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The phenomenslogical analysis of free surface transport through porous media using the
Brinkman—Forchheimer—extended Darcy model is presented. A finite difference scheme
using the marker-and-cell (MAC) method is employed to investigate the momentum and
energy transport in a porous channel involving free surface transport phenomena. The
interfacial tension effect at the free surface is incorporated in the analysis. The present
investigation constitutes one of the first numerical investigations of the free surface
momentum and energy transport through porous media using the MAC method. Fully
developed velocity and temperature fields for saturated as well as unsaturated porous
channels, for cases with differenrt Darcy numbers, are compared and verified against
existing analytical solutions. Temporal free surface distributions for cases with different
Darcy numbers and Reynolds numbers are presented. Also explored is the effect of the free
surface transport in porous media on the energy transfer. It is found that the boundary and
inertial effects have a significant influence on the free surface transport through porous
media and that the surface tension effects become insignificant for Rey > 1. The present
work constitutes one of the first studies on Non-Darcian effects on free surface transport in
porous media.

INTRODUCTION

The prediction of the fluid interface displacement has become increasingly
important in some manufacturing processes, such as resin transfer molding (RTM),
structure reaction injection molding (SRIM), gas-assisted injection molding, die
filling processes, and clean-up of refineries. Related studies have also been
performed in the oil industry to understand the simultaneous flow of oil, water, and
gas in porous strata during the production of oil from oil fields. The study of linear
encroachment was done by Muskat [1], where a one-dimensional Darcy’s flow
model was used to investigate two fluids moving in a narrow channel. A compre-
hensive analytical study was done by Srinivasan and Vafai [2} to obtain a further
understanding and better prediction of the interface for the linear encroachment in
an immiscible two-fluid system in which the boundary and inertial effects were
accounted for in the study of linear encroachment. The work by Chen and Vafai [3]
describes one of the first applications of the marker-and-cell (MAC) method for
investigating the free surface momentum and energy transport in porous media.
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NOMENCLATURE

Da Darcy number [= K/(H%)] uyp Darcian convective velocity

h heat transfer coefficient [= —K/udp/dx)]

H half of the channe] height U velocity vector

k. effective thermal conductivity of the X; initial location of the fluid
porous matrix xg free surface location

K permeability, m? an effective thermal diffusivity

L horizontal extent of the channel Ap pressure difference across the

n, local normal vector to free surface encroaching fluid, N /m?
in x direction £ mobility ratio ( gy /s,)

n, local normal vector to free surface [/ porosity of the porous medium
in y direction Kg sum of curvature at the

P pressure free surface

Pe entrance pressure g fluid viscosity

Py capillary pressure at the free surface ™ residing fluid viscosity

P ambient pressure ) encroaching fluid viscosity

Rexy  Reynolds number (= uD‘/I? /v vy kinematic viscosity

T, entrance temperature Py fluid density

T mean temperature 2 surface tension coefficient, N/m
[= (¥ uTdy)/(upH)]

It should be noted that, for example, for the RTM/SRIM process, an
appropriate simulation for the filling process is necessary to facilitate the design of
a mold. A few studies have been performed by Young et al. [4] and Bruschke and
Advani [5] using the control volume finite element method. In their investigations,
simple boundary conditions at the moving front were employed, and surface
tension effect was not included. For RTM, using simple free surface boundary
conditions and neglecting surface tension forces can be reasonable assumptions.
Furthermore, since the permeability is very low, the use of the Darcy model may be
appropriate. However, for SRIM, the pressure and velocity fields are much higher,
which can result in significant non-Darcian effects. Inappropriate prediction of the
temperature field at the free surface could result in inaccurate distribution of
reaction rate. This, in turn, affects the viscosity of the resin, since most conversion
occurs at the interface, and the resin viscosity heavily depends on the conversion
rate [6]. Therefore, to predict the interface conditions accurately, a more compre-
hensive set of boundary conditions associated with free surface transport and
non-Darcian effects must be considered.

