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The present work consists of the comparative evalyation af the finite element method (FEM)
and the finite difference method (FDM) Jor the analysis of free surface Iransport within a

the FDM is also analyzed by the FEM. It is Jound that the times af which the motion
reversal occurs are independent of the applied pressure difference for any fived dimension of
the hollow ampute., Furthermore, it appears that the displacement of the inner and outer free
surfaces varies linearly with the magnitude of the applied pressure difference. Finally,
detailed comparative discussion is presented on the differences between the results obtained
by FDM and FEM,

INTRODUCTION

aspects were discussed in more detail in Vafai and Chen [1],

The material chosen for the present analysis is glass, because glass and
ceramic materials have become extremely useful in a variety of applications in the
last few decades. In the electronic industry, glass is probably the most familiar of
all insulating materials. For example, central to understanding and optimization of
hermetic type sealing used in various electronic applications is the accurate
prediction of free surface transport within a hollow glass ampule. It should be
noted that the present work constitutes a generic investigation of free surface
transport.

Most of the FDM free surface investigations are based on the marker-and-cell
(MAC) method or its variant. This method, which solves the incompressible

Copyright © 1993 Taylor & Francis 229
1040-7782 /93 $10.00 + .00
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NOMENCLATURE
Dy inner diameter of the hollow u"  FEM approximation for the
ampule, m z component of velocity, ms ™!
D,  outer diameter of the hollow ¥V column vector consisting of all the
ampule, m unknown variables in the
H height of the hollow ampule computational domain (u,, 1,, p)
P pressure, Pa n  refers to the inner free surface
I FEM approximation for £ refers to the outer free surface
pressure, Pa
R, inner radius of the hollow Subscripts
ampule, m
R,  outer radius of the hollow i index for r direction or inner free surface
ampule, m j  index for z direction or outer free surface
r,z  radial and axial cylindrical N index for time step
coordinates, m o outer free surface
¢ time, s r  rcomponent
At time increment, s z  z-component
u,,u velocity in the r direction, ms™!
u,,v velocity in the z direction, ms™! Supersceripts
u! FEM approximation for the T transpose of a matrix
r component of velocity, ms ™!

The work by Vafai and Chen [1] constitutes one of the first investigations on
free surface problems related to cylindrical coordinates that includes full consider-
ation of the free surface boundary conditions. In that work, the Navier-Stokes
equations in cylindrical coordinates were discretized using a semi-implicit finite
difference scheme with full consideration of the surface tension effects along with
normal and tangential boundary conditions on both free surfaces. In this work,
both the FDM and finite element method (FEM) have been used to obtain a
critical comparison between these two methods for free surface problems. The
FEM, while enjoying widespread use in structural problems, has a relatively short
history in computational fluid mechanics.

In recent years, however, various research has shown convincingly that FEM
is a powerful tool in fluid mechanics. A positive aspect of FEM is its inherent
flexibility in treating arbitrarily complex flow domains and boundary conditions.
Unstructured grids can be designed that allow areas of interest to be studied in
great detail without the need for excessive grid points throughout the entire flow
domain. FEM allows the natural and correct imposition of boundary conditions on
curved boundaries, which is a very important consideration in the present- study,
where free surfaces are involved in the computational domain. Furthermore, the
FEM formulation allows for an easier derivation of comprehensive error estimates
and the determination of accurate solutions,

Despite the fact that the FEM is becoming a popular numerical tool in the
solution of fluid mechanics and heat transfer problems, very limited work has been
done in the way of assessing the accuracy and differences between the FEM and
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Do Fig. 1 Schematic diagram of the hollow
ampule.

FDM for situations other than conduction’ type problems. In particular, there
appears to be no comparison between the two methods for free surface problems,
The work done by Wang [3] on the free surface problem involved in the glass fube
sealing process is one of the only FEM works in this arca. However, that work was
restricted to a one-dimensional simplification in the cylindrical coordinate. It is
clear that there is a definitive need for a comparative and complete analysis of
these two methods for free surface flow and heat transfer problems.

