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The phenomenological analysis of free surface transport through porous media is presented.
A finite difference scheme using the Marker and Cell (MAC) method is employed to
investigate the momentum and energy transport in a porous channel involving free surface
transport phenomena, To the best of the authors’ knowledge, this is the first investigation of
Jree surface momentum and energy transport through porous media and is also the first
application of the MAC method for exploring the free surface transport phenomena in a
porous medium. Limiting case comparisons are made with an existing analytical solution
Jor flow through a channel filled with a porous medium, Excellent agreement is obtained for
both the temperature and velocity distributions. Temporal free surfuce positions are also
compared and verified against an existing analytical solution. A detailed analysis of the
encroachment of two immiscible fluids in a porous channel using Darcy’s model is
presented. The effects of pressure differences and permeabilities on free surface transport
through a porous medium are investigated. The effect of the free surface transport in porous
media on the energy transfer is also explored.

INTRODUCTION

The prediction of the fluid interface displacement has become increasingly
important in some manufacturing processes, such as injection molding and die
filling. Related studies have been performed in the oil industry to understand the
simultaneous flow of oil, water, and gas in porous strata during the production of
oil from oil fields. The study of linear encroachment was done by Muskat [1], where
a one-dimensional Darcy’s flow model was used to investigate two fluids moving in
a narrow channel. A comprehensive analytical study was done by Srinivasan and
Vafai [2] to obtain a further understanding and better prediction of the interface
for the linear encroachment in a system of two immiscible fluids in which the
boundary and inertial effects were accounted for. In this work, a two-dimensional
investigation of the encroachment of an immiscible fluid in a porous channel is
performed. One fluid initially saturates the porous channel, and the pressure field
at the free surface is assumed to be fixed. The approach developed by Vafai and
Chen [3] was employed in the present study. The finite difference method (FDM) is
used to solve the governing equations, and the Marker and Cell (MAC) method is
employed to predict the free surface motion.
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NOMENCLATURE
Da  Darcy Number[= K/(H%)] T, channel wall temperature
F inertial constant T. ambient temperature
h heat transfer coefficient u x component velocity
H one half of channel height Ug channel centerline velocity
ke effective thermal conductivity of the v y component velocity
porous matrix X initial location of the fluid
K permeability Xo free surface front location
L horizontal extent of the channel @, effective thermal diffusivity
Nu Nusselt number Ap pressure difference across the
{=lg/T, - TOICH/k)} encroaching fluid field region, N /m?
p pressure P mobility ratio (= u,/u,)
De entrance pressure ] porosity of the porous medium
Dw ambient pressure i fluid viscosity
q wall heat flux ™ residing fluid viscosity
Regx  Reynolds Number (= upyK /u;) o encroaching fluid viscosity
T entrance temperature Ve kinematic viscosity
T bulk mean temperature Pi fluid density

The MAC method, originally developed at the Los Alamos Laboratory by
Harlow and Welch [4], solves the incompressible transient flow equations using
primitive variables, namely, pressure and velocity components, in a staggered grid
system. Eulerian fluid cells and the coordinates of a set of marker particles that
move with the fluid were used to track the free surface position. Several applica-
tions were studied based on the early version of the MAC method. A technique
including surface stress condition and curvature effects was introduced by Daly and
Pracht [5]. Hirt and Shannon [6], in their study of a viscous bore, investigated the
limits of the original version of the MAC method. With a simple modification, it is
possible to approximate the complete normal stress condition, and this modifica-
tion was shown to have a pronounced effect on some low-Reynolds-number flows.
Furthermore, modifications on the details of the numerical method, such as
interpolation schemes and more exact application of the pressure boundary condi-
tion, were made by Chan and Street [7] in their numerical study of finite amplitude
water waves. Hirt et al. [8] incorporated the complete free surface stress conditions
into a numerical technique in their study of a viscous bore. Frederiksen and Watts
[9] studied entrainment of fluid by a vertically moving plate from a bath of fluid of
finite depth and the consequent formation of a thin film of fluid on the plate using
an iterative finite element technique. Later, an experimental investigation of free
surface transport and subsequent bifurcation and adhesion for a hollow ampule
was done by Chen and Vafai [10].