The present work aims at an investigation of free surface transport while
incorporating boundary and inertia effects. One fluid initially saturates the porous
channel, and the pressure field at the free surface is assumed to be fixed. The
analysis developed here is built on that utilized by Vafai and Chen [7] and Chen
and Vafai [3). The numerical investigation used here is based on the MAC method,
which was originally developed at the Los Alamos Laboratory by Harlow and
Welch [8]. This method utilizes the primitive variables, namely, pressure and
velocity components, in a staggered grid system while incorporating the Eulerian
fluid cells and the coordinates of a set of marker particles to track the free surface
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position. Several applications were studied in detail, based on the early version of
the MAC method. To this end, a technique including surface stress condition and
curvature effects was introduced by Daly and Pracht [9], while Hirt and Shannon
[10], in their study of a viscous core, investigated the limits of the original version
of the MAC method. They demonstrated that with a simple modification, it is
possible to approximate the complete normal stress condition, and this modifica-
tion was shown to have a pronounced effect on some low Reynolds number flows.
Furthermore, modifications on the details of the numerical method, such as
interpolation schemes and more exact application of the pressure boundary condi-
tion, were made by Chan and Street [11] in their numerical study of finite
amplitude water waves. Hirt et al. [12] incorporated the complete free surface
stress conditions into a numerical technigue in their study of viscous bore.
Frederiksen and Watts [13], using an iterative finite element technique, studied
entrainment of fluid by a vertically moving plate from a bath of fluid of finite depth
and the consequent formation of a thin film of fluid on the plate. More recently, an
experimental investigation of free surface transport and subsequent bifurcation
and adhesion for a hollow glass ampule was done by Chen and Vafai [14].

In the present study, the normal force introduced by the surface tension
effect at the free surface is included in the free surface pressure boundary
condition. The temporal free surface distributions are presented and compared to
the Darcy model [3]. The comparisons of temporal free surface and pressure
distributions with and without surface tension effect are shown in this work. In
addition, the boundary and inertial effects on free surface transport through
porous media are analyzed in some detail.

ANALYSIS
Figure 1 presents a schematic diagram of the present study. In this study a
specified fluid 2 initially resides in the porous channel.
Governing Equations

As shown in the work of Vafai and Tien [15], the velocity field develops in
very short distance of the order of Kupv;' from the entrance. Therefore the

free surface front ( x,)

i 3
y i
X Iy«-—-xr’-l
channel wall

Figure 1. Free surface transport through a porous
channel,
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convective terms are neglected, as they are only important within a very short
distance, In addition, it has been shown in the work of Vafai and Tien [16] that the
steady state momentum field is established within a very short time period.
Therefore the time dependent terms are also neglected in the momentum equa-
tion. Assuming local thermal equilibrium [17], and using the local volume averaging
technique, the continuity, momentum, and energy equations are obtained as
follows.

Continuity
au du 1
—_— + —_—
ox ay
Momentum
- —Vp;+ —VU - + =0 (2
o T oy Kp VK
Energy
aT T 4T 92T
u—+v—=amT+—2— (3)
dx ay a°x 3%y

In the above equations, p; represents the pressure read off a pressure gauge, u;
the fluid viscosity, p, the fluid density, K the permeability of the porous medium, 6
the porosity, F the inertia constant, as defined by Vafai and Tien [16], and «,, the
effective thermal diffusivity of the porous channel. The experimental procedure for
determining the values of K and F are described by Vafai and Tien [16]. The
typical values of K and the given functional dependence of F can be deduced from
a number of empirical results such as those of Koh et al. [18]. In the present study,
both x and y momentum equations are solved [19].

The boundary, initial, and interface conditions required to solve the govern-
ing equations are expressed as follows.
Boundary conditions

p=p. ©v=0 T=T, x=0 @)
Moo kL w1 (5)

9x “on “ =%
u=uv=>0 T=T, y=0 y=2H (6)

) du v zé’u
Pe= Gurke + 2p| s by | o s xR (D
Initial condition

u=uv=>0 T=T, X =X t=20 ®
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where x, represents the free surface position, p, the entrance pressure, P, the
capillary pressure at the free surface, o the surface tension coefficient, x, the sum
of curvature at the free surface, T, the entrance temperature, 7, the wall
temperature, 7, the ambient temperature, x; the initial position of the free
surface, i the heat transfer coefficient, k. the effective thermal conductivity.