The present study provides such a comparative evaluation of the FDM and
FEM for free surface fluid flow. Specifically, in this work the free surface fluid flow
inside a hollow ampule is investigated using both methods. It should be noted that
there are no FEM investigations for solving free surface problems related to
cylindrical coordinates. In this work, the formulation and boundary conditions used
for both FEM and FDM are identical. Therefore, as in the FDM formulation, full
consideration of the surface tension effect along with normal and tangential stress
conditions on the free surface are used for the FEM. The numerical procedure
used in the present work is the Galerkin-based weighted residual method of finite
element formulation., This work provides a critical quantitative and qualitative
investigation of both methods applied to the free surface problems in cylindrical
coordinates. '
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MATHEMATICAL FORMULATION

The governing equations and assumptions for the present study are similar to
those presented in the work of Vafai and Chen [1]. The assumptions made in the
present study are (1) incompressible flow, (2) axisymmetric flow, (3) viscosity and
surface tension coefficients taken to be constant, and (4) gravitational effect
neglected. The axis-symmetrical continuity and momentam in polar coordinates
can then be represented as follows:

Continuity equation

1 g du 0 a
—_— i + —_—
r 6r(n) dz )
Momentum equation
gu 14 Juv P a {1 9d 9%u )
——— —— = =ty — |- — —
at r ar(m ) dz ar g ar\r ogr 2z° )
v 1 9 dv® dd d (1 4d %
— t-—(w)+ —=-—+tg+ty|—|—-— +—=1 (3)
dt ror a9z dz ar\r or 9z

where ¢ = p/p. :
The required initial condition and boundary conditions for the velocity and

pressure fields are discussed in the next section.

Initial Conditions

Based on physical considerations, the initial conditions are taken as zero
velocity field and uniform pressure field. ‘These initial conditions are similar to
those used in the work of Vafai and Chen [1] and provide the velocity and pressure
fields at the beginning of the computational scheme for Egs. (2} and (3).

Boundary Conditions

Two types of boundary conditions are vsed in the present study. One is the
boundary condition at the rigid wall, namely, the top and bottom boundaries of the
hollow ampule, and the other is the boundary condition at the free surface. In the
present study, no-slip conditions are used at the top and bottom rigid walls. For the
free surface boundary condition, the tangential stress at the free surfaces and the
normal stress at the free surface must exactly balance any externally applied
normal stress. Balance between the normal stress and the externally applied
normal stress is employed as the boundary condition in the present study. For the
inner and outer free surfaces, the above mentioned boundary conditions can be
written as follows.
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On 7
T 42 zau_'_ du au + 20u ‘ 4
= g~ — ne:— nl— + — ni—
¢7] ¢l pKTr v rar nr z az ar Zaz ” ()
On ¢
4 o 42 zﬁu+ au+av + zau s
= — n.— n|l—+ — RS
¢ pK‘f ] Y rar T dz ar foz ), )

Finite Element Formulation

Detailed discussions regarding the discretization of the governing equations
and boundary conditions for FDM, including the free surface boundary conditions,
were presented in the work of Vafai and Chen [1]. The work presented in this
section will mainly stress the formulation of the FEM.

A Galerkin-based FEM was employed to solve the system of governing
equations. The application of this technique is described by Taylor and Hood 4]
and Gresho et al. [5], and its application in the finite element code used in the
present work is also well documented [6]. This scheme is briefly explained here.

The domain under consideration is first divided into a set of simply shaped,
nonoverlapping regions called elements, within each of which the unknown vari-
ables u,, u,, and p are approximated by using the following equations:

u, ~ ut = 7(U] ®)
u, = ut = T[] )
p=ph=yTP] ®

where ¢ and ¢ are the interpolation functions for velocity and pressure, respec-
tively. These are local functions of the nodal coordinates for that element as well
as the independent variables. The vectors [U,}, [U], and [ P] consist of the values of
the respective variables at the nodes of that element.