In the present study, a constant pressure field at the interface is accom-
plished by assuming a very low viscosity for the region without any fluid. This
assumption enables us to perform direct comparison with an existing analytical
solution by Srinivasan and Vafai [2]. The analytical solution by Srinivasan and
Vafai [2] is modified with the interface starting from a prespecified location to
facilitate comparative analysis. This is the first time the MAC method is applied to
flow in a porous channel. Excellent agreement was obtained in comparisons with

the exact solution of Vafai and Kim [11] and the analytical solution of Srinivasan
and Vafai [2].
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ANALYSIS

Figure 1 presents a schematic diagram of the problem. There is a specified
fluid “2” initially residing in the porous channel, and the pressure at the interface
is fixed throughout the simulation. A modification of the analytical solution of
Srinivasan and Vafai [2] is made to account for the initial position of the interface.
A very low viscosity value is assumed for the area without any fluid, so direct
comparison of the temporal free surface distributions can be accomplished.

Governing Equations

As shown in the work of Vafai and Tien [12], the velocity field develops in a
relatively short distance of the order of Kiiv~! from the entrance. Therefore, since
the convective terms are important only within this short length, they are ne-
glected. Time dependent terms are also ignored in the momentum equation
because, based on the work of Vafai and Tien [13], it has been shown that the
steady state momentum field is established in a very short time period. Without the
convective and time dependent terms, and assuming local thermal equilibrium, the
continuity, momentum, and energy equations are obtained using the local volume
averaging technique.

Continuity equation

— +—=0 )]

Momentum equation
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In the above equations, p; represents the pressure read off a pressure gage, as the
gage actually measures the average pressure inside the fluid, Hy is fluid viscosity, pg
is fluid density, K is the permeability of the porous medium, 6 is porosity, F is the
inertial constant, as defined by Vafai and Tien [13], and @, is the effective thermal
diffusivity of the porous channel.

The experimental procedure for determining the value of K and F is
described by Vafai and Tien [13]. The typical values of K and the given functional
dependence of F can be deduced from a number of empirical results, such as those
of Muskat {1] and Koh et al. [14]. In the present study, both x and y momentum
equations are solved even though the pressure gradient in the y direction is
negligible, as shown by Vafai [15]. However, the flow is primarily driven by the
pressure gradient in the axial direction.

The boundary, initial, and interface conditions required to solve the governing
equations are expressed as follows.

Boundary conditions

p=p. v=0 T=T, x=0 “)
du oT

D =D, —a;=0 —ke—a-; =mT-T,) x=x, &)

u=v=0 T=T, y=0 y=2H (6)

Initial condition
u=v=0 T=T, x=x t=0 (7

where x, represents the free surface position, P. the entrance pressure, p, the
ambient pressure, T, the entrance temperature, T, the wall temperature, T, the
ambient temperature, x; the initial position of the free surface, & the heat transfer
coefficient, and k, the effective thermal conductivity.

The general form of the initial condition for the free surface location is based
on practical applications such as in injection molding. It is based on some fluid
residing in the porous channel where a high pressure is applied at the entrance of
the channel. In order to make appropriate comparisons with the analytical solution
presented by Srinivasan and Vafai [2], the analytical solution is modified to account
for the existing encroaching fluid. The derivation of the modified solution is
somewhat complicated, and here we present only the final form as

xg  1=y1+20 - ){(=K/,0)(Ap/I)t+ (1 - 6) /21(x, /L) - (x,/L))
" -2

(8)

where x; represents the initial location of the encroaching fluid.
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Numerical Methodology

The finite difference formulation for the governing equations is similar to
that presented in the work by Vafai and Chen [3]. A brief description of the
discretization of the governing equation is presented as follows.