Equation (7) presents the complete formulation for the pressure field at the
free surface, including the surface tension and viscous effects. The surface tension
effect introduced in this work is used to account for the curvature variation when
the no-slip boundary condition is imposed. This is the first time surface tension
effect is accounted for in a porous channel involving free surface transport. Based
on the work by Vafai and Chen [7], the pressure caused by the viscous force will be
insignificant. Therefore, Eq. (7) reduces to

Pe = Tk 9

The general form of the initial condition for the free surface location is based on
practical applications such as in injection molding. It is based on some fluid
residing in the porous channel where a high pressure is applied at the entrance of
the channel,

Numerical Methodology

The finite difference formulation for the governing equations is based on the
work by Vafai and Chen [7). A brief description of the discretization of the
governing equation is presented as follows.

x Momentum

) fu  FudlUl|)
2 By, | BT l =0 (10)
py 9x Pe Kp; VK )
vy Momentum
() dv Fue|U|
= By | B -0 (1)
pe 9y Pe Kpy VK
Equations (10) and (11) can be written as
0 dp;
- = 12
o 9% flx,y)=0 (12)
]
=P gy =0 (13)

Py 9y
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where f(x, y) and g(x, y) are defined as

T webu  Fub|U|
(x,y) = —Vu - + (14)
fen = Kp VK
t wedv  Fuel|U|
(x,y) = —V?y - + 15)
gy Py Kp¢ \/I?
Taking divergence of Egs. (12) and (13) will result in the following equation:
—_ Pt ti'f(x,)’) ag(x’y)
Vip = — + 16
Pr 0 ( ax ay (16)

The successive overrelaxation (SOR) method is employed in solving the discretized
momentum and pressure equations. As mentioned earlier, the MAC method is
utilized to track the temporal free surface position. During the process, extrapola-
tion of the velocity fields in the empty cells is required to carry out the numerical
iteration of the momentum and pressure equations. Calculation of the marker
particle velocities is accomplished using the obtained velocity field to move the free
surface position. An implicit scheme is used to solve the energy equation. The basic
aspects of the above-mentioned schemes are presented in the work of Vafai and
Chen [7]. The implementation of the present numerical scheme will not be
presented here for the sake of brevity.

RESULTS AND DISCUSSION

Comparisons of fully developed velocity and temperature fields, with the
exact solution by Vafai and Kim [20], are presented in Figure 2. The fully
developed velocity and temperature fields were obtained by solving the governing
equations for the configuration shown in Figure 1. As shown in Figure 2a, for
Da=11x10"% 1.0 X 1075, and 1.0 X 107%, the momentum boundary layer
thickness is of the order of (K/8)'/2, which is consistent with the results first given
by Vafai and Tien [15]. In order to capture the momentum boundary layer, a
variable grid size is employed with a very fine grid structure close to the wall. The
difference between the current numerical result and that of the analytical solution
given by Vafai and Kim [20] is less than 0.4%. Referring to Figure 2, the numerical
results coincide with the analytical results. The same accuracy is obtained for the
temperature field as presented in Figure 2b. The excellent agreement shown in
Figure 2 further confirms the robustness of the employed numerical scheme.

Table 1 illustrates the values of Da (Darcy number), Re, (Reynolds number),
and o (surface tension coefficient) for all cases studied in the present work. Four
cases are studied using the Brinkman—Forchheimer—extended Darcy model. Refer-
ring to Table 1, a Darcy number of 1.0 X 10~? is applied for cases 1, 2, 3, and 4 at
Reynolds numbers 1.8 X 1073, 1.8 X 1072, 1.8 X 107!, and 1.8, respectively. The
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surface tension effect is not included in cases 1-4, so that impact of the viscous
effect on free surface transport can be studied. The surface tension effect is
presented separately. A comparison of the temporal free surface distributions at
the center of the channel with Darcy’s model is presented in Figure 3. Figure 4
illustrates the temporal free surface front distributions at selected time frames for

Table 1. List of input parameters for cases 1-9

Capillary effects
Case Da Rey included
1 1.0 % 1073 1.8 x 1073 no
2 1.0 x 102 1.8 x 1072 no
3 1.0 x 1073 1.8 x 10! no
4 1.0x 1073 1.8 no
5 1.0 x 1073 1.8 x 1073 yes
6 1.0 x 1073 1.8 % 1072 yes
7 1.0 x 1073 1.8x 107! yes
8 10x 1073 0.57 yes
9 10 x 10°2 0.57 yes
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Figure 3. Comparison of temporal free surface positions at the centerline of the channel between
generalized (Darcy-Forchheimer—Brinkman) model and Darcy’s model without surface tension effect:
(2) Rey = 1.8 X 1073, (b)Y Regx = 1.8 X 1072, (¢) Rex = 1.8 X 107!, and (d) Rey = 1.8.

each case. The pressure difference across the saturated portion is assumed to be
constant throughout the process, and the encroaching fluid occupies a portion of
the channel initially.