For problems involving free surface boundaries, a different type of element is
used on the inner and outer surface boundaries to account for the effect of the
free surface. In the present study, a three-node triangular element is used on the
free surface, and a nine-node quadratic element is used for the rest of the
computational domain.

Substituting these basis functions into the governing equations and boundary
conditions yields a residual (error) in each of the equations. This can be stated as
follows:

Continuity

(e, U,0,) = E &)

P—
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Momentum
o9, U U, P) =E,) (10)

where F; and E, are the residuals (errors) resulting from the use of the finite
element approximations.

The Galerkin form of the method of weighted residuals seeks to reduce these
errors to zero in a weighted sense, i.e., by making the residuals orthogonal to the
interpolation functions of each element. These orthogonality conditions are ex-
pressed by

fvxp-EldV=fva,b-f1dVﬂO (11)

L¢-E2dV=L¢-f2deo (12)

This procedure yields a system of equations for each element, which can be
written as

_av _
M— +R(v)-V=F (13)

where V' is the column vector of the unknown variables, F is the force vector
(incorporating the boundary conditions), M is the mass matrix, and X is the
stiffness matrix (representing the diffusion and convection of energy).

The above equation represents the discrete analog of the governing contin-
uum equations for an individual fluid element. The discrete representation of the
entire continuum region of interest is obtained through an assemblage of ¢lements
such that interelement continuity of velocity and temperature is enforced. The
result of such an assembly process is a system of matrix equations of the form given
by Eq. (13).

To obtain a transient solution, the time dependent terms need to be replaced
over a small portion of the problem time scale. It is an incremental procedure that
advances the solution in discrete steps of time. Implicit and explicit time integra-
tion methods are two general approaches used in FDM and FEM to discretize the
time dependent terms. As was discussed in [1], a semi-implicit scheme was em-
ployed in the FDM. Because it is a scheme with conditional stability, stability
criterion had to be satisfied, resulting in a smaller time increment. For the present -
study, the trapezoidal implicit scheme developed by Gresho et al. {5] is used for the
time discretization of the governing equations. Detailed derivation and discussion
are presented in Ref. [6].

In the semi-implicit scheme used by Vafai and Chen [1}, the pressure field
was solved at each iteration, and the successive overrelaxation method was used to
solve the pressure field equations. For the present study, since an implicit time
integrator has been used for discretization of the governing equations in time, at
each time step, a nonlinear system of equations including all field variables needs
to be solved. Gresho et al. [5] showed that with the predictor-corrector scheme
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used in the present code [6), if the user specified local time truncation error
tolerance is set to 0.1-0.5% error, the predictor is sufficiently accurate that only
one or two Newton-Raphson iterations are required at each time step to achieve
convergence. This, however, can be very expensive in studies like the present case,
for which even one iteration can take a considerable amount of CPU time when
the Newton-Raphson method is used. To overcome this problem, a quasi-Newton
solution algorithm is used to solve the nonlinear system at each time step. The
description of this method is given by Engelman et al. [7]. This algorithm can be
shown to be supeilinearly convergent, and in practice, its convergence rate ap-
proaches that of the Newton-Raphson, while the time for one jiteration of quasi-
Newton is typically 10-20% of the time for a Newton-Raphson iteration. The
advantage of the quasi-Newton method is that the reformation of the Jacobian
matrix need only be performed every N time steps. Of course, a balance must be
found between the number of steps N and the quasi-Newton iterations required at
each time step to achieve convergence. Typically, if N=2or 3, a savings in
computer time of the order of 50% over the one-step Newton-Raphson method
can be attained.

Free Surface Formulation

The MAC method associated with irregular cells on the free surface was used
to cope with the free surface boundary condition for the FDM. In the FEM, for
each node at the free surface, a new degree of freedom is introduced for
determination of the position of the free surface node within the region.

