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Abstract

Works pertinent to arterial transport models are analyzed and a critical assessment of the models utilized in the study of fluid flow and
mass transfer within the arteries is presented with an emphasis on the role of porous media. Arterial transport models are assessed and
classified based on their ability to physically prescribe the arterial anatomy as well as the related transport processes. Pertinent models
such as wall-free, homogeneous-wall, and multi-layer models as well as the governing equations and different types of boundary condi-
tions utilized in each model are analyzed.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few decades, the study of causes, genesis,
and development of cardiovascular diseases (CVD) has
been receiving increasingly more attention. The American
Heart Association [1] reports that nearly 80 million Amer-
ican adults (one in three) have one or more types of CVD.
Of this population only 47% are estimated to be of age 65
or older. Mortality data show that CVD, as the underlying
cause of death, accounted for one out of every 2.8 deaths in
the United States. Today, scientists from various fields of
study are contributing in achieving a better understanding
of the processes involved in CVD. Numerous attempts
have been made to apply engineering principles such as
transport phenomena to the medical and biological pro-
cesses. Transport processes are fundamental in various
aspects of life sciences. Interactions involving fluid mechan-
ics, heat transfer, and mass transport in biology and med-
icine are pervasive in understanding the causes of diseases
and in the development of new prophylactic, diagnostic,
and therapeutic procedures for improving human health.
Nearly all the human tissues are categorized as porous
media. Thus, fundamentals of transport through porous
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media have found outstanding applications in biological
and biomedical sciences. Advances in numerical simula-
tions and emergence of sophisticated porous transport
models have significantly improved the study and analysis
of transport in living tissues.

Atherosclerosis, as one of the prevalent CVD, has been
studied extensively over the past few decades. It is a pro-
gressive disorder of the arterial wall that leads to gradual
and uneven narrowing of the arteries through the develop-
ment of fibrous or fatty plaques within the arterial walls.
One of the fundamental causes of the plaque development
is believed to be the abnormal enlargement of the intima by
infiltration and accumulation of macromolecules such as
lipoproteins and the associated cellular and synthetic reac-
tions. Fluid dynamics of blood (hemodynamics) is consid-
ered to play a major role in the genesis and development of
atherosclerosis. This work presents a critical assessment
and analysis of models used in the study of the transport
within the arteries with an emphasis on the application of
transport through porous media.

In this work, first a brief overview of human blood cir-
culation system, arterial anatomy, and atherosclerosis is
presented. Next, the blood rheology and the importance
of hemodynamics in the study of atherosclerosis are dis-
cussed. Due to porous nature of the arterial wall, the essen-
tials of the models used in analyzing fluid flow and mass
transfer through porous media and its role in the study
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Nomenclature

C0 reference species concentration
c species concentration
cF Forchheimer parameter
c mean solute concentration
D mass diffusion coefficient
Do overall mass transfer coefficient
D0e effective diffusivity per unit length
F inertia coefficient
J unit vector oriented along the velocity vector
Jv transmural velocity
Js transmural solute flux
Kp consistency coefficient (power law model for

non-Newtonian fluids)
Kl solute lag coefficient
K permeability of the porous medium
K0 permeability per unit length
k reaction rate coefficient
k0 lower limit Quemada viscosity constant
k1 upper limit Quemada viscosity constant
Lp hydraulic conductivity
N 00S absolute molar flux of the solute across the

membrane
np power law index (for non-Newtonian fluids)
n unit vector in wall normal direction
p pressure
R radius of the artery
Ru universal gas constant
Re Reynolds number
Re1 =max(1,Re)
ReK Reynolds number in a porous medium
Sc Schmidt number
T temperature
t time
U0 characteristic (reference) velocity
u velocity in the direction of the flow
up pore velocity
V Velocity vector

