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Abstract—The present work involves the numerical simulation of forced convective incompressible flow
through porous media, and the associated transport processes. A full general model for the momentum
equation was employed. The mathematical model for energy transport was based on the two-phase equation
model which assumes no local thermal equilibrium between the fluid and the solid phases. The investigation
aimed at a comprehensive analysis of the influence of a variety of effects such as the inertial effects,
boundary effects, porosity variation effects, thermal dispersion effects, validity of local thermal equilibrium
assumption and two dimensionality effects on the transport processes in porous media. The results presented
in this work provide detailed yet readily accessible error maps for assessing the importance of various
simplifying assumptions which are commonly used by researchers.

1. INTRODUCTION

THE TRANSPORT phenomena in porous media have
been of continuing interest for the past five decades.
This interest stems from the complicated and inter-
esting phenomena associated with transport processes
in porous media. The wide applications available have
led to numerous investigations in this area. Such
applications can be found in solar receiver devices,
building thermal insulation, heat exchangers, energy
storage units, ceramic processing and catalytic reac-
tors to name a few. Utilization of porous layers for
transpiration cooling by water for fire fighting and
rescue operations has also proved to be a promising
research area. Yano et al. [1] have experimentally
investigated the utilization of porous layers and water
to maintain low temperature even in fire conditions.
This is important for a number of applications such as
security systems and safety equipment which demand
thermal protection in the initial stage of a fire. Our
attention in this study focuses on packed beds of solid
sphere particles in particular and porous media in
general.

Many aspects in this field are important to explore
for a thorough understanding of the fluid mechanics
and the heat transfer characteristics that are involved
in the transport phenomena through porous beds.
Some of the aspects related to transport phenomena
were tackled in the literature. Vafai and Tien [2] dis-
cussed the potential of the inertial effects and the solid
boundary effects on momentum and energy transport
through constant-porosity media. The investigation
provided insight on the applicability of the customarily
employed Darcy’s law.

In some applications, such as drying and metal
processing, the constant-porosity assumption is in-
valid. It has been recognized that an impermeable
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boundary influences the porosity distribution of a
porous medium. The porosity is high in the vicinity
of an impermeable boundary and decreases to an
asymptotic value at about four to five sphere diam-
eters from it. Moreover, the porosity of the bed was
found to exhibit sinusoidally damping decay
especially close to the wall (Roblee er al [3] and
Benenati and Brosilow [4]). This phenomenon intro-
duces the channeling effect which has been widely
discussed in the literature [5-12].

An important topic in packed beds relates to the
mixing and recirculation of local fluid streams as the
fluid flows through tortuous paths offered by the
solid particles. This secondary flow effect is classified
as thermal dispersion. Extensive attention has been
given to studies on the determination of the axial and
radial effective thermal conductivities in cylindrical
packed beds [13-17]. Investigations by Cheng and
Vortmeyer [10] and Hunt and Tien [11] provided some
insight into the physics of the dispersion phenomenon.
The aforementioned work neglected the inertial effects
from the proposed model. Previous investigations
[18-20] have noted the small contribution from the
axial dispersion to the overall energy transport and
the fact that its significance is confined to low Peclet
or particle Reynolds numbers. This is because the
convective heat transfer dominates the axial diffusion
mode at high flow rates, therefore, the axial dispersion
quantity can be neglected without causing significant
impact on the heat transfer results. Subsequent ana-
lytical models, such as those cited by Hunt and Tien
[11] and Cheng and Zhu [21], were proposed to simu-
late the energy transport in porous media. These
models have taken into consideration the non-
Darcian effects and the thermal dispersion effects.
However, variations do exist among these models in
terms of the Nusselt number predictions at various
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H height of the packed bed [m]

i index for x-coordinate

J index for y-coordinate

J unit vector oriented along the pore
velocity vector, v,/|v,|

k thermal conductivity [W m~' K ']

K permeability [m?]

L length of the pack bed [m]

local thermal equilibrium

Nu  Nusselt number

Pr Prandtl number, uC, /k;

Re,  particle Reynolds number, pau.d,/p

t time [s]

T temperature [K]

u velocity component in the x-direction
[ms™1

v velocity vector [m s~ ']

x,y  Cartesian coordinates [m].