As seen in Figure 3, a larger pressure difference resuits in a shorter time for
the encreaching fluid to saturate the same portion of the channel. Furthermore, as
depicted in Figure 3, viscous and inertia effects to the free surface motion become
more significant as Re, increases. In Figure 3a, with Re, = 1.8 X 107> for case
1, the difference between Darcy’s model and the generalized model is not signifi-
cant. However, for case 2 (Rey = 1.8 X 107%) the difference starts to increase
slightly (Figure 3b). As Re, increases to 1.8 X 10~! for case 3, the deviation
becomes more visible (Figure 3c). For case 4 with Rey = 1.8, the deviation
becomes quite significant, as shown in Figure 34. Figure 4 presents comparisons of
two-dimensional free surface distributions at selected times for cases 1-4 for the
generalized and Darcy’s models. Referring to Figure 44, the free surface positions
match quite well with Darcy’s model except for the area close to the wall. When
the no-slip condition is invoked, the point at the wall does not move, resulting in an
unsaturated area near the wall. As shown in Figure 4a, the distance between the
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Figure 4. Comparisons of temporal free surface positions of generalized model and Darcy’s model
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saturated zone and the channel wall decreases with time. This is due to the vertical
velocity component resulting from the vertical pressure gradient. Figures 5a and 5b
depict the pressure distributions at a time of 0.4 s for case 1. In Figure 5a, for
Darcy’s model, there is only an axial pressure gradient. However, when the no-slip
condition is applied, a vertical pressure gradient is formed, as shown in Figure 5b.
This pressure gradient pushes the fluid toward the wall region, thereby reducing
the unsaturated area. As can be seen in Figure 4, it is not until case 3, where the
free surface displacement at the centerline region becomes visible for the two
models (Figure 4c). At the beginning of the process for case 3, the generalized
model produces a centerline velocity that is quite close to that obtained by Darcy’s
model. However, as the process progresses, the difference becomes more signifi-
cant. For case 4, as shown in Figure 44, for a higher Re,, the difference in free
surface distribution occurs from the beginning of the process.

Figure 6 presents the temperature contours and Nusselt number distributions
along the axial direction for case 1. Similar temperature contours and Nusselt
number distributions are obtained for cases 2, 3, and 4, and therefore they are
presented for brevity. Referring to Figures 6a and 65, the temperature distribution
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Figure 5. Temporal pressure distributions at 0.4 s for
case 1: (a) Darcy’s medel and (b) generalized model.
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near the entrance region for the generalized model is very close to that of Darcy’s
model, However, the temperature gradient becomes higher near the free surface
area for the generalized model. The reason for the higher temperature gradient for
the generalized model is the convective boundary condition at the free surface,
which is not as efficient as heat conduction through the channel wall. Referring to
Figure 6c, a higher temperature gradient near the free surface area results in a
higher Nusselt number for the generalized model. It should be noted that this
situation is different from that of a fully saturated flow through a channel. In this
case, the free surface creates an unsaturated region that leads to this behavior.

For Darcy’s model, it is appropriate not to account for the surface tension
effect because the free surface is always flat, corresponding to zero surface
curvature and zero capillary pressure [Eq. (7)]. However, when the no-slip bound-
ary condition is invoked, the free surface is no longer flat, and neglecting the
surface tension effect could result in underprediction or overprediction of the free
surface motion, depending on the shape of the free surface front. Three cases are
investigated to gain an understanding of the surface tension effect on the temporal
free surface movement, pressure distribution, and temperature distribution. Refer-
ring to Table 1, cases 5, 6, and 7 use the same input parameters as cases 1, 2, and 3,
respectively, except that the surface tension effect is accounted for.