Greek symbols

a Womersley number
e porosity of a medium
/f partition coefficient
u hematocrit
_c shear rate
_c0 reference shear rate
_cc a parameter for Quemada model defined by a

phenomenological model
k* tortuosity of a medium
l dynamic viscosity
l0 dynamic viscosity of Plasma
l1 Casson (asymptotic) dynamic viscosity
m kinematic viscosity
m0 reference kinematic viscosity
p osmotic pressure
q density
sy fluid yield stress
�s fluid shear stress
rd osmotic reflection coefficient
rf Staverman filtration coefficient
f frequency
xv angular velocity
_x species source/sink term

Subscripts
e effective property
w wall
f fluid
end endothelium

Symbols

h i ‘‘local volume average” of a quantity
D differential of a quantity
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of transport within biological tissues are analyzed. Finally,
a critical review and assessment of the models used in the
study of arterial mass transport is presented.

2. Arterial anatomy and development of CVD

The development and function of complex living organs
require oxygen and nutrients to be constantly available for
the metabolic needs of the cells. This is done via a complex
blood circulation system. A schematic of human blood cir-
culation system is shown in Fig. 1. The human body’s cir-
culatory system has three distinct parts: the heart (coronary
circulation), the lungs (pulmonary circulation), and the rest
of the system (systemic circulation). An average human
body has roughly 5 liters of blood continuously pumped
through the circulatory system delivering nutrients and
oxygen, removing waste, and performing other vital tasks.

The blood vessels are part of the circulatory system and
function to transport blood throughout the body. The
main outlet from the heart, the aorta, branches into several
arteries, each serving a particular organ or system. These
arteries successively branch into smaller vessels until finally
a diffusing system, the capillary bed, is reached. Capillaries
are the smallest components of the circulatory system. The
structure of the capillaries for each organ is developed in a
way to meet its requirements. The blood and the cells
exchange substances via selective and specific permeation
through two different biomembranes: the cell membrane
and the capillary wall. The blood vessels are roughly
grouped as venous and arterial, determined by whether



Fig. 1. A schematic of human blood circulation system.
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the blood inside them is flowing toward or away from the
heart, respectively. The term ‘‘arterial blood” and ‘‘venous
blood” are used to indicate oxygenated and deoxygenated
blood, respectively. The exceptions are the pulmonary
artery, which carries venous blood and pulmonary vein
that contains arterial blood.

A typical anatomical structure of an arterial wall is dis-
cussed by Yang and Vafai [2]. Fig. 2 shows a schematic of
an arterial wall. Going from the lumen to the most external
layer, a large artery is comprised of the following six layers:
glycocalyx, endothelium, intima, internal elastic lamina
(IEL), media, and adventitia. The luminal glycocalyx is a
thin layer of macromolecules which is believed to cover
the plasma membrane of a single layer of endothelial cells,
and the entrance of the intercellular junctions. Immediately
in contact with the glycocalyx is endothelium, a single layer
of endothelial cells, which are elongated in the direction of
blood flow. Endothelial cells are interconnected through
intercellular junctions. Internal elastic lamina is an imper-
meable elastic tissue with fenestral pores and lies between
intima and media. In contrast to the media, which contains
alternating layers of smooth muscle cells and elastic connec-
tive tissue, the intima is mainly comprised of proteoglycan
and collagen fibers. The media layer is surrounded by a
loose connective tissue, called the adventitia, which con-
tains some capillaries (lymphatic and vasa vasorum). In lar-
ger arteries of certain species the capillaries of the adventitia
may penetrate the outer section of the media as well [3].



Fig. 2. A schematic of the anatomical structure of an arterial wall [2].
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Mass transfer across the arterial wall occurs via two
mechanisms: convection associated with pressure-driven
transmural flow and mass diffusion caused by concentra-
tion gradients. Molecular diffusion is driven by solute con-
centration gradients within the arterial walls. These
gradients are caused by metabolic uptake and production
of proteins within tissue cells. Proteins transported from
blood through the endothelial and intimal layers usually
encounter some mass-transfer resistance. The resistance
can be quite high depending on the size and charge of the
protein. The proteins can undergo reaction and further
penetrate into the media. In addition to the main transport
from luminal blood supplies, proteins may also be trans-
ported from the adventitia to the media through the vasa
vasorum.

