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COMPARATIVE ANALYSIS OF THE FINITE-ELEMENT
AND FINITE-DIFFERENCE METHODS FOR SIMULATION
OF BUOYANCY-INDUCED FLOW AND HEAT TRANSFER
IN CLOSED AND OPEN ENDED ANNULAR CAVITIES
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Columbus, Ohio 43210

The present work consists of comparalive evaluation of the finite-element and finite-
difference methods for the solution of complex fluid flow and heat transfer problems. The
test case considered here is the problem of natural convection in an annular cavity. Both
closed and open ended cases are considered, It was Jound that the finite-differenice analy-
sis sueceeds in capturing minate details of the solution at high Rayleigh number flows and
the finite-element method fails to do so. However, the finite-element method enjoys the
advantage of providing sufficiently accurate resules even with coarse meshes. This resulls
in significant savings in computational costs without any sacrifice in the acearacy of the
solution. Hence, the finite-element method can serve as an optimum tool for most prob-

lems of practical inlerest.

INTRODUCTION

Natural convection in annular cavities can be used fo model processes in several
domains of practical interest, such as nuclear reactors, thermal storage systems, and
clectric transmission cables, The main thrust in this area until about 1982 was directed
toward simulation of the problem using a two-dimensional model [1-3]. This model
gives fairly accurate results for cylinders that have a very high length to radius ratio, so
that the analysis of the problem in the axial direction can be ignored. However, this turns
out to be a poor assumption when the annuius has a finite length, because the flow
retardation caused by the end walls has a direct influence on convection in the axial
direction. For such cases, to capture the physics of the flow entirely, a full three-
dimensional analysis of the problems becomes unavoidable.

Most of the three-dimensional numerical works have been performed for rectangu-
Jar enclosures [4-9]. Only in the past decade have numerical studies been carried out for
buoyancy-driven flow in a cylindrical annulus bounded by coaxial cylinders. Ozoe et al.
{10} modified the vorticity vector potential approach for application in cylindrical polar
coordinates to solve the natural convection problem for a vertical annulus heated from
below. Later, Ozoe et al. [11] experimentally and numerically investigated the effects of
inclination for the same problem. Takata et al. [12] performed a complete analytical and

experimental investigation of natural convection in an inclined cylindrical annulus en-

closed between heated inner and cooled outer cylinders, Three-dimensional governing
equations, in terms of vorticity and vector potential, were transformed into finite-
difference equations and solved numerically using the successive overrelaxation
(SOR) procedure. They found that the three-dimensional structure of the fluid particles
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length of the annular cavity, m
length of the extended computational
domain, m

n outward normal to & surface

Nu Nusselt number
P

o Do OO R

v

pressure, Pa

o finite-¢lement methad approximation of
pressure, Pa

Pr Prandtt number (= »/a)

q neat flux vector

Ry tadivs of the inner cylinder, m

R, radius of the outer cylinder, m

R, radius of the extended computational
domain, m

Rz Rayleigh number (= gBRIATIve)

t titme, 8

T temperature, K

™ finite-element method approximation for

temperature, K
1

U, velocity in the x direction, m s~

thy velocity in the y direction, m s

u velocity in the z direction, m s~}

uy finite-olement method approximation for

the x component of velocity, m s

NOMENCLATURE
oM spegific heat at constant pressure, u"y finite-element method approximation for
Tkg tK7! the y component of velocity, m s”
truncation error during time integration u’z' finite-element methed approximation for
acceleration due to gravity, m s the 7 component of velocity, m 87
thermal conductivity, W m- x! 14 column vector consisting of all the

unknown variables in the computational
domain: Hz, My Hy Pr T
x, ¥ z Cartesian coordinates, m

o \hermal diffusivity, m? s

g coetficient of volume expansion, X!

€ tolerance for truncation error in the
transient analysis

® dynamic viscosity, kg m1s7!

» kinematic viscosity, m g1

p density, kg m?

Subscripts

e extended computational domain

x x component

¥ y component

z z component

1 inner cylinder

2 outer cylinder

oo condition at infinity

Superscripts

T transpose of a matrix

was a coaxial double helix. This finding was confirmed by
ment conducted using suspended aluminum powder in glyc

a flow visualization expeti-
erol. They also studied the

effects of inclination angle on the flow field and heat transfer and found that the local
Nusselt numbers show a fairly large dependence on the inclination angle, A three-
dimensional numerical analysis for a short horizontal cylindrical annulus using a
vorticity-velocity formulation was performed by Fusegi and Farouk [13]. Later, Rao et
al. [14] used the Galerkin formulation of the finite-element method in a numerical stady
of three-dimensional natural convection in a horizontal porous annulus heated from the
inner surface. They further clarified the spiral structure of the flow. A recent study on
natural convectino ina horizontal annulus by Fukuda et al. [15] contains a direct numeri-
cal simulation (DNS), using an explicit leap-frog scheme, of turbulent natural convec-
tion in a horizontal annulus.