Figure 7 shows the comparison of temporal free surface distribution at four
time frames for cases 5, 6, and 7. As depicted in Figure 7a, the difference between
case 5 and case 1 resulting from the surface tension effect is insignificant early on.
However, it becomes more significant at later times. This phenomenon can be
explained on the basis of the pressure distributions. Early on in the filling process,
the free surface configuration is quite flat; thus the capillary pressure distribution
along the interface is insignificant in comparison with the applied pressure differ-
ence. At a later stage, distortion of the free surface distribution near the wall
region becomes prominent, and the free surface motion is affected by the induced
capillary pressure at the free surface. For example, for cases 1 and 5, the applied
pressure difference is 50 N/m?, and the resultant capillary pressure for case 5 at
0.4 s is about 5 N/m?, which is of the same order of magnitude as the applied
pressure difference. Without the surface tension effect, the pressure boundary
layer thickness {the region over which the pressure distortion occurs) near the free
surface is close to the momentum boundary thickness. However, when the surface
tension effect is included, the pressure boundary thickness near the free surface
decreases owing to the capillary pressure contribution. As can be seen in Figure 7a,
-the unsaturated area for case 5 is larger than case 1. In case 1, the vertical pressure
gradient creates a vertical flow field, which reduces the unsaturated area, however,
in case 5, distortion of the pressure field creates a flow toward the centerline of the
channel (referring to Figure 8a). From a practical point of view, pressure distortion
is disadvantageous for the filling process because it is blocking the flow toward the
channel wall.

Referring to Figure 7b, distortion of the flow field becomes less significant
for case 6. By examining the pressure distribution shown in Figure 8b, it can be
seen that the induced capillary pressure is not large enough to create the same
type of high-pressure field as in case 5. This is because the capillary pressure is
only about 2% of the applied pressure difference. As the Reynolds number is
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Figure 7. Comparisons of temporal free surface distributions for {Continued): (c) cases 3 and 7.

increased to 0.18 for case 7, the difference in the temporal free surface distribution
becomes even more insignificant, as shown in Figure 7¢. As can be seen in Figure
8c, identical pressure distributions are obtained at 0.004 s. This shows that the
capillary pressure does not have a significant effect on the overall pressure
distribution. Therefore, if the surface tension effect is accounted for in case 7, no
difference will be encountered in the temporal free surface distribution and
pressure distribution because the capillary pressure is insignificant in comparison
with the applied pressure difference. It can be seen that for a higher Re, the
surface tension will have a lesser impact on the free surface transport.

Figure 9 presents the temporal axial Nusselt number distributions for cases 5,
6, and 7 at selected times. Referring to Figure 94, the temporal axial Nusselt
number distributions at (.4 s for case 5 are very similar to those of case 1 at 0.4 s,
with minor differences for the region near the free surface. By examining axial
Nusselt number distributions at 0.4 s depicted in Figure 94, it can be seen that the
effect of surface tension is not significant. For case 6 (Figure 9b), the difference
becomes more insignificant, and for case 7 the difference becomes negligible. It
can be concluded that the surface tension effect does not impact the temperature
field as much as it affects the velocity and pressure fields.

Figures 10a and 10b depict comparisons of the temporal free surface distri-
butions for case 8 and case 9 with and without surface tension effect. The Reynolds
number for both cases is 0.57, which is higher than in case 3. On the basis of the
conclusion drawn earlier, identical temporal free surface distribution and pressure
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and temperature fields are to be expected. It is therefore confirmed that, for

Rey > 1, the surface tension effect has a negligible impact on the free surface
momentum and energy transports.

CONCLUSIONS

A phenomenological analysis of free surface transport through porous media
is presented. The present work constitutes one of the first investigations of free
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surface momentum and energy transport through porous media, as well as the first
application of the marker-and-cell method to investigate the free surface transport
phenomena in porous media using the Brinkman—-Forchheimer-extended Darcy
model. Excellent agreements are observed when limiting cases of the present
results are compared with existing analytical results. It is observed that an unsatu-
rated zone is formed near the channel wall owing to the no-slip boundary
condition. It is also observed that the size of the unsaturated area decreases as the
filling process progresses owing to the vertical flow field resulting from a vertical
pressure gradient. It is found that the surface tension effect on the free surface
momentum transport is significant only for low Rey flows.

The application of the no-slip condition results in the unsaturated zone,
which retards the heat transfer through the channel wall. The dominance of the
diffusive heat transfer for lower values of Re is demonstrated. It is found that the
surface tension effect has less impact on energy transport than momentum trans-
port and the surface tension effects altogether become insignificant for Re, > 1. It
is also found that the boundary and inertial effects have a significant influence on
the free surface transport through porous media. The current work constitutes a
rigorous investigation of free surface momentum and energy transport through
porous media, covering such applications as the injection molding process and the
two-phase flow system. It also forms a foundation for further understanding of flow
and heat transfer characteristics of free surface transport through porous media.
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