X momentum

0 dpe wbu  FublU|
————t —Vy - | — + —=1}| =0 9
[ py 9x Ps Kp; VK
y momentum
0 dpy M (poHU Fue|U|
-t =V - | =+ =0 (10)
[ pe 9y Pt Kp; VK
Equations (9) and (10) can be written as
0 dp;
_ = { 11
o o +f(x,y) (11)
e dpf
- ——+glx,y) = (12)
py 9y si57
where f(x,y) and g(x, y) are defined as
Mg pweOu  Fub|U|
(x,y) = —Viu - + (13)
fen =2 Kp; VK
g pebv  FudlUl
(x,y) = =V~ + 14
g7 Pt Kp; VK
Cross differentiating Eqs. (11) and (12) will result in the following equation:
c2 _ P f(x,y)  aglx,y)
V2p; o ( P 7 (15)

The successive overrelaxation (SOR) method is employed in solving the discretized
momentum and pressure equations. As mentioned earlier, the MAC method is
utilized to track the temporal free surface position. During the process,
extrapolation of the velocity fields in the empty cells is required to carry out the
numerical iteration of the momentum and pressure equations. Calculation of the
marker particle velocities is accomplished based on the obtained velocity field to
move the free surface position as the process proceeds. An implicit scheme is used
to solve the energy equation. The basic aspects of the above-mentioned schemes
are presented in the work of Vafai and Chen [3]. The implementation of the
present numerical scheme will not be presented here for the sake of brevity.
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RESULTS AND DISCUSSION

Comparison of the fully developed velocity and temperature fields produced
by the method described above with the exact solution by Vafai and Kim [11] is
presented in Figures 2a and 2b. The fully developed velocity and temperature
fields were obtained by solving the governing equations for the configuration
shown in Figure 1. As shown in Figure 24, for K = 8.0 X 10™* m?, the boundary
thickness is about 3% of the channel width for an 80% porosity. This is consistent
with the results pointed out by Vafai and Tien [12] that the boundary layer
thickness is of the order of (K/6)"/2. In order to capture the momentum boundary
layer, a variable grid size is employed with a very fine grid structure close to the
wall. The difference between the current numerical result and that of the analytical
solution given by Vafai and Kim [11] is less than 0.4%. Referring to Figure 2a, the
two curves coincide on top of each other. The same accuracy is obtained for the
temperature field in Figure 2b, with the difference being less than 0.4%.

Figure 3a depicts the axial distribution of the Nusselt number for a constant
wall temperature for the case presented in Figure 2 when Darcy’s model is
employed for the momentum equations. When the porous matrix is sandwiched
between two parallel plates, the corresponding Nusselt number is 6.00 for a
constant wall heat flux, as indicated by Vafai and Kim [11]. This is indeed what is
obtained in Figure 34, further confirming the accuracy of our numerical scheme.
Three cases with K = 8.0 X 1073, 8.0 X 1078, and 8.0 X 10~!! m? are investigated
and compared with an existing analytical solution. These cases are chosen to cover
a reasonable range of permeabilities employed in practical applications. Referring
to Figures 3b-3d, the free surface front comparisons versus the analytical work of
Srinivasan and Vafai [2] show excellent agreement, further confirming the robust-
ness of the employed numerical scheme.

Next, the effects of variation in the Reynolds number based on permeability,
Rey, while Darcy’s number is held constant are investigated for the free surface
transport through porous media. Three cases, designated case 1, case 2, and case 3,
are studied using Da = 1.0 X 107°. Pressure differences of 5.0 X 10° N/m? for
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Figure 2. Comparison of fully developed (a) velocity and (b) temperature fields with
the analytical solutions of Vafai and Kim [11] for K = 8.0 X 10~* m2,
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Figure 3. () Fully developed axial Nusselt number distribution. Comparison of temporai free surface
distribution with analytical solutions by Srinivasan and Vafai [2] for (b) Da = 1.0 X 107* and Reg =
572 % 107}, (¢) Da= 1.0 X 1077 and Rej = 1.81 X 1074, and (d) Da = 1.0 x 107'* and Reg =
572 x 10710,

case 1, 5.0 X 106 N/m? for case 2, and 5.0 X 10’ N/m* for case 3 are applied,
and these correspond to Reg = 5.72 X 1074, 5.72 X 107%, and 5.72 X 1077, re-
spectively. The temporal free surface distributions for cases 1, 2, and 3 are
presented in Figure 4. Figures 5-7 illustrate the temperature distributions at
selected time frames for each case. The pressure difference for the saturated
portion is assumed to be constant throughout the process, and the encroaching
fluid occupies a portion of the channel initially.