The results presented bere have been obtained by using the finite-element method
(FEM), which, while enjoying widespread use in structural problems, has a relatively
short history in computational fluid mechanics. In recent years, however, both academic
research and industrial practice have shown convincingly that FEM is a powerful tool in
fiuid mechanics. The great advantage of FEM over other methods is its inherent flexibil-
ity in treating arbitrarily complex flow domains and boundary conditions. Unstructured
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grids can be designed that allow areas of interest to be studied in great detail without
need for excessive grid points throughout the entire flow domain. FEM allows the
natural and correct imposition of boundary conditions on curved boundaries, which is a
very important consideration in the present study. In addition, FEM has an elegant
mathematical formulation that allows derivation of comprehensive error estimates and
determination of solutions accurate to within user-prescribed tolerances. At the same
time, fluid simulation with FEM allows access to the wealth of preprocessing and
postprocessing packages of powerful graphics available in the structural engineering
field.

Despite the fact that the FEM is becoming a popular numerical tool in the solution
of fluid mechanics and heat transfer problems, researchers have not yet been able to
predict with certainty whether the FEM or the finite-difference method is more advanta-
geous in different flow sitnations. Limited material is available in the literature pertain-
ing to the comparison between these two methods for problems of complex, three-
dimensional fluid dynamics. Some comparisons have been carried out in the past using
pure conduction problems as test cases. As far as problems of convection heat transfer
are concerned, one study of significance was carried out by de Vahl Davis and Jones
{16}, who used the well-studied problem of natural convection in a square cavity to
compare several numerical techniques for fluid dynamics and heat transfer problems.
Within the range of Rayleigh numbers considered, they found that the FEM gave the
best results. However, some finite-difference solutions also gave solutions of compara-
ble accuracy. There is a definite nced for more comparative analysis of these two
methods, especially for complex flow and heat transfer problems. Later, Ozoe et al. [17]
made a numerical study of natural convection in confined rectanguiar regimes by using
an FEM based on a second-order approximation. In their study, the average Nusselt
number was extrapolated to zero-element size. They found that a second-order approxi-
mation for the unknown functions produces much better results than the linear approxi-
mation, but the discretization error can never be neglected. They concluded that compu-
tations for several element sizes for the same conditions, followed by extrapolation to
zero element size, are essential to obtain accurate results.

The present study provides such a comparative evaluation of the finite-difference
and finite-element methods for the solution of some complicated fluid flow and heat
transfer problems, The test cases for this study are the transient, three-dimensional
process of buoyancy-induced flow and heat transfer in both closed and open ended
annular cavities. The numerical procedure used in this work is based on the Galerkin
weighted residual method of finite-element formulation. FEMs are considered to be
more efficient than finite-difference methods (FDMs) in providing solutions of first-
order accuracy, but the latter are more efficient if the fine structure of the fluid motion
is required. This work provides a quantitative and qualitative confirmation of these
observations for natural convection.

FORMULATION

Assumptions

The annulus is assumed {o be placed horizontally, and gravity is confined to the
negative x direction. The temperature and flow fields are found to be symmetrical with
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respect to the vertical plane, and as a result the region of interest is only half the
annulus. Tt is assumed in the analysis that the thermophysical properties of the walls and
the fluid are independent of temperature except for the density inthe buoyancy term, that
is, the Boussinesq approximation is invoked. The fluid is assumed to be Newtonian and
incompressible. Viscous heat dissipation in the fluid is assumed to be negligible in
comparison to conduction and convection. The fluid motion and heat transfer in the

The problem is modeled for transient natural convection in an incompressible
used for the density in the gravitational body
force term, where its variation causes the buoyancy force necessary to drive the flow.
The equations governing this process in Cartesian coordinates are written in nondimen-
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Equations (1)-(5) were cast in nondimensional form by using the following nondi-
mensional variables;

7z uf 17 u; = 7
a(Ra P a(Ra Pr) a(Ra Pr)

T-T., pR: ta(Ra Pr)'?
T = et s
n—-T, po(Ra Pr) R

The subscripts are dropped for convenience.
These five equations in terms of five unknowns, along with the appropriate initial

and boundary conditions, fully describe the transient, convective energy transfer process
in an annulus,

Initial Conditions

As mentioned above, all the walls of the annulus are assumed to be initially at
uniform, ambient temperature, and the fluid is assumed to be stagnant and at ambient

temperature throughout the computational domain, This condition is stated mathemati-
cally as

Uy =, =tt,=T =10 atf =0 6)

Boundary Conditions

Since three different models are considered here, the boundary conditions for each
case are explained along with the results for the respective cases.

NUMERICAL SCHEME

A Galerkin-based FEM was employed to solve the system of differential equations
described in the previous section. The application of this technique is well described by
Taylor and Hood [18} and Gresho et al. [19], and its application in the finite-element
code used in the present work is also well documented [20]. This scheme is briefty
explained here,

The continuum domain is first divided into a set of simply shaped, nonoverlapping
regions called elements, within each of which the unknown variables W, U, poand T
are approximated by using the following equations:

u, = uy = U} (a)

u, = 1) = ¢'[U] (76)

=
it
=
1

= U, = ¢'[U) (7c)
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p=p =¥ (7d)

T =T = ¢"[T (7e)

where ¢, ¥, and 8 are the interpolation functions for velocity, pressure, and tempera-
ture, respectively. These are local functions of the nodal coordinates for that element as
well as the independent variables. The vectors [U,], [U,], (U, [Pl, and [7] consist of
the values of the respective variables at the nodes of the element.

