the two-dimensional behavior of
the problem which becomes apparent during the later
stage.

Figure 8 depicts the distributions of the fluid tem-
perature, solid temperature and the vapor density in
the packed bed at three different time levels. It can be
seen from this figure that, although the two-dimen-
sional behavior of the field variables is not very sig-
nificant at the beginning, it becomes very much pro-
nounced as the thermal penetration in the bed
advances. In the core region of the packed bed the
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FiG. 7. (a) Rate of heat flow at the inlet and the exit of the
packed bed per unit width. (b) Thermal charging of the
packed bed.

advancement of the temperature distribution follows
a similar trend as in the case of insulated boundary
conditions. Near the top and bottom walls, however,
there is a temperature gradient in the y-direction due
to heat loss. Since the variation in the vapor pressure
in the y-direction is not significant, the vapor density
variation in this direction is primarily determined by
the fluid temperature variation. Hence, at locations
closer to the top and bottom walls where the fluid
temperature becomes lower the vapor density
becomes higher. In the core region of the packed bed
the variation of the vapor density in the x-direction
depends on the slopes of the temperature and pressure
distribution in this direction. At points where the slope
of the temperature distribution is sharper than the
slope of the pressure distribution the density will be
decreasing and vice versa.

The average overall condensation rate per unit
width of the packed bed was computed in the same
manner described in the previous section. Figure 9(a)
shows the variation of this quantity in time. Upon



1256 M.

-]

S6zeN and K. VaFal

t=535s

t=2749s

FiG. 8. Distribution of the field variables in the packed bed during the later stage.

comparing Fig. 9(a) with Fig. 6(a), one can see that
condensation lasts slightly longer in the case of con-
stant wall temperature. This is reasonable since due
to heat loss from the top and bottom it takes longer
for the vapor phase to reach a temperature at which
the saturation vapor density exceeds the vapor density
for the points next to the top and bottom boundaries
near the inlet of the packed bed. Hence the con-
densation time at these points is prolonged. This also
gives rise to a slightly larger amount of total con-
densate in the packed bed. One can see this by com-
paring Fig. 9(b) with Fig. 6(b).

The variation in the amounts of heat flowing into
and out of the packed bed per unit width at the inlet
and exit are shown in Fig. 10(a) as functions of time.
In this case too, a small time slice at the beginning of
the charging process is omitted from this figure in
order to obtain a better scale. Figure 10(b) depicts the
energy input into the packed bed, the energy that is
lost from the top and bottom walls by conduction,
and the net energy stored in the packed bed per unit
width of the bed.

Effect of particle Reynolds number (Re,) on con-
densation. The effect of Re, on condensation was
investigated by running three cases with different Re,
while the Darcy number (Da) was kept constant (by
keeping the particle diameter fixed). The solid phase
in all these cases was lead. Different Re, values were
obtained by applying different inlet pressure bound-
ary conditions for each case. Figure 11(a) depicts the
variation of the average overall condensation rate per
unit width of the packed bed for the cases in which

the nominal Re, values were 500, 1000, and 1500,
respectively. The corresponding variations of the total
condensate in the packed bed per unit width as func-
tions of time are shown in Fig. 11(b). From these
figures it becomes apparent that the higher the Re,
the higher will be the condensation rate and the total
condensate accumulation, whereas the higher the Re,
the shorter will be the duration of condensation.
Higher Re, indicates higher mass flow rates as well as
higher pressure difference applied across the packed
bed (larger compression forces on the vapor phase),
thus higher condensation rate. On the other hand,
higher Re,, due to higher pressure gradient applied
means potential for faster propagation of the pressure,
density and temperature distributions in the vapor
phase and thus shorter condensation time.