Referring to Figure 4, it takes about 1.7 s for case 1, 0.17 s for case 2, and
0.017 s for case 3 for the encroaching fluid to fill up the entire channel. The
required time is directly proportional to the applied pressure difference for each
case. This can be explained on the basis of the momentum transport equation.
First, it should be noted that the temporal location of the free surface front is
obtained on the basis of the temporal free surface velocity. Next, referring to
Darcy’s law, for cases 1-3, it can be seen that viscosity and permeability are
identical, resulting in a velocity that is proportional to the applied pressure
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Figure 4. Temporal free surface distributions using constant Darcy number.

difference. Referring to Figure 4, a larger pressure difference results in a shorter
time in which the encroaching fluid fully saturates the porous channel.

The temperature contours at three time frames are presented in Figures 5, 6,
and 7 for cases 1, 2, and 3. These contours show the impact of the flow field on the
energy transport for different Re (different applied pressure differences). Figures
5a, 5b, and S5c illustrate the temperature contours at times equal to 0.5, 1.0, and
1.5 s. Referring to Figure 5, the temperature contours are symmetrical with respect
to the centerline of the channel. A temperature value higher than the wall
temperature is assumed for the encroaching fluid relating to a case where the hot
fluid is injected into a cold porous channel. As shown in Figure 5a, at ¢ = 0.5 s, the
temperature of the encroaching fluid decreases as the heat is dissipated through
the wall. The temperature reduction is larger at the wall region than at the center
region due to larger losses near the wall region. As shown in Figure 5b, the
temperature distribution close to the entrance area reduces at ¢ = 1.0 s because
more fluid is available to conduct heat through the channel wall. Referring to
Figure 5c at ¢ = 1.5 5, the channel is almost saturated with encroaching fluid, and
the temperature reduces more for the entrance area with more heat conduction
through the channel wall than at an earlier stage.

Figures 6a—6¢ present the temporal temperature contours at ¢ = 0.05, 0.1,
and 0.15 s for case 2 and with the same temporal free surface locations as case 1.
Examining Figures 5 and 6, it can be seen that the temperature contours for case 2
are very close to those of case 1. This phenomenon can be explained as follows.

G5 A
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Figure 5. Temporal temperature (in degrees Celsius)
distributions for case 1, Reg =3572Xx 10™* at (a)
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Figure 6. Temporal temperature (in degrees Celsius)
distributions for case 2, Rey =572 X 10~% at (a)
t=005s(b)t=01s, and (c) t = 0.15 s,
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Referring to Eq. (3), with the same physical domain and boundary conditions, the
only factor resulting in different temperature distributions is due to the convective
terms. However, at low Re flow such as in cases 1 and 2, the diffusive terms are far
more dominant than the convective terms, resulting in very close temperature
contours,

Figures 7a—7c present the temporal temperature contours for case 3 at the
same free surface locations as case 1 and case 2 but at ¢ = 0.005, 0.01, and 0.015 s.
In comparison with Figures 5 or 6, the temperature contours in Figure 7 have been
affected due to a more significant impact of convective heat transfer, which is in
turn, related to the larger value of pressure difference. The differences can be
more clearly seen at the centerline area as opposed to the wall region. This is due
to the larger temperature gradients that are experienced close to the wall, resulting
in a more dominant diffusive effect. As the process proceeds, the saturated portion
of the channel increases, and the velocity decreases. Therefore for larger times, the
impact of the convective terms becomes less significant due to the reduction of
velocity. Referring to Figures 6 and 7 differences early on between cases 2 and 3
can be detected visually; however, at later times, the differences become less
detectable.