Substituting these basis functions into the governing equations and boundary con-
ditions yields a residual (error) in each of the equations, which can be stated as follows:

Continuity
S, U, U, U) = £, (8a)
Momentum
S, ¥, 6,U,U,U,P,T)=E, (8b)
Energy
S, 8, U, U, U, T) = E, (8¢c)

where E,, E,, and E, are the residuals (errors) resulting from use of the finite-element
approximations.

The Galerkin form of the method of weighted residuals seeks to reduce these
errors to zero in a weighted sense, that is, by making the residuals orthogonal to the
interpolation functions of each element. These orthogonality conditions are expressed by

L‘IfE, av = SV\Pf; dv =0 (9a)
[ omav={ afav=o (9%)
Syag dv = Lﬁ_ﬁ dv = 0 ©9¢)

This procedure yields a system of equations for each element, which can be written as

M%—i’ + KOOV - F (10)

where V is a column vector of the unknown variables, F is a force vector (incorporating
the boundary conditions), M is a mass matrix, and K is a stiffness matrix (representing
the diffusion and convection of energy).

Equation (10) represents the discrete analog of the governing continuum equations,
Egs. (1)-(5), for an individual fluid element. The discrete representation of the entire
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continuum region of interest is obtained through an assemblage of elements such that
interclement continuity of velocity and temperature is enforced. The result of such an
assembly process is a system of matrix equations of the form given by Eq. (10).

To obtain a transient solution, the continuous time derivative needs to be replaced
by an approximation for the history of the time-dependent variable over a small portion
of the problem time scale. In other words, some sort of a time-dependent integration
scheme is necessary. The result is an incremental procedure that advances the solution in
discrete steps of time. The trapezoidal scheme developed by Gresho et al. {19] was used
for the time discretization of the governing equations. By an appropriate combination of
two common, second-order-accurate integration techniques, the implicit trapezoidal rule
(TR) and an explicit Adams-Bashforth (AB) formula, they developed a stable time inte-
gration scheme in which the size of the time step can be economically and automatically
varied. This was accomplished solely on the basis of temporal accuracy requirements,
by obtaining a good estimate of the local (single step) time truncation error. This also
provides us with insight into the prevailing “physics” of the flow by monitoring the
variable time scale. The algorithm automatically selects the appropriate time step size,
thus providing a cost-effective method, in that the step size is increased whenever possi-
ble and decreased only when necessary.

Since an implicit time integrator has been used in the present case for discretiza-
tion of the governing equations in time, at each time step a nonlinear system of equations
needs to be solved, Gresho et al. [19] showed that with the predictor-corrector scheme
used in the present code, if the error tolerance of the user-specified local time truncation
is set to 0.001-0.005 or 0.1-0.5% error, then the predictor is sufficiently accurate that
only one Newton-Raphson iteration is required at each time step to achieve convergence,
This, however, can be very expensive in studies like the present one, in which even one
iteration can take a considerable amount of CPU time when the Newton-Raphson
method is used. To reduce this time, we have used the quasi-Newton solution algorithm
to solve the nonlinear system at each time step. This algorithm can be shown to be
superlinearly convergent, and in practice its convergence rate approaches that of the
Newton-Raphson method, while the time for one iteration of the quasi-Newton algorithm
is typically 10-20% of the time for a Newton-Raphson iteration. A complete description
of this quasi-Newton method in the FEM simulation of incompressible fluid flows is
given by Engelman et al. [21].

The advantage of the quasi-Newton method in the framework of the transient
algorithm is that the reformation of the Jacobian matrix need only be performed every N
time steps. Of course, a balance must be found between the number of steps N and the
quasi-Newton iterations required at each time step to achieve convergence. Typically, if
N = 2 or 3, a savings can be attained in computer time of the order of 50% over the
one-step Newton-Raphson method.

HEAT TRANSFER CALCULATIONS

The Nusselt number associated with the convective flow in this case is defined by

- T

Nu = g,
"qan

(in
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where n denotes the outward pointing normal from the surface over which the heat flux
is to be calculated, This definition of the Nusselt number is used to represent all the heat
transfer results in the present study.

RESULTS AND DISCUSSION

In this work, a comparative study of finite-difference and finite-element solutions
for the problem of natural convection in annular cavities has been presented. The finite-
element solutions obtained using FIDAP are compared with finite-difference solutions
reported in the literature by previous investigators [1, 12, 22, 23]. The numerical proce-
dure outlined in the previous section forms the basis of this general purpose, finite-
element code for solving problems of incompressible fluid flow. The inherent advan-
tages and disadvantages of using one technique over the other for particular flow
situations are also explained in this study, Detailed resuits for the flow and temperature
fields are presented in each case to emphasize the accuracy of our comparisons,

The following three geometries, which fall under the general category of annular
cavities, were considered as fundamental cases for the present study:

1. Two-dimensional annulus.
2. Three-dimensional closed annulus.
3. Three-dimensional open annulus,

All the results presented here are for a hot inner cylinder (7} = I) and cold outer
cylinder (T, = 0). Analysis of buoyancy-driven flows caused by the temperature differ-
ence between the hot inner and cold outer cylinder for case 1 have been carried out by
researchers in the past, while cases 2 and 3 have been analyzed recently. These results
provide reliable information for comparing the two solution methods. Results showing in
detail a quantitative and qualitative comparison of the flow and temperature fields are
presented here. Also, the Nusselt number has been used as a basis for comparison
wherever possible.