Effect of Darcy number (Da) on condensation. The
effect of Darcy number on condensation was studied
by considering three different Da values while Re, was
kept fixed at 1500. Different Da values were obtained
by changing the particle size. Figure 12 shows the
variations of the average overall condensation rate
and the total condensate accumulation in the packed
bed per unit width as a function of time for Da values
of 1.49 % 1078,2.66 x 10-%,and 1.067 x 10~ 7. The cor-
responding d, values were 0.75, 1.0, and 2.0 mm,
respectively. As d, increases and hence Da increases,
the specific surface area of the particles decreases. This
causes slower heat transfer between the solid and fluid
phases and a faster advancement of the thermal pene-
tration depth of the fluid phase (faster attainment of
lower densities than the saturation vapor density at
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Fi1G. 9. (a) Variation of the average overall condensation rate
in the packed bed per unit width. (b) Variation of the amount
of total condensate in the packed bed per unit width.

the initial condensation points). Therefore, although
the condensation zone advances faster the conden-
sation rate and the amount of condensate accumu-
lation remain small. Decreasing the d, at constant Re,
(by increasing the pressure difference applied across
the packed bed) increases the vapor velocities and
hence larger mass flow rates and larger condensation
rates. Also as d, is reduced the specific surface area of
the particles increases. The heat transfer between the
solid and fluid phases becomes more vigorous and it
takes longer for the fluid phase at the initial con-
densation points to reach temperatures high enough
at which the vapor density becomes less than the satu-
ration vapor density and condensation stops. Hence
higher condensation rates are sustained for longer
periods of time at these points, resulting in larger
condensate accumulation.

Effect of thermal capacity of the solid phase on
condensation. In order to analyze whether the thermal
capacity of the solid phase utilized had any effect on
condensation, a different material, namely 1% carbon
steel, was employed as the solid phase material for
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qualitative comparisons. The variations of the average
overall condensation rate and the total condensate
accumulation per unit width of the packed bed as
functions of time are depicted in Fig. 13 for the case
of lead and steel as the solid material for three different
Re, values. As may be seen from this figure, although
for a fixed Re, the condensation rate is almost the
same at the beginning for both solid materials, high
condensation rates are sustained for a longer time in
the case of steel than in the case of lead. The reason
for this is that the thermal capacity of steel per unit
volume is approximately 2.5 times that of lead. Due
to this fact along with the high heat transfer rate
between the solid and fluid phases, the temperature
propagation in the solid and fluid phases will be slower
in the case of steel than in the case of lead. In the case
of steel the vapor phase will take a longer time to
reach a high enough temperature at which the vapor
density will become lower than the saturation vapor
density corresponding to that temperature, and there-
fore, the condensation durations will be longer.
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FiG. 11. Effect of particle Reynolds number on condensation.

Effect of thermal capacity of the solid phase on the
thermal charging of the packed bed. The thermal
charging of the packed bed for two cases with different
solid materials was investigated for insulated top and
bottom boundary conditions. The two solid materials
considered were lead and 1% carbon steel. The com-
parison of the thermal charging characteristics of
these two cases is depicted in Fig. 14. As may be seen
from this figure, although the charging behaviors are
qualitatively similar in both cases, due to the larger
thermal capacitance per unit volume of steel, it takes
longer in the case of steel for the temperature of the
working fluid at the exit of the packed bed to start
rising. Therefore, there will be a high rate of energy
stored in the packed bed for a longer duration of time
in this case. Figure 14(b) shows that steel is a much
better material than lead as an energy storage
material since it has a lower density but yet higher
thermal capacitance per unit volume compared to
lead.

3.1. General comments
From the results obtained in the present study, it is
possible to deduce useful information for physical
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Fic. 12. Effect of Darcy number on condensation.

applications. An interesting finding was the early stage
of the problem. This stage was characterized by very
strong transient effects. The very large velocities at the
entrance of the packed bed suggest that this section
should have a certain durability for withstanding the
initial high compression forces due to the step change
boundary condition in pressure. Also, during this
stage, very rigorous heat interactions take place at the
entrance region between the solid and the fluid phases.