Greek symbols
o thermal diffusivity [m?s™']

NOMENCLATURE

a,,a, porosity variation parameters. v shape parameter defined in equation (22)
equation (12) 3 porosity

ay specific surface area of the packed bed n dimensionless vertical scale defined in
[m~—1] equation (21)

I specific heat at constant pressure 0 dimensionless fluid phase temperature,
kg 'K~ (Tu=TINT—Ty,)

d, particle diameter [m] ® dimensionless solid phase temperature,

dp/dx pressure gradient [N m~7] (To—TI(Ty—Ty)

Da  Darcy number, K, /H’ u dynamic viscosity [kgm~'s™']

F the geometric function defined in £ dimensionless length scale defined in
equation (6) equation (23)

hy fluid-to-solid heat transfer coefficient fo density [kg m™7)
Wm 2K ] @ relaxation factor for successive over

relaxation scheme.

Subscripts

e inlet

f fluid

feff  effective property for fluid

m mean

reference

s solid

seff  effective property for solid

w wall

X Xx-component

y y-component

0 asymptotic or free stream.
Superscripts

f fluid

s solid

* dimensionless quantity.

Symbols
<D

‘local volume average’ of a quantity.

Peclet numbers due to incorporating different for-
mulations for the porosity variation and the effective
thermal conductivity [22].

In all the above mentioned investigations, a single-
phase model was adopted which assumes a state of
local thermal equilibrium (LTE) between the fluid and
the solid phase at any location in the bed. This is a
common practice for most of the investigations in this
area where the temperature gradient at any location
between the two phascs is assumed to be ncgligible.
This assumption must be relaxed for a number of
problems such as fixed bed nuclear propulsion systems
and nuclear reactor modeling where the temperature
difference between the coolant and the solid rods
becomes crucial. Recent investigation by Vafai and
Sézen [23], which was based on the two-phase equa-
tion model, reported significant discrepancies between
the fluid and solid phase temperature distributions.
The investigation by Vafai and S6zen [23] allowed a
simple characterization scheme for interpreting the

applicability of LTE condition and the one dimen-
sional approach for various compressible flow con-
ditions and porous bed configurations.

To our knowledge, the investigations performed to
date for establishing adequate models for transport
phenomena in porous media with incompressible
working fluids incorporate one or more simplifying
assumptions such as LTE condition, neglect of the
axial conduction term from the energy equation, one
dimensional approach, constant porosity assumption
and neglect of boundary and inertial effects. In the
present work, the steady-state analysis of incom-
pressible flow through a bed of uniform solid sphere
particles packed randomly is discussed. Pertinent vel-
ocity and temperature fields are presented. Different
effects such as the inertial effect, the macroscopic shear
stress (solid boundary effect) and the effect of the
porosity variation model on the momentum and
energy transport in a confined porous bed are
discussed. Moreover, the inclusion of thermal dis-
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persion effects on the convective energy transport in
packed beds are discussed in great detail. Finally, the
LTE assumption and the two dimensionality behavior
are illustrated in integrated forms. The percentage
error involved in calculating the Nusselt number
between the generalized model, which incorporates all
non-Darcian effects and simplified models which lack
one or more of the non-Darcian effects are illustrated
in terms of error maps. These error maps allow a
simple characterization scheme for interpreting the
applicability of the simplified models to various flow
conditions and bed configurations. Throughout the
analysis, the choice of three non-dimensional par-
ameters is found to be inherently tied to the physics
of the problem. These parameters are the particle
Reynolds number, the Darcy number and the solid-
to-fluid diffusivity ratio.

2. ANALYSIS

The problem under investigation is forced con-
vection of incompressible fluid flow through a packed
bed of spherical particles as illustrated in Fig. 1(a).
The computational length and height of the bed were
chosen to be 50 and 20 cm, respectively. The extent of
the packed bed in the z-direction is assumed to be
long enough that the problem will essentially be two
dimensional.

At this point it is instructive to summarize the
assumptions on which the established model is based.

(1} The medium is isotropic. However, the depen-
dency of quantities such as the geometric function and
the effective thermal conductivities are accounted for.

(2) The solid spheres are of uniform shape and
incompressible.

(3) The forced convection dominates the packed
bed, i.e. natural convection effects are negligible.

(4) The variation of thermophysical properties
with temperature is ignored. This is a reasonable
assumption for the operating temperature range
applied (40 K) in the analysis.

(5) Due to the relatively low operating temperature
considered in the present study, the inter-particle and
intra-particle radiation heat transfer are neglected.