Case 1: Comparison of Results for Two-Dimeansional Annuli

The two-dimensional model for the study of buoyancy-driven flow in an annulus
is shown in Fig. 1. The boundary conditions for this problem are as follows:

Surface (1) of the inner cylinder

u=u,=0 T=T, ati;m% 0= ¢ =< 180 (12)

Surface (2) of the outer cylinder

U=, =0 T=T, atr=1 0=¢=I80 (13)
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3

Fig. 1 Physical model and computational domain for the two-
dimensional study,

Symmetry plane (3)

du, 8T _

R
0 at¢ =0 =180 “<r<1 (14
a3 at ¢ ¢ RS (14)

2

Results obtained by Kuehn and Goldstein [1] for a two-dimensional annulus were used
for benchmarking our results in this case. As mentioned above, their work consisted of
an experimental investigation as well as a steady state, two-dimensional, finite-
difference numerical simulation of natural convection in a horizontal concentric anmilus.
A vorticity-streamfunction approach was used by these authors to transform the govern-
ing equations. The computations were carried out for an annulus with a radii ratio of 2.6
with air (Pr = 0.7) and water (Pr = 5) as working fluids. The basic grid consisted of
304 nodes (16 in the radial direction and 19 in the angular direction) and had to be
increased to 416 nodes (16 x 26) for higher Rayleigh numbers. To compare the results
obtained by the present method with those obtained by Kuehn and Goldstein, an annulus
with the same dimensions and with the same working fluid was considered. Nine-node
quadrilateral elements were used for our study. The mesh consisted of 187 grid points
(11 points in the radial direction and 17 points in the angular direction) for the low
Rayleigh number cases and had to be increased to 357 point (17 x 21) for the cases
with higher Rayleigh numbers. A typical run took 20-30 s to give converged steady state
solutions. Streamlines and isotherms that we obtained are presented along with the
results of Kuehn and Goldstein [1] in Fig. 2. The Rayleigh numbers and Prandt] num-

43
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bers associated with each of these cases are given in the figure. Comparison of the
results clearly illustrates that the two methods give exactly the same solution. Even the
magnitudes of the streamlines match perfectly. The exact agreement between the results
can also be seen by comparing the centers of rotation of the recirculating vortex obtained
by the two methods, These centers are located at exactly the same position. Further-
more, a comparison of the mean Nusselt numbers obtained at the inner and outer cylin-
ders showed agreement within 1%.

Case 2: Comparison of Results for Three-Dimensional Closed Annuli

Referring to, Fig. 3, the boundary conditions applied for this problem are as fol-
lows:

Surface (1) of the inner cylinder

w, =, =, =0 T=T atr=%l 0<z=x— (15)

Surface (2) of the outer cylinder

uxauynu'z#o T=T2 atr='1 05—25'}%" (16)
2

Symmetry plane (3)

w =0 O 0T _ an
dy dy oy

Closed end walls (4) of the annulus

U =, = u, =0 ﬂ1=0 atz =0andz =L (18)

az

An in-depth study of the three-dimensional buoyancy-induced flow in an annulus
bounded by horizontal, coaxial cylinders with closed ends was carried out by Vafai and
Ettefagh [22]. They performed a numerical simulation using 2 vorticity-vector potential
approach for an annulus with a radii ratio of Ry/R; = 2.6 and length to outer cylinder
radius ratio of L/R, = 4. Calculations were performed for Rayleigh mumbers of
4.3 % 10° and 4.3 X 10* using air (Pr = 0.7) as the working fluid. They presented
results for the flow and temperature fields in radial planes at different axial locations
throughout the annulus length, The viscous shearing effect of the end wall adds three-
dimensional complexity to the flow and temperature fields in the region close to the end
wall. This effect of the end wall thoroughly investigated by Vafai and Bttefagh [22].

In the work of Vafai and Ettefagh [22] the transient three-dimensional governing
equations were formulated in terms of vorticity and vector potential. Their parabolic
equations were solved by the modified form of the three-dimensional alternating-
direction implicit (ADI) method developed by Brian [24], and at each time step the
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Pig. 3 Physical modet and computational domain used for the three-dimensional ciosed annulus.

elliptic equations were solved by the three-dimensional extrapolated Jacobi scheme.
Various combinations of mesh sizes and time increments were tried to select one that
produces grid and time increment independent results.