In the FEM, initial coordinates for nodes located at the free surfaces have to
be specified, and special boundary elements for the free surfaces are also specified.
The kinematic condition and cubic spline technique, which are the same ap-
proaches used in the finite difference scheme by Vafai and Chen [1], are employed
in the finite element scheme to update the positions for nodes at both the inner
and outer free surfaces and update curvature values for the boundary conditions at
both free surfaces. Using the techniques mentioned above and applying the
Galerkin finite element method to the governing cquations plus the free surface
boundary conditions, Egs. (4} and (5), the matrix system of nonlinear algebraic
equations for the free surface can be expressed as follows:

A(U)YU + K(U)U — CP + BX = F (14)
C'U=0 _ (15)
KU=0 (16)

where X is the global vector of the iree surface unknowns, A(U) is the matrix that
represents the contribution from the convective terms, K(U) is the matrix that
includes the diffusive terms, C is the divergence matrix, B is the matrix represent-
ing the contribution of the normal stress balance boundary condition in the
momentum equation, K, contains the normal velocity boundary condition effects,
and F is the vector including the effects of surface stresses and contact angle
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boundary conditions. The solver used for the FEM in the present work is the one
described in Ref, [6].

RESULTS AND DISCUSSION

In the present work, a comparative study of finite difference and finite
clement solutions for the problem of free surface transport within a hollow ampule
is presented. In addition to presenting the basic differences between the finite
difference and finite element results, the effects of different radii ratic and
different pressure differences on the FDM and FEM results are also investigated.
The temporal variations for inner and outer radii for a given pressure difference
are presented for two main cases. For case 1 the inner radius is taken as 0.1 m and
the outer radius is set to 0.15 m, and for case 2 the inner radius is taken as 0.05 m
and outer radius is set to 0.1 m. This results in a radii ratio of 1.5 for case 1 and of
2 for case 2.

An in-depth investigation on the effects of the number and the type of
elements/nodes and the time increment has been performed, Preliminary tests to
check the validity for the finite element scheme were made by using different time
increments and by varying the number of elements. Extensive sets of numerical
cxperiments were done to ensure that any further refinements in the number of
elements/grids or any further reductions in the time increment as well as different
types of elements (for the finite element method) would have no effect on the
FDM and FEM results. For the FEM a trapezoid time integration scheme was
used to discretize the time dependent terms in the governing equations. The
trapezoid scheme facilitates taking larger time increments, since it is a second-order
implicit scheme. Since a rigorous verification of the FDM algorithm is presented in
Vafai and Chen [1], only the results of the verification for the FEM are presented
in here. Figure 2 shows the FEM results for the temporal variations of the inner
free surface of a hollow glass ampule with R, = 0.1 m and outer radius of
R, = 0.15 m using three different time increments (0.1, 0.05, and 0.0255 s). It is
apparent from Fig. 2 that any further reductions in the time increment will have
very little influence on the variations of the inner free surface. Some limited results
are presented in Fig. 3 for the extensive set of runs that were performed regarding
the effects of the number of the elements in the r and z directions. These results
are presented for the temporal variations of the inner free surface of a glass
ampule with R; = 0.1 m and R, = 0.15 m using 31 X 11, 31 X 15, 31 % 21, and
31 X 25 mesh distributions in the z direction (Fig. 3), For brevity, the effects of the
variations in the r direction are not shown in here.

A critical comparison of the FDM and FEM results is shown in Figs. 4-6 for
two different radii ratios at a given pressure difference. Figure 4 presents the
temporal variations of the inner radius obtained by FEM and FDM for a hollow
ampule with R; = 0.1 m and R, = 0.15 m. Figures 5 and 6 present the inner and
outer free surface variations for a hollow ampule with R;=005mand R, =0.1
m. Qualitatively and quantitatively the results for the temporal variations of the
outer free surface for case 1 were quite similar to the inner free surface variations
shown in Fig. 4. For brevity, those results are not shown here. For both cases, 31
nodes in the radial direction and 11 nodes in the axial direction were chosen. The