2.1. Governing equations

By assimilating the above points, the system of the
governing equations can be presented in the following
vectorial form based on the volume average technique
{2,7,23]:

Continuity equation
Veod =0 (1
Momentum equation

PN ,_'ﬂiﬁ .
e VIey = = L) \/KK” OV

+Eviy-very @

Fluid phase energy equation

o< T; r ‘ ;
8<pf>fcpr%;‘>ﬁ + <Pr>r Cpf<u> * V<TI'>

= V : {kfeff. V< Tf>r} +hslasf(< Ts>s - <Tf>r) (3)

Solid phase energy equation

= V : {kscﬁ‘. V< T,>§} —ksfasf(< Ts>s - <Tf>y) (4)

where {y,>" refers to the intrinsic phase average of
quantity  for phase o. The physical aspects of various
terms in the governing equations are discussed in refs.
[2,7, 23] and the symbols are defined in the nomencla-
ture. It is important to know that the time interval
within which steady-state condition is reached for the
velocity field is of the order of a few seconds for most
practical cases (Vafai and Tien [24]). Therefore, in
the numerical analysis the steady-state forms of the
continuity and the momentum equations, equations
(1) and (2), are considered.

The permeability of the packed bed and the geo-
metric function are based on experimental results [25]
and may be expressed in the following form [7]:

B e'd;
K= 150(1 —&)* ©)

1.75
NS ©

where d|, is the particle diameter. The specific surface
area of the packed bed which appears in both energy
equations, equations (3) and (4), is developed based
on geometrical considerations (Vafai and S6zen [23]):

=2 ™

The formulation of the fluid-to-solid heat transfer
coefficient in this study was based on an empirical
correlation established by Wakao er /. {15, 16} and
is presented as follows

0.6
hy = kf[z+ 1.1Pr"'3(g%q‘3) ] / d,. ®)

In the present study, the dispersion phenomenon is
treated as an additional diffusive term added to the
stagnant component (Hunt and Tien {11]). The stag-
nant component is expressed in terms of the phase
porosities and the individual thermal conductivities
of the phases. The empirical correlation developed by
Wakao and Kaguei [16] is employed in this study to
model the effective conductivities.

(Ken) = okt o.s[Pr(—”‘;ﬂ)]kf )
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FIG. 1. (a) Schematic diagram of the problem. (b) Comparison of ficld variable distribution of the present
work against the analytical and the numerical solutions of Vafai [9].

(10)

d
(kiew), = ek 40,1 [h(%)} K,

ke = (1 — )k an

As mentioned earlier, experimental observations
[3., 4] indicate that the porosity in a randomly packed
bed is functionally dependent on the distance from
the wall. A common practice is to consider an €xpo-
nential decaying function to approximately simulate
the porosity variation. This can be expressed math-
ematically as

(12)

g = e,‘[l +a, exp (szy):l
P

where ¢ is the free stream porosity while a, and «a,
are empirical constants. The free steam porosity was
chosen to be 0.37, whereas a, = 1.7 and a, = 6. These
values were found to be a good approximation to the
above reported experimental data [3, 4]. Moreover,
these constants will be utilized in the computations
wherever the exponential porosity model is used.
The porosity variation can be more rigorously pre-
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dicted by accounting for the damped oscillation close
to the wall. A model proposed by Mueller [26] was
found to closely simulate the experimental finding
of Benenati and Brosilow [4]. Since the exponential
decaying function ignores the damped oscillation, the
proposed model will display how far the exponential
function is from the ‘actual’ porosity variation model
given by Mueller [26].

The Nusselt number is separately defined for the
fluid and solid phase and is expressed as

Fluid phase Nusselt number

2H (KT
Nup = —?W._Tmr( 5 _y=0 (13)
Solid phase Nusselt number
2H (T

where T, and T,, are the mixed mean temperature
of the fluid and the solid phase respectively and are
defined as follows
H
J uT;dy
0

T, = U H (15)
H
J‘ T.dy
0
T, = T (16)

It should be mentioned that the definition of the
Nusselt number essentially represents the tempera-
ture gradient at the boundary. This was purposely
done since studies in the literature define the Nusselt
number in a similar manner even for a variable con-
ductivity medium. However, the error maps, pre-
sented in Figs. 3 and 6, are established based on the
heat flux condition, i.e. after multiplying the Nusselt
number, as given by equations (13) and (14), by k.
so that the enhancement in heat flux can be accounted
for when transverse dispersion is considered.