For the Rayleigh number of 4.3 x 10°, the isotherms are slightly eccentric circles
(not shown here), indicating the presence of a very weak convective flow. The end wall
effects in this case are negligible, and the core region in which the flow field is essen-
tially two-dimensional extends almost the entire length of the cylinder. The axial compo-
nent of velocity exists in regions close to the end wall, indicating the presence of a three-
dimensional flow field. The magnitude of the axial velocities is very low, however,
compared to the velocity vectors in the radial plane. Our study made use of 2805 grid
points (15 X 17 X 11), while Vafai and Bttefagh [22] used 9975 grid points
(25 x 19 x 21). The finite-clement code required approximately 20 min while the
finite-difference code developed by Vafai and Ettefagh required 30 min of CPUJ time on
the Cray-YMP supercomputer. A comparison of the velocity magnitudes obtained from
the two studies is given in Table 1. Since the nondimensionalization used in the two
studies is different, the conversion was made by using the factor /Ra Pr. Also, contours
of the axial component of velocity in two planes located very close to the end walls are
shown jn Fig. 4. In the results presented by Vafai and Ettefagh [22], the dotted lines

Table 1 Comparison of Flow Field Results for Ra=4.3 X 10° (Closed Annutus)

Maximum value of the velocity
vector in the radial plane

Axial position FDM FEM Difference, %
Li40 8.56 8.7t 1.70
LI 12.75 12.81 1.25

L2 13.17 13.31 0.90
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Finite-difference solution Present work

Fig. 4 Comparison of axial velocity contours for the closed annulus (Ra = 4.3 x 10% at different
locations: (a2 and ¢) 7 = L/40 and (band d) z = L8, [Figure 4a and 4b are reprinted with permission
from Intemnational Journal of Heat and Mass Transfer, vol. 34: K. Vafai and J. Ettefagh, An Investiga-

tion of Transient Three-Dimensional Natural Convection in a Horizontal Anmilus, copyright © 1991,
Pergamon Press Ltd.}

depict the negative axial velocities and solid contours depict the positive axial velocities
of the fluid. The opposite is used in the present study. From the values given and from
the figure, it can be seen that results of the two studies are in quite good agreement. The
slight qualitative discrepancy in the axial velocity contours is attributed to the inherent
differences between the FDM and FEM used for the solutions of the problem.

The mean Nusselt numbers over the inner and outer cylinder surfaces at the top
angular plane (¢ ~ 180) were also calculated for the two solutions. The angle ¢ is
measured from the lowermost point of the annulus, as shown in Fig. 3. These measure-
ments are given in Table 2, From the values shown, we see that our results fall within
2% of the finite-difference results.

For a higher Rayleigh number (Ra = 4.3 x 10%, as used in the study by Vafai
and Ettefagh [22], the effect of the end wall penetrates farther into the annulus, and the
complicated three-dimensional nature of the flow persists over a larger portion of the
computational domain. In other words, the length of the core region in which the two-
dimensional nature of the flow field persists becomes smaller [22]. Figure 5 shows the
isotherms at the mid-axial plane and at the end wall of the annulus as predicted by Vafai
and Ettefagh [22] and as obtained here using the finite-element algorithm, Comparison

of these isotherms shows good agreement between the two results. The clustering of
isotherms around the inner and outer cylinders at the mid-axial plane is a result of the
higher strength of the recirculating flow in that region. The retardation caused by the end

Table 2 Comparison of Mean Nusselt Numbers at the Top Angular Plane (Ra=4.3 x 10°)

Inner cylinder Quter cylinder

FDM FEM Difference, % FDM FEM Difference, %

.70 0.715 1.71 1.3 1.316 LO7
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Finite-difference solution Present work

Fig. 5 Comparison of isotherms for the closed annulus (Ra = 4.3 x 10%) at different locations: (4 and
¢) mid-axial plane and (b and d) end well, [Figure 5q and 5b are reprinted with permission from
International Journal of Heat and Mass Transfer, vol. 34 K. Vafai and J. Ettefagh, An Investigation of
Transient Three-Dimensional Natural Convection in 2 Horizontal Annuius, copyright © 1991, Pergamon

Press Ltd.]

wall causes a reduction in velocities and hence the clustering of the isotherms at the
inner and outer cylinders diminishes.

To further evaluate the accuracy of our results, a Nusselt number comparison was
made. Figure 6a shows a three-dimensional «fishnet” plot of the outer cylinder Nusselt
sumber as a function of the angular and axial locations (reproduced from Vafai and
Ettefagh {22]). Due to the plotting limitations of the finite-element code, 8 similar plot
for our results could not be obtained. Hence, the Nusselt number values at ¢ = 180 for
the outer cylinder have been plotted as 2 function of axial position in Fig. 6b. This
location was chosen because the maximum variations in the Nusselt number exist at this
position. Although the Nusselt number values lie in the same range for the results
obtained from the two approaches, the variations of the Nusselt number, especially at
regions close 0 the end wall, ar¢ found to be different. The present study failed to
capture the fluctuations of the Nusselt number at regions close to the wall, Only one
maximum was observed (Fig. 6b). To verify the suspicion that this result was due to an
{nsufficient number of elements close to the walls, an intensive mesh size study was
carried out. Since the axial mesh size is the critical parameter in this case, we concen-
trated on the effect of axial grid size. The number of grid points in the axial direction
was varied from 17 for the initial runs to up to 61 to study its influence on the solution.
Results obtained for three of the mesh sizes considered are shown in Fig. 6b. From these
plots, it is observed that the solution remains almost unchanged when the number of
points is varied from 31 to 41 in the axial direction. Further increasing the number of
grid points in the axial direction did not affect the solution at all, showing that the results
obtained were independent of mesh size. -