This investigation showed that condensation in the
working fluid is more drastic at the beginning due to
the large compression forces which are present before
the pressure distribution in the packed bed evolves
into linear form. More condensate accumulates close
to the entrance of the packed bed than close to the
exit section. This qualitative behavior is important in
applications in which it may become necessary at some
point to remove condensate from the system in order
to prevent the stalling of the packed bed due to large
condensate accumulation. This study also showed
that condensation can be controlled by different
means. Namely, if continuous removal of heat from
the packed bed can be maintained through the upper
and lower walls, then the amount of condensation
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FiG. 13. Effect of the thermal capacity of the solid phase

material on condensation.

can be increased. This can be achieved by the use of
convective boundary conditions. Also, for a given size
of the packed bed the amount of condensation for a
set of specified boundary conditions can be controlled
by the size of the particles chosen. Namely, by decreas-
ing the particle size and hence increasing the heat
interactions between the solid and fluid phases the
amount of condensation can be increased and vice
versa.

Also, initially the rate of energy storage in the
packed bed was found to be high due to the large
velocities of the working fluid. This fact makes this
kind of energy storage system very suitable for appli-
cations in which there is pulsed heat to be stored.
Results showed that once the vapor exit temperature
starts rising the energy storage efficiency starts
decreasing. Accordingly, the length of the packed bed
can be chosen such that for the given energy storage
requirement the thermal penetration front within the
packed bed reaches close to the exit of the packed bed,
and thus the thermal energy that escapes from being
stored is minimized.
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FiG. 14. (a) Rate of heat flow at the inlet and the exit of the
packed bed per unit width. (b) Thermal charging of the
packed bed.

The study with constant wall temperature boundary
conditions showed that the amount of heat which
escapes from the packed bed by conduction in the
transverse direction can be quite significant. This
can be further enhanced by convective boundary
conditions. A packed bed with insulated/convective
boundary conditions can therefore be used as an
energy storage/release unit in a closed loop system in
applications in which waste heat comes in pulsed form
and has to be removed during a certain consecutive
period, such as in electronic waste heat removal sys-
tems and spacecraft thermal management systems.

4. CONCLUSIONS

From the results and discussions presented in the
previous section, we can draw the following con-
clusions.

(1) For a fixed Da, larger Re, values cause larger
overall condensation rates and larger condensate
accumulation.
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(2) For a fixed Da, larger values of Re, will result
in smaller condensation durations.

(3) For a fixed Re,, as Da is increased the overall
condensation rate and the total condensate accumu-
lation become smaller.

(4) As the heat capacity of the solid phase is
increased, the overall condensation rate as well as the
total condensate accumulation become larger.

(5) Constant wall temperature boundary conditions
enhance the condensate accumulation in the packed
bed as compared to insulated wall boundary con-
ditions.

(6) Formulation without the local thermal equi-
librium assumption is necessary for accurate com-
putation of the condensation in the packed bed.

(7) Whereas one-dimensional formulation will give
accurate results in the case of insulated boundary
conditions, two-dimensional formulation is abso-
lutely necessary for the case of constant wall tem-
perature boundary conditions.
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ANALYSE DE L'ECOULEMENT AVEC CONDENSATION HORS D’EQUILIBRE
THERMIQUE POUR UN GAZ TRAVERSANT UN LIT FIXE

Résumé—On analyse I'écoulement forcé avec condensation d'un gaz qui traverse un lit fixe. Le modéle
développé n’utilise pas 'hypothése d’équilibre thermique local entre le solide et les phases fluides. Les effets
d’inertie et de viscosité sont considérés dans I’équation de quantité de mouvement de la vapeur en utilisant
la relation d’Ergun—Forchheimer. On étudie le comportement thermique du lit fixe pour deux types
différents de conditions aux limites et aussi la condensation dans la phase vapeur. Des comparaisons
qualitatives des effets des différents paramétres sur la condensation révélent que la différence de pression
appliquée a travers le lit fixe, la taille des particules solides, et la capacité thermique de la phase liquide
sont trés influents sur la condensation. On observe que bien qu'un modéle bidimensionnel est essentiel
pour des résultats précis dans le cas de conditions limites de température pariétale constante, un modéle
monodimensionnel est satisfaisant dans le cas de conditions de frontiéres isolées thermiquement.