2.2. Boundary conditions

In the problem under investigation, the no slip
boundary condition is imposed at the wall and the
walls are kept at constant temperature. The boundary
conditions are, therefore, as follows

ux,y=0=u(x,y=H)=0 17
Tix,y=0)=T(x,y=0)=T, (18)
Tix,y=H)=T(x,y=H)=T, (19)
T{x=0,p)=T(x=0,p) =T, (20)

The entrance and boundary temperatures were taken
as:

T.=300K, T,=340K.

Solid spherical particles of different sizes and
materials were considered. Particle diameter values of
2, S and 8 mm were utilized in the computations.
Several runs were also performed for a particle diam-
eter of 6.4 mm. Different fluids were also considered
to provide a broad range of solid-to-fluid diffusivity
ratios. The Prandtl number was assumed constant
for all the thermophysical properties. The Reynolds
number was varied by applying different axial pres-
sure gradients. The physical data for different fluid
and solid phases which were considered in the numeri-
cal computations are calculated at the average film
temperature and are presented in Table 1. These
values were chosen as they are representative of some
applications. It should be noted that the main features
and conclusions obtained in this work are not depen-
dent on the actual entrance or boundary temperature
values.

3. SOLUTION METHODOLOGY

An explicit finite difference scheme was employed
to solve the system of the governing equations subject
to the cited boundary conditions. The numerical
scheme was based on the finite difference versions of
equations (1)—(4). The steady-state solutions of these
equations were obtained. Variable grid size was
implemented in the y-direction while the grid size in the
x-direction was kept constant. A fine, equally spaced,
grid size was positioned within 4% of the total height
from each external boundary while a relatively
coarser, equally spaced, grid size was used for the core
region. Since the study under investigation pertains to
forced convection, the momentum equation and the
energy equations are not coupled. The momentum
equation was handled by first linearizing the non-
linear term. The resulting set of algebraic equations
was solved by tridiagonalization of the solution
matrix.

The energy equations were handled in the following
manner. The spatial derivatives were discretized by
the central differencing except for the convective term
which is approximated by an upwind differencing
scheme. At grid points on the right boundary, a
three point differencing was employed for the spatial
x-derivatives instead of the Neumann (insulated)
boundary conditions. This was achieved by linear
extrapolation from the preceding two grid points in
the x-direction. This assumption is valid since the
problem under consideration has a strong parabolic
behavior. The validity of the assumption was exam-
ined by extending the computational domain beyond
the physical axial dimension. The computational
length of the bed was systematically increased until
the numerical results within the physical domain were
no longer affected by an increase in the length of the
computational domain.

The energy equations were solved for the fluid and
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Table I. Physical data

(a) Fluid phase
Thermal
Specific heat, conductivity, K, Viscosity, u
Density, p; G, x 10° x10°
(kgm™") Jkg 'K')  (Wm'K') (kgem's")
Air 1.1 1008 28 1.9
Water 989 4180 640 57.7
(b) Solid phase
Thermal
Density, p, Specific heat, C, conductivity, &,
(kgm™ ) Jkg 'K Y (Wm~ 'K~ ")
Lead 7660 448 82
AISI304 7900 485 15.2
835 1.4

Soda Lime

the solid phase temperature fields using the successive
over relaxation scheme (SOR). The source term which
is a function of the field temperature was updated after
each iteration. The spatial derivative in the Nusselt
number was computed by using three point diff-
erencing. The numerical computations were per-
formed on a CRAY YMP/28. The accuracy of the
numerical results was rigorously examined.
Moreover, the stability of the numerical scheme has
been tested by increasing the number of grid points in
both directions to ensure a proper combination of Ax
and Ay. A systematic decrease in the grid size was
employed for obtaining grid independence results. Tt
was assumed steady-state conditions have been
reached when the temperature values for the fluid and
the solid phase in two consecutive iterations differed
by less than the convergence criterion of 10~ '".