The radial and angular mesh sizes were also varied to determine their influence on
the solution. It was observed that no amount of mesh refinement in any of the three
directions captures the sharp fluctuations in the Nusselt number at regions close to the
end wall. Once again, velocity fields are compared for the two cases, quantitatively by
considering the magnitudes of the velocity vectors, and qualitatively by using the con-
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Table 3 Comparison of Flow Field Results for Ra=4.3X 10* (Closed Annulus)

Maximum value of velocity in the radial plane

FEM
Axial position FDM K =12 K =31 K =41
Li40 59.9 65.1 62.4 61.9
3L/80 64.0 69.9 65.6 65.2
3L/40 76.0 75.2 73.2 72.8
L0 78.0 73.9 72.0 71.9
170180 79.0 84 82.1 81.7
Li2 78.5 79.9 8.9 78.2

tour plots of the axial component of the velocity. Results for the same meshes are
presented here (Table 3) to show the effect of mesh size on the solution. Comparison of
the axial velocity contours is shown in Fig. 7, where the discrepancy in the contours
obtained from the two technigues is obvious. From Table 3, it can be seen that as the
mesh size is decreased, the magnitudes of the velocity vectors decrease, verifying the
fact that as the mesh is refined, the discretized domain becomes stiffer, giving lower
values for the variables. The difference in the flow fields at regions close to the end wall
manifests itself into a completely different temperature field and Nusselt number distri-
bution at these locations. The maximum difference in the magnitudes of the velocities
was found to be 7.82% at the location L/10 from the end wall,

The above results clarify some of the inherent advantages and disadvantages of the
FEM over the FDM for this class of problems. For low Rayleigh numbers, the solutions
obtained using the FEM are sufficiently accurate to predict the flow and temperature
fields. The magnitude and variation of the local Nusselt number over the surfaces of the
annular geometry are also predicted accurately by the FEM. These solutions can be
obtained by using a mesh that is very coarse compared to that used in the finite-

A

al

@)

@ ®)
Finite-difference solution Preseat work

Fig. 7 Comparison of axial velocities for a closed annulus at different locations (Ra = 4.3 x 104,
Pr = 0.7): (aand ¢} z = L/40 and (b and ) z = L/10. [Figure 7a and b are reprinted with permission
from International Journal of Heat and Mass Transfer, vol, 34: K. Vafai and J, Ettefagh, An Investiga-
tion of Transient Three-Dimensional Natural Convection in 2 Horizontal Annulus, copyright © 1991,
Pergamon Press Ltd.}
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difference technique, and this results in significant savings in computational costs. How-
ever, at higher Rayleigh numbers, where greater resolution in necessary to capture the
intricacies of the flow and temperature fields, the accuracy of the solution deteriorates.
The sharp variations in the flow and temperature fields cannot be captured by the FEM,
irrespective of the extent of mesh refinement. Thus, in spite of the fact that a significant
amount of CPU time can be saved, some loss of accuracy results at higher Rayleigh
numbers. However, the results, especially the Nusselt number values, fall within a
reasonable range that might be acceptable in most cases of practical interest. Hence, for
a wide variety of engincering design problems, where resuits within relatively relaxed
tolerances can be acceptable but computational costs are a serious consideration, the
FEM serves as a good solution technique.

Results obtained by Takata et al. [12] were also used to compare the solutions for
the three-dimensional closed annulus. Numerical results obtained by these investigators
along with the experimental verification provide a strong basis for verifying the validity
of the numerical code used in the present study. Takata et al. formulated the problem in a
vorticity-vector potential form, and the equations so obtained were discretized by using a
FDM, The numerical computations were performed for an annulus with a radii ratio of
Ry/R, = 2, length to outer cylinder radius ratio L/R, = 2, Ra = 10°, and Pr = 5000.

Only one Prandtl number was used, and the investigators concentrated only on the
steady state solution of the problem. It appears that the high Prandt! number fluid was
necessary in their case to obtain stability of the numerical scheme used. Figure 8 shows
isotherms at the mid-axial plane and at the end wall of the annulus at steady state. It can
be seen that the results obtained using the FEM (present work) are in very good agree-
ment with the results of Takata et al. [12]. To further verify the accuracy of our solution,
the local Nusselt numbers for the outer cylinder were compared at three different angu-
lar positions (Fig. 9). Once again, our results show good agreement with those of Takata
et al, [12]. However, again there are some gualitative differences. The maximum differ-