ANALYTISCHE UNTERSUCHUNG EINER KONDENSIERENDEN DAMPFSTROMUNG
DURCH EIN FESTBETT

Zusammenfassung—In dieser Arbeit wird die instationdre erzwungene kondensierende Strémung ecines
Dampfes durch ein Festbett analysiert. Das entwickelte Modell enthilt keine Annahmen &ber lokales
thermisches Gleichgewicht zwischen Fest- und Fliissigphase. Sowohl Tréiigheits- als auch Zahigkeitskrifte
wurden in der Impulsgleichung fiir die Dampfphase mit Hilfe der Ergun—Forchheimer-Bezichung beriick-
sichtigt. Die thermische Beladung des Festbetts wird fiir Kondensation bei zwei verschiedenen Rand-
bedingungen untersucht. Ein qualitativer Vergleich des Einflusses verschiedener Parameter auf die Kon-
densation zeigt, daB der Druckabfall im Festbett, die TeilchengréBe der festen Phase und die Wir-
mekapazitit der festen Phase starken EinfluB auf die Kondensation ausiiben. Obwohl ein zwei-
dimensionales Modell bei konstanter Wandtemperatur fiir genaue Ergebnisse notwendig ist, hitte bei
idealer Isolierung der Wand auch ein eindimensionales Modell ausgereicht.
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AHANIM3 TEYEHMA KOHAEHCHPVYIOMEIOCs rA3A YEPE3 IUTOTHBIA CJIOM MPH
OTCYTCTBHM TEILUTOBOTO PABHOBECHUA

AENOTamms—AHAHIHPYCTCA HCYCTRHOBHBLICCCH BLIHYXICHHOC KOHBCKTHBROC Te4CHHE XOHACHCHPYIO-
IIeTOC rasa 4epe3 naoTHbil crolt. PaspaboranHas A1 NaHHOro aHAAW3a MOACHD HE MPEANOJaract
JIOKAJTLHOTO TCIJIOBOTO PaBHOBECHA MexIy TBepao# H xuaxoit ¢pasamu. MHEPHHOHNEIC # BA33KOCTHbLIC
3pdexTH ONHCHBAIOTCK YPABHEHHEM KOJHYCCTBA JABHXCHHA B napoBolt $ale ¢ HCNONBIOBAHHEM COOT-
sHouleHus Jpryna—Popuixaitmepa. Hiccnenyrores Temosas Harpyssa IUIOTHOTO C/I0R IIPH ABYX pa3iud-
HBIX THNAX FPAHMYHBIX YCJIOBHE M XOHACHCAUMA B nmaposoli daze. KawecTeeHHoe cpapHeHHE BIHAHHN
PaIHYHBIX TAPaMETPOB Ha HPOLECE KOHACHCAIMH NOKa3asno, YTO Ha HEr0 CYHMIECTBCHHO BJHSIOT
nepenaj AapscHUi B ILIOTHOM Clloe, pa3Mep YacTHI TBepAoit ¢asul B ee TerloeMxocTs. Brssiaeno, wro,
XOTA ABYMEpHOE MOACIHPOBAHHE AABANO TOYHLIC PE3YNLTATH VIS CIYYas FPAHMMHBIX ychosail ¢ moc-
TORHHOH TeMnepaTypoil CTEHKH, AN CIy4as TPaHHYHBIX YCJIOBHA C H3o:MposaHHOM cremxoit BrosHe
YOOBJICTBOPHTEIbHBIC PE3YIbTATh JACT OJHOMEPHOC MOICIHPOBAHHC.
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