4. RESULTS AND DISCUSSION

To examine the validity of the numerical scheme,
the numerical results were compared with the most
closely related analytical and numerical solutions.
This was achieved by making the necessary adjust-
ments to our model to reduce it to a system equivalent
to the simplified available cases. Our numerical results
for the velocity distribution were compared with the
analytical results obtained by Vafai [9]. The analytical
solution given by Vafai [9] had a restriction that a, < |
for the solution to be valid. As no analytical solution
was given for temperature distribution, the numerical
results from Vafai [9] were used for such comparison.
The physical properties for velocity distribution com-
parison were chosen as: (1) dp/dx = 1493 N m°,
d,=4 mm, e, =03, a, =02 a,=20 and (2)
dp/dx =1493 Nm~*, d,=8 mm, £, = 0.3, a, = 0.5,
a, = 2.0. While the physical properties for the tem-
perature distribution comparison were chosen as

dp/dx = 12x10°Nm ", d, = 8 mm, ¢, = 0.4 with the
following empirical constants: (1) a; = 0.9, a, = 2.0
and (2) a, = 0.5, a, = 2.0. Figure 1(b) demonstrates
such a comparison in terms of the dimensionless vari-
ables that appear in the work of Vafai [9]. As may
be seen from Fig. 1(b), the comparisons display an
excellent agreement.

The results from the computations will be pre-
sented in a non-dimensional form. The dimension-
less velocity, fluid and solid phase temperature
distributions chosen for presenting the results arc
defined as: u* = ufu., 0 = (T, —-T)/(T.—T,) and
@ =(T,-T)/(T,—T,), respectively. Based on the
analysis presented by Vafai and Tien [2], the velocity
and the temperature fields are plotted against a dimen-
sionless vertical scale, #, expressed as:

g =7
CVI,’Z

20

where 7y, is the free stream shape parameter and £,
the dimensionless length scale and are defined as:

(22)

f = x’,/L, (23)
The velocity and temperature profiles are presented
at ¢ = 0.5. In addition, the local Nusselt number dis-
tributions for the two phases are plotted against £.

4.1. Non-Darcian effects

Figures 2(a) and (b) depict the non-Darcian effects
on the velocity and temperature field distributions as
well as the Nusselt number variations. The results
shown are for the following physical values:
ooy = 25.6, Da=136x107% and Re, = 100. The
dispersion effects were incorporated in Fig. 2(a) while
they are excluded from the results presented in Fig.
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2(b). As can be seen from Figs. 2(a) and (b). not
accounting for the impermeable boundary reduces the
velocity profile to a slug flow duc to the absence of
the shear stress along the boundary. In addition, cases
3 and 4 illustrate that omitting the inertia term in the
momentum equation increases the velocity near the
wall region as inertial effects introduce a further
damping. In gencral. higher velocities cause an
increase in the convected energy carried away from
the boundary compared with that by conduction. This
results in a thinner thermal boundary layer leading to
an increase in the Nusselt number. It is important to
recapitulate that the ‘conventional’ definition of the
Nusselt number, as given by equations (13) and (14),
is a measure of the temperature gradient at the bound-
ary rather than the quantity of the heat flux generated
when the variable conductivity medium is considered.
As a result of defining the Nusselt number based on
temperature gradient instead of the actual heat flux,
the model that excludes the transverse dispersion
effect exhibits a larger Nusselt number. However, it
should be noted that the heat flux for the case when
the dispersion is included is higher than when it is
excluded.

To explore the non-Darcian effects for a wide range
of Re, and Da, an error map is presented for the
average fluid phase Nusselt number. Taking the gener-
alized model as a basis, comparisons with the values
obtained by the other simplified models that neglect
onc or more non-Darcian effects were made for a
given Re, and Da. The percentage crror involved in
calculating the average fluid phase Nusselt number
was found from

% error =

|N{4(si111p1iﬁcd7n1odcl) — Nu(gencralized que])l
Nu(generalized model)

x 100. (24)

These comparisons are presented in Fig. 3. The ther-
mal dispersion effects are incorporated in the depicted
results. The results are presented for solid-to-fluid
diffusivity ratio equal to 0.16,4.87 and 25.¢. The num-
bers in parentheses represent the errors in using the
Darcy model, the modified-Darcy model (the Darcy
model modified to account for the inertia) and the
generalized model that neglects the inertial effect,
respectively. That is, the first number in each entry
represents the error in using the Darcy model as
compared to the generalized model, the second num-
ber represents the error in using the modified Darcy
model and the third entry represents the error in using
the generalized model without the inertial effect as
compared to the generalized model. It can be easily
seen that as the Da and Re, increase, the computed
percentage error also increases. An exception for this
is the error computed from using the Darcy model
where the percentage error decreases as Re, increases.
This is because the average velocity computed from

AMIRT and K. VAral

Darcy’s law always increascs by increasing the pres-
sure gradient, thus, approaching the velocity com-
puted from the generalized model. Conscquently, the
rate of convection predicted by the generalized modcl
and the Darcy model follows each other closely as Re,
increases. Figure 3 clearly shows that significant error
is encountered for most cases when employing any of
the simplified models even for low Re, and Da.