COMPARATIVE ANALYSIS OF FREE SURFACE TRANSPORT

237

e - r ’ - ,
el T D1t e 10 See. v [. - 8.0 See,
KTy 4 ® it = 2.0 Sae, 9 qae - 7.0 Sec.
-ﬁ Ot = 0.0 Sec, B - 5.0 Sae,
o bl T 8+t n g0 see. -ld [ * PO See,
sug,l.m. 4 Bit =50 Se, ‘::ua- = 10, See,
©w
= Raaly N CETEEN
g g
= L - o
E] .g Ll
é ll " E wa b
5 b o Sl
e300 |- wieh |-
s £ N s 1 .
e ™ —axr 0 g -~ el um_‘- -|._= —“n - ~os)
(Ri'—O.l)'l.OEOG (Rl-—O.l)"l.OEOS
(a) (&)
P — - kb .
el T 1L = 10 See, ok Tl 5.0 See,
10 7D e
“ A = 2.0 See. e
'Sl“ ;” aos" e Vit = 56 Sac.
T e b !m 20 e T ue o A1 Lm0 See,
e Al - 4.0 S, 2 Bt~ 108
[T g S 11,80 See s [ ! - Sam
£l £.]
5 g
< b
E (2788 G
4]
O oexe | E 208
§ LL o PN
o L e |
[ 1 1 : L . . . .
- -ax ~$ay =i R ] (1] &0 A vadé =28 04
(Ri-0.1}*1.0805 (Ri—0.1)*1.0E08

(c)

(d)

Lao . . [T .

‘mL uw | U1t - a0 5eq,
o ascn [ DAL =18 e e L om0 See,
5 # 11— 2.0 Ser, g Ot - 00 e
Foma b Qe w30 See., | ame i AL 50 Sea
Nux A 11l = 4.0 See, N‘m_ 814 = 10, see,
] B Bt om 50 Ser. §
& oo b 2 oo |
g g
.9 L | ‘B o
& B o
o ae | L
g E
5 200 o F=g -

bioe won fo

e Il L I L L 1 s L 1,

. 433 -y &1 - -y -4 -a1q .1 pryry "
{Ri-0.1)* 1.0E0G {Ri—~0.1)*t.0E0G
(e) (N

Fig.2 The effects of different time increments on the temporal variations of the inner free surface of a
hollow ampule for FEM runs with R, = 0.1 m and R, =0.15 m with AP = 10-5: (a, b) At = 0.025 5;
(¢, d) At = 0.05 5; and (e, fY)At =015,

time increment was equal to 0.001 s for FDM and 0.1 s for FEM. The pressure
difference across the film for Figs, 4-6 is equal to 10~° Pa. For example, this
pressure can be induced by various heating sources striking the outer free surface
of a hollow ampule. As discussed earlier, comprehensive numerical experimenia-
tion was done to ensure that both the FDM and FEM results are independent of
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FEM and {d, e, f) FDM.

the grid size and the time increment. Furthermore, in the case of the FEM the
results were independent of the type of the element chosen for the computational

domain,

As seen in Figs. 4-6, for both the FEM and FDM simulations, initially the
hollow ampule starts moving inward due to the applied pressure difference across
the thickness of the hollow ampule. The same type of inward motion was also
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observed in the work of Chen and Vafai [8]. The results presented in Fig, 4 are for
case 1, and the results presented in Figs. S and 6 are for case 2. The FEM results
for case 1 are shown in Figs. 4a—4¢, and the corresponding FDM results are shown
in Figs. 4d-4f. As it can be seen from the FEM results, the inner free surface of
the vertical film starts moving inward in about 4 s, However, after 4 s, due to the

i
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i
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dominance of the surface tension effects, the inward motion of the inner free
surface stops, and the vertical film starts bouncing back and moving outward. For
later times, other motion reversals occur at 8, 10, 20, and 30 s after the start of the
process, leading toward the final steady state when a uniform pressure field is
reached at 40 s. From the FDM simulations for the same process shown in Figs,
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4d-4f these motion reversals occurs at 3.5, 7, 10, and 20 s, and steady state is
reached at 30 s. For both methods the motion reversal times for the outer free

emphasized again that both the FEM and FDM results presented in this work were
independent of grid size and time increment,