(b) ) @
Takata et al. [12) Present work

Fig. 8 Comparison of isotherms for the closed annulus at different locations (Ra = 0%, Pr = 5 % 103):
(a) end wall, Takata et al. {12}, (&) mid-axial plane. Takata et al. [12], (¢) end wall, present work, and {(d)
mid-axial plane, present work. [Figure 84 and 8b are reprinted with permission from Intemational Journal
of Heat and Mass Transfer, vol. 27: Y. Takata, K. Iwashige, K. Fukuda, and 5. Hasegawa, Three-
Dimensional Natural Convection in an Inclined Cylindrical Annulus, copyright © 1984, Pergamon Press

Lid.]
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Fig. 9 Comparison of local Nusselt numbers for outer cylinder (Ra = 10°,
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ence between the Nusselt numbers in the two cases was found to be within 2.5%. It
should be noted that the FDM results obtained by Vafai and Ettefagh {22] were in one-to-
one agreement with those of Takata et al. {12]. ‘

Case 3: Comparison of Results for Three-Dimensional Open Ended Annuli

Numerical simulatior of the convective energy transfer process in an open annulus
is carried out by making use of an extended computational domain at the end. This
procedure is required for implementing the virtually unknown boundary conditions at the
open end. A sketch of the computational domain for an open-ended annulus of length 2L,
is shown in Fig. 10. The boundary conditions for this problem are as follows:

Curved surface (1) of the inner cylinder

wo=u,=u,=0 T=T, atrm%l 0=xz=L (19)

Curved surface (2) of the outer cylinder

Uy = U, =1, =0 T=T, atr = 1 Ossz%2 20
Vertical (flat) surface (3) of the inner cylinder

Uy = sy =ty = O ‘Z—:mo atz=£’~; Osrs% @1
Vertical {flat) surface (4) of the outer cylinder

u,%u,=uz=0 gn atz=}% 1srs§—: 22)

Mid-axial symmetry plane (5)

wo=0 W_ % T _, o0 Riorcr @3

¢ az 9z 9z R,
Angular symmetry plane (6)

du ou arT R
= =) H=rs=l 24
K ay oy @ R, @)

Numerical simulation of the flow field and heat transfer in open ended structures re-
quires specification of the boundary conditions at the open end. Since it is virtually
impossible to impose appropriate boundary conditions at the open end without overcon-
straining the problem, the simulation should include calculations in an extended compu-
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Fig. 10 Physical model and computationat domain used for the three-dimensional open ended annulus.

tational domain. This extension not only takes care of the open boundary conditions, but
also gives us the opportunity to understand the complex coupling effects between the
fluid in the cavity and the ambient surrounding it. In the present study, the extension is a
cylinder of radius R, and length L,. The choice of these dimensions is made such that
further extension will not have a significant effect on the temperature and flow fields
inside the annulus and near the opening. These far-field boundary conditions can be

stated as follows:

Open radial boundary (7) of the extended computational domain

o T oo ar-% 0zl @5
an an an an R, R,

Open axial boundary (8) of the extended computational domain
,@Ex=a“=§ﬂz=0 oT _ atz=£e__"',m£ 05,-555 (26)

>

iz a4z oz oz R,

Studies of buoyancy-induced flows in open ended annuli (case 3) are virtually unknown
in the literature. The only concrete work in this field has been carried out by Vafai and
Ettefagh {23] and a relevant work was done by Desai and Vafai [25] with respect t0
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partially open annular cavities in relation to the wheel outboard of an aircraft, Vafai and
Ettefagh [23] performed a FDM numerical simulation of natural convection in an open
ended annulus bounded by a hot inner cylinder and cold outer cylinder with all plane
surfaces of both cylinders insulated. Governing equations were written in a dimension-
less vorticity-vector potential form and discretized by using a time-splitting finite-
difference algorithm. The annulus considered had a radii ratio of 2.6 and a length to
outer cylinder radius ratio of 4. Rayleigh numbers of 4.3 x 10’ and 10* were consid-
ered in their study with air (Pr = 0.7} being the working fluid, Computations were
carried out in an extended computational domain. They found that an extension of 3
times the annulus dimensions was necessary to eliminate the far-field effects on the flow
field solution inside the cavity for the range of Rayleigh numbers investigated. The
boundary conditions used at the ends of the extension to simulate far-field conditions
consisted of sefting to zero the tangential velocities, the gradients of the temperature,
and the normal component of velocity in the normal direction.

The problem studied by Vafai and Ettefagh [23] was solved here using the FEM.
Our computations were also carried out in an extended computational domain to take
care of the unknown open boundary conditions. The size of the extension for far-field
independent results in the case of the finite-element algorithm used here was only twice
that of the annulus dimensions. This size of the extended computational domain was
determined after exfensive numerical experimentation. Thus the solution becomes less
dependent on the boundary conditions applied at the far field, Vafai and Ettefagh [23]
used a uniform mesh consisting of 70,699 nodes, while our results were obtained with a
variable mesh of only 723% nodes (6016 eight-noded brick elements). Results obtained
by the two studies have been compared here for a Rayleigh number of 10,