4.2. The effect of the actual porosity variation

Figure 4 depicts the effect of employing the ‘actual’
porosity variation model instead of the familiar
exponential model. The dispersion effects were incor-
porated in Fig. 4(a) while they were excluded from
the results presented in Fig. 4(b). The physical data
were: afo, = 4.87, Da=3532x10""7, and Re, = 10.
The velocity profile is the most sensitive field variable
to any variation in the porosity. Thus, the velocity
profile is formed proportional to the porosity vari-
ation as shown in Fig. 4. The overall temperature
distribution is not expected to vary remarkedly except
in a confined region (close to the wall) in response to
the variation in the velocily magnitude. Hence, the
Nusselt number demonstrates a better choice of rep-
resentation for the heat transfer rate. Employing the
‘actual’ porosity model reveals a different Nusselt
number distribution from that when the exponential
model is used. These effects are more pronounced
when the dispersion effects are incorporated as the
effective fluid conductivities depend on the velocity
veetor.

4.3. Thermal dispersion effects

The variation of the field variables for the case
with a/o; = 4.87, Da = 5.32x 10" 7 and Re, = 10 are
shown in Fig. 5. The velocity field is not shown since
the influence of dispersion is confined to energy trans-
port. The results show that the longitudinal dispersion
has negligible effect in forming the overall thermal
boundary layer. In addition, its effect may be unlikely
to be detected even in terms of Nusselt number dis-
tribution. Figure 6 shows that the Nusselt number
distribution for the model that incorporates dis-
persion is lower than the model that excludes dis-
persion effects in the transverse direction. The ‘con-
ventional” definition of the Nusselt number, defined
in equations (13) and (14), which expresses merely the
temperature gradient, (ails to adequately present the
enhancement in energy transport due to incorporating
transverse dispersion effects. Thus, the Nusselt num-
ber results in the model that neglects transverse dis-
persion show an increase over the model that adopts
dispersion. The enhancement due to dispersion effects
becomes apparent once the temperature gradient is
multiplied by the effective transverse thermal con-
ductivity as given in equation (10) to obtain the actual
quantity of the general heat flux. Therefore, the heat
flux values for the case when the dispersion effects are
included are indeed higher than when the dispersion
cffects are excluded.
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FIG. 6. The percent error on the average fluid Nusselt number for dropping the thermal dispersion effects
in one or both coordinates while employing the exponential porosity model in all of the models for the
cases with a/a; equal to 0.03 and 4.87.

To examine the significance of the longitudinal and
the transverse thermal dispersion effects more vig-
orously, an error map is established in terms of the
average fluid phase Nusselt number to display the
significance of dispersion effects in both directions for
a wide range of Da and Re,. The generalized model
that incorporates the dispersion effects in both direc-
tions was used as the basis of comparison. The com-
parisons were carried out with simplified models that
lack the dispersion effects in one or both directions.
The average fluid phase Nusselt number was used for
establishing the error map. To demonstrate the heat
transfer augmentation due to dispersion effects, the
Nusselt number was based on the actual heat flux
which is imposed on the external boundary. The per-
centage error involved in calculating the average fluid
phase Nusselt number was found from equation (24).

These comparisons are shown in Fig. 6 for solid-
to-fluid diffusivity ratios equal to 0.03 and 4.87. The
numbers between the parentheses represent the esti-
mated error in dropping the dispersion effects in both
directions, nomal direction and axial direction,
respectively. That is, the first number in each entry
represents the error in neglecting the dispersion in
both directions as compared 10 the generalized model,
whereas the second number represents the error in
using the longitudinal dispersion only and the third
entry represents the error in using the transverse dis-
persion as compared to the generalized model. Figure
6 shows that the Darcy number is the primary par-
ameter, affecting the magnitude of the longitudinal
dispersion. On the other hand, Fig. 6 confirms that
the transversc dispersion plays the major role in the
dispersion phenomenon in porous beds. This is
because the thermal boundary layer growth is more

dependent on the transverse thermal conductivity as
compared to the axial thermal conductivity.