Temporal variations of the inner and outer free surfaces for case 2 with a
radii ratio of 2 and the same applied pressure as in case 1 are shown in Figs, 5 and
6. Here again for the initial 3 S, results obtained by FEM and FDM simulations are
very close. However, as in case 1, for later times the FEM results predict larger

Table i Motion Reversal Times for the Inner Free Surface for 2 Hollow Ampule
with R; = 0.1 m and R,=015m

Numerical Reversal motion, s

scheme First Second Third Fourth Steady State
FEM 4.0 8 10 30 40

FDM . 3.5 7 10 20 30
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Table 2 Motion Reversal Times for the Inner Free Surface for a Hollow
Ampule with R, = 0.05mand R, = 0.1 m

Reversal motion, s

Numerical
scheme First Second Steady State
FEM 5.0 10 30
FDM 4.0 8 20

After some extensive investigations, it was established that for a given radii
ratio corresponding to a given set of geometric dimensions, for either FDM or
FEM, the motion reversal times are independent of the applied pressure difference
across the thickness of the hollow ampule. Figure 7 presents the FDDM results for
case | for three applied pressure differences (1075, 1073, 10~Y) for a hollow
ampule with R; = 0.1 m and R, = 0.15 m. As can be seen from Fig, 7, the driving
force (applied pressure difference) has essentially a direct linear relationship with
the magnitude of the free surface deformation. That is a 100-fold increase in the
magnitude of the applied pressure difference across the hollow ampule results in
exactly the same order of magnitude increase in the magnitude of the free surface
deformation. However, as can be seen from Fig. 7, the motion reversal times are
independent of the applied pressure differences. Therefore, in Fig. 7, the first and
second reversals occur at 3.5 and 7 s, respectively, regardless of the magnitude of
the driving force.

Figures 8 and 9 show the effects of different driving forces for case 2 for the
FDM and FEM simulations, respectively. Clearly, exactly the same conclusions
stated earlier in connection with-Fig. 7 apply for both of these figures. That is, for
any radii ratio, for either method, the applied pressure difference has a direct
linear effect on the magnitude of the free surface deformations and no effect on
the motion reversal times. This interesting property allows prediction of the free
surface deformations and motion reversal times for different magnitudes of the
driving pressure difference, for either FDM or FEM simulations, once the results
for a given radii ratio corresponding to a given set of geometric dimensions are
known. This type of property can lead to significant CPU savings for free surface
investigations related to various applications.

Table 3 Motion Reversal Times for the Quter Free Surface for a Hollow
Ampule with R; = 005mand R, =0.1m

. motion, s
Numerical Reversal motion,

scheme First Second Steady State

FEM 5.0 10 30
FDM 4.0 8 20

S
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CONCLUSIONS

The present work consists of an in-depth comparative analysis for finite
difference and finite element methods as related to free surface transport phenom-
ena. Exactly the same governing equations, boundary conditions, and initial condi-
tions were employed in both the FEM and FDM simulations, A critical comparison
shows that the FEM and FDM results are both qualitatively and quantitatively very
close during the earlier times, while for later times, qualitatively, the results from
both simulations are in very good agreement. However, there are quantitative
discrepancies between the results obtained by the FEM and FDM simulations. The
quantitative differences, such as different motion reversal times and magnitudes of
free surface deformations, are atiributed to the inherent differences in the ap-
proaches used in the FEM and FDM formulations, It is established that for any
radii ratio, for either method, the applied pressure difference has a direct linear
effect on the magnitude of the free surface deformations and no effect on the
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motion reversal times. This property can lead to significant CPU savings for various
applications related to free surface transport.
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