Figure 8 presents the temporal free surface distributions for three cases,
designated as cases 4, 5, and 6, using the same Re. In order to maintain constant
Re, defined as upVK /v;, Da and pressure difference are varied for each case.
Permeabilities of 8.0 x 1075, 8.0 X 107, and 8.0 X 10~7 m? and pressure differ-
ences of 5.0 X 10°% 1.58 x 107, and 5.0 X 10® N/m? are employed for cases 4, 5,
and 6 to obtain the same Re,. As shown in Figure 8 to fully saturate the porous
channel, a time of 0.017 s is required for case 4, 0.0053 s for case 5, and 0.0017 s for
case 6. As indicated earlier, the required time for fully saturating the channel is
determined mainly by Darcy’s velocity—the lower the velocity, the more time is
consumed for the filling process. Darcy’s velocity is about 3 times higher for case 6
than for case 5, and 10 times higher than for case 4. Therefore case 6 takes the
least amount of time to fully saturate the porous channel, as shown in Figure 8.

Figures 9a—9¢ illustrate the temperature contours at ¢ = 0.001 s for cases 4,
5, and 6. As shown in Figures 9a, for case 4, only a small portion of the channel is
saturated and the impact of the convective terms is quite significant. Furthermore,
the core region is able to maintain the entrance temperature field due to the
prominence of the convective heat transfer. Comparing Figure 9 to Figure 6, it
becomes clear that the core and mean bulk temperature at each cross section for
cases 4, 5, and 6 are larger than for cases 1, 2, and 3. Again, this is due to the more
prominent effect of the convective heat transfer for cases 4, 5, and 6.

Figure 10 displays the inertial effects on the temporal free surface position
curves at three different Re. It can be seen that for applications such as groundwa-
ter flow and in injection molding, where the Rey is usually small, inertial effects
are almost negligible. However, for those applications that involve high permeabili-
ties and medium or higher Re,, the inertial effects can be quite significant. These
results are consistent with the observations made by Vafai and Tien [12]. Neglect-
ing the inertial effect could result in overprediction of the free surface front
because the additional drag due to the inertial effects reduces the speed of the free
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Figure 7. Temporal temperature (in degrees Celsius)
distributions for case 3, Reg =572 X 1072 at (q)
t=0005s, (b) t =001s, and (c) ¢ = 0.015 s.
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Figure 8. Temporal free surface distributions using constant Reynolds number.

surface front. As was shown in the work of Vafai and Kim [11], the impact of the
inertial effects on the velocity field also becomes very significant at higher Da. The
cited observations can be clearly seen in Figure 10, where for larger Rey it takes
more time for the free surface front to reach the end of the channel where the
inertial effects are taken into account. For smaller Rey the inertial effects
diminish, as can be seen in Figures 105 and c. The difference in temporal free
surface positions becomes almost negligible when Re is less than unity, as depicted
in Figure 10¢. These conclusions are consistent with those obtained in the work of
Vafai and Tien [12] regarding the inertial effects on the general flow field.

CONCLUSIONS

A phenomenological analysis of free surface transport through porous media
is presented. To the best of our knowledge, this is the first investigation of free
surface momentum and energy transport through porous media as well as the first
application of the Marker and Cell method to investigate the free surface transport
phenomena in a porous medium. Excellent agreement is observed when limiting
cases of the present results are compared with existing analytical results. Important
observations are made regarding the time required for the encroaching fluid to fill
up a channel for different permeabilities of the porous matrix. For example, it is
observed that diffusive heat transfer is significantly more dominant than convective
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Figure 9. Temporal temperature (in degrees Celsius)
distribution at ¢ = 0.001 s for (a) case 4, (b) case 5, and
() case 6.
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Figure 10, Comparison of temporal free surface positions with and without inertia terms for (a)
Reg = 57.2, (b) Reg = 5.72, and (¢} Reg = 0.57.

heat transfer for free surface transport through porous media. The current work
constitutes a rigorous investigation of free surface momentum and energy transport
through porous media covering such applications as the injection molding process.
It also forms a foundation for further understanding of flow and heat transfer
characteristics of free surface transport through porous media.
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