4.4. Local Thermal Equilibrium (LTE) assumption

The examination of LTE was carried out by com-
paring the temperature distributions of the fluid and
solid phases locally, i.e. at each grid point. This may
be expressed in the following form

% LTE = |0, — ©.,] x 100. (25)

To classify the outcome based on qualitative ratings
for LTE assumption, the following categories were
adopted: very good, less than 1% good, 1-5%:;
fair, 5-10% ; poor 10-15%, and very poor, more than
15%. It may seem from an overall view of the figures
presented earlier for the fluid and solid temperature
distribution that LTE assumption for steady-state
incompressible flow is a fair one. However, a closer
look at the temperature distributions near the wall
region shows appreciable differences between the two
phases. Figure 7 demonstrates such an assessment
using the exponential porosity model for different
thermal diffusivity ratios. It can be concluded from
Fig. 7 that the Darcy number is the most influential
parameter in determining the validity of local thermal
equilibrium. The particle Reynolds number also plays
arole in this regard. Based on Fig. 7, the local thermal
equilibrium assumption becomes less pronounced as
both Re, and Da increase. In addition, the effect of the
solid-to-fluid thermal diffusivity ratio in the dividing
lines is obvious.

The ‘actual’ porosity model exhibits poor to very
poor ratings in terms of LTE condition for the diffu-
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sivity ratios used. The higher level of convection
obtained by employing the ‘actual’ porosity model in
the region close to the wall increases the temperature
difference between the fluid and the solid particles,
thus, the ratings were found as such. For brevity, the
results for the ‘actual’ porosity model are not shown
here.

4.5. The two-dimensionality behavior of packed beds

In conjunction with the validity of LTE, a quan-
titative assessment for the strength of the two-dimen-
sional behavior was conducted in a similar manner.
The fluid and solid phase midplane temperatures at a
selected section were compared with the fluid and
solid phase local temperatures, respectively, along the
same section. The end section of the packed bed was
chosen since the thermal boundary layer reaches its
maximum thickness at the end of the physical domain.
The computational runs performed show very small
variations in two-dimensionality behavior for each of
the two phases. Therefore, for brevity, the results are
presented for the fluid phase only. The assessment
of the strength of the two-dimensional behavior was
established in two steps. First, the difference between
the dimensionless temperature of a local position and
the midplane was computed from

% difference = |0(x = L,y)—-0(x = L,y = H/2)|.
(26)

The difference was checked starting from the midplane
location and moving downward. At each local normal
position, the ‘% difference’ cited in equation (26)
was evaluated. The height at which the ‘% differ-
ence’ between the local and midplane temperatures
becomes equal to or greater than 2.5% was cited.
The region beyond this height was considered to
have significant two-dimensional effects. Next, the
percent of the distance traveled (the spotted position)
to half channel height was found from

y(located position)
half channel width

% height = 27

where y is measured from the bottom plate. The
‘% height’ was set to be equal to the strength of the
two-dimensionality of the packed bed for the given
physical conditions. Thus, the higher ‘% height’
reflects a stronger two-dimensional behavior. Figures
8(a) and (b) demonstrate the assessment of the
strength of the two-dimensional behavior for the
exponential and the ‘actual’ porosity variation models,
respectively. For each porosity model the two-dimen-
sionality characteristics are shown for two cases. First,
for a fixed Da and a range of Re,, and also for a fixed
Re, and a range of Da. Several interesting features are
seen in these figures which invite further investigation
in this area. A three-dimensional view could provide
a better perspective for the two-dimensionality
behavior as a function of « /a;, Da and Re,. However,
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such a three-dimensional figure was found to be less
informative than the presented format.

5. CONCLUSIONS

In this work, accurate simulation of transport
phenomena in packed beds has been accomplished.
The analysis has been conducted for steady, incom-
pressible forced convective fluid flow. In addition,
the simulation was carried out using separate energy
equations for the fluid and solid phases. Furthermore,
the investigation aimed at exploring the influence of
a variety of effects such as the inertial effects, the
boundary effects, the porosity variation model and
the thermal dispersion effects on the transport pro-
cesses in packed beds. What is more, the validity of
LTE condition and the two-dimensionality behavior
were also presented. In addition, comprehensive error
maps on the basis of the numerical findings have been
presented. These error maps establish a char-
acterization scheme for interpreting the applicability
of the simplified models and various simplifying
assumptions for various flow conditions and bed con-
figurations.
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