Isotherms at the symmetry plane and the aperture plane using the FDM {23] are
shown in Fig. 11. The corresponding isotherms obtained using the FEM solution are
also shown. From the figure, it can be easily seen that the results from the two solutions
show identical isotherms at the symmetry plane. The clustering of isotherms at the Jower
portion of the inner cylinder and at the upper portion of the outer cylinder is basically

@ @© )

Finite-difference solution Present work
Fig. 11 Comparison of isotherms for an open ended annulus at different axial locations (Ra ~ 10%,

Pr = 0.7): (g and ¢) mid-axial plane and (b and o) aperture plane. (Figure 11a and 115 are reprinted from
Vafai and Ettefagh [23] with permission from ASME.)
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due to the crescent-shaped recirculating pattern in the symmetry plane. Since the length
of the annulus is large compared to its radial dimensions, the open boundary effects have
not penetrated up to the symmetry plane, and hence the axial component of velocity is
almost zero at the symmetry plane. Therefore, the slight distortion of isotherms at the
symmetry plane is almost entirely because of the recirculating crescent-shape convective
flow in the radial plane. It can be scen that the distortion of isotherms obtained from our
solution is significantly greater at the aperture plane. The isotherms arc clustered around
the entire inner cylinder and at the top of the outer cylinder, indicating the presence of a
strong axial flow along these surfaces at the aperture plane. Since the results in the two
studies were found to be independent of the mesh size and of extension to the computa-
tional domain, the difference in the shape of the isotherms in the two solutions can again
be attributed to the inherent limitation of the FEM in capturing some of the details of the
flow and temperature fields.

To further bring out the differences between the FDM and FEM solutions, detailed
results for the flow field are also presented for Ra = 10°. Comparisons are once again
made quantitatively by making use of the magnitudes of the velocity vectors in the radial
planes and qualitatively by means of the contours of axial velocities. Table 4 gives a
comparative representation of the FDM and FEM solutions by using the magnitudes of
the velocity vectors in the radial plane. From the values shown, it can be seen that the
solutions compare well, within 10%.

The axial velocity contours at the aperture plane and also at other radial plancs in
the annulus are shown in Fig. 12. The contours of the axial velocity obtained from the
two cases show a certain degree of discrepancy. Differences in the axial velocity con-
tours become more significant at the aperture plane and at locations close to it, where the
open boundary effects are dominant, The finite-element solution (present work) com-
pletely misses the penetration of the ambient fluid into the annulus along the top of the
inner cylinder surface. Also, the axial velocity component of the outgoing fluid along the
bottom surface of the inner cylinder is not captured by our solution. Once again, to
verify that the mesh size was not the cause of this discrepancy between the two solu-
tions, an extensive mesh size study was carried out. The number of nodes was increased
to 10,698 with a considerable amount of refinement in each of the coordinate directions.
But it was observed that the results obtained were essentially independent of the grid
size. The mesh refinement could not improve our comparisons. A comparison of the
Jocal Nusselt number values over the inner and outer cylinders showed a maximum
difference of 18% between the two solutions. This maximum difference is observed at

Table 4 Comparison of Flow Fields for Ra = 10* (Open Ended Annu-

lus)
Maximum value of velocity
in the radial plane
Axial position FDM FEM
L8 30.7 32.91
L/ 25.1 28.9
3L/8 17.8 20.2

L 36.3 40.4
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Present work

Fig, 12 Comparison of axial velocities for an open ended annulus at different locations (Re = 10,
Pr=0.T:(aande)z = L/8, (band fy z = L4, (cand g) z = 3L/8, and {dand K} z = L/2. (Figure
12q, 125, 12¢, and 124 are reprinted from Vafai and Ettefagh [23] with permission from ASME.)
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the aperture plane, which is to be expected because of the discrepancy in the flow fields
in the two cases.
Again it appears that the FDM is better for obtaining a very accurate solution.
The resuits obtained by the FDM for this case also make more sense physically than
those of the FEM solution. The local effects of suction and ejection at the aperture plane,
which would cause the fluid to come in and go out of the cavity through small areas
around the inner cylinder, are not captured by the finite-element scheme, However, the
overall physics of the problem is captured quite well by the finite-element solution,
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CONCLUSIONS

A comparative analysis of the finite-element and finite-difference methods for
buoyancy-driven flows in closed and annular cavities has been presented, Based on the
results presented here, it can be concluded that the FEM gives solutions of the same
accuracy for the two-dimensional model with much coarser grid structure than that used
for the FDM solution. For the three-dimensional closed annulus, at low Rayleigh num-
bers, the solutions obtained by the two techniques are almost the same. Once again,
significant savings in CPU time can be achieved through the use of a coarse grid struc-
ture with the FEM. However, at higher Rayleigh numbers, the flow becomes more
compticated, and the solution obtained by the FEM deteriorates. The results presented
here show the inherent differcnces between the two techniques. As is demonstrated by
the results presented here, the FEM gives solutions that are fairly accurate and with
significantly reduced CPU time. Hence, for most practical problems, the flow and tem-
perature fields can be predicted more efficiently and economically by the FEM. If the
minute details of the variable field are required, the FDM is the preferred method of
solution, Comparison of the solutions for the open ended annulus further emphasizes our

recommendations.
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