Blood vessels are known to differ from each other in
both their structural features and biochemical composition
of their walls. Major arteries, however, possess similar ana-
tomical structure and properties. Therapeutic solutions can
be realized through understanding a range of phenomena
including the response of blood vessels under physiological
loads. The strength and deformation properties of blood-
vessel walls depend on the structure and biochemical com-
position to a certain extent. Although assumed rigid in
some arterial blood flow and mass transport studies, blood
vessels are elastic in nature. Vito and Dixon [4] put forth a
review of recent blood vessel constitutive models. They
provided a comparative overview of four different models
along with their corresponding assumptions, limitations,
and benefits. These were pseudoelastic, randomly elastic,
poroelastic, and viscoelastic models. More information
on the mechanics of the arteries was also provided by Vito
and Dixon [4].

Various types of CVD can be broadly divided into two
categories. First category is related to heart diseases such
as heart failure, congenital heart disease, and coronary
heart disease and the second category is associated with
the blood vessel anomalies and includes atherosclerosis,
stroke, thrombosis, and aneurysm. These may have differ-
ent or common causes and some may lead to the develop-
ment of another. This work focuses mostly on the processes
and mechanisms involved in the second category and spe-
cifically atherosclerosis. A brief overview of the causes
and development stages of atherosclerosis was presented
by Quarteroni et al. [5]. Atherosclerosis is recognized as a
focal chronic inflammatory fibroproliferative disease of
the inner arterial wall. It is characterized as a progressive
disorder, which leads to gradual and uneven narrowing
of arteries through the development of fibrous or fatty pla-
ques within the arterial walls. The onset and progression of
atherosclerosis involves many processes, however, the fun-
damental cause of the plaque development is believed to be
the abnormal enlargement of the intima by the infiltration
and accumulation of macromolecules such as lipoproteins
and the associated cellular and synthetic reactions.

The arterial system is tortuous; branches at times to
reach an end organ. The cross-sectional area along the axis
may enlarge at branch points, sinuses, and aneurysms. If
the area diverges, the flow must decelerate, and an adverse
pressure gradient develops. In these situations, flow separa-
tion is possible and typically occurs along the walls of the
sinus. Normal arterial flow is laminar with secondary flows
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generated at curves and branches. The arteries are living
organs that can adapt to and change with the varying
hemodynamic conditions. However, in certain circum-
stances, unusual hemodynamic conditions create an abnor-
mal biological response. Velocity profile skewing can create
pockets in which the direction of the wall shear stress oscil-
lates [6]. Clinical observations indicate that atherosclerotic
lesions develop often at branches and bifurcations where
disturbed flow patterns are observed [5]. Atherosclerotic
disease tends to be localized in these sites and results in a
narrowing of the artery lumen (stenosis). A stenosis can
cause turbulence and reduce flow by means of viscous head
losses and flow choking. Very high shear stresses near the
throat of the stenosis can activate platelets and thereby
induce thromboembolism, which can totally block blood
flow to the heart or brain.

High dependency of the genesis and development of ath-
erosclerosis upon transport processes within the arteries
has led scientists to employ advanced tools and sophisti-
cated models to study the hemodynamics and mass trans-
port within the arteries. In what follows, a brief overview
of the blood rheology and the role of hemodynamics in
the pathogenesis of atherosclerosis is presented.
3. Blood rheology and hemodynamics

From a rheological point of view, blood can be
thought of as a solid–liquid suspension, with the cellular
elements being the solid phase. Since blood is a two-phase
liquid, its fluidity at a given shear rate and temperature is
determined by the rheological properties of the plasma
and cellular phases and by the hematocrit (defined as
the volume fraction of the red cells in the blood) of the
cellular phase. Plasma is the liquid phase of the blood.
It can be considered as a Newtonian fluid (i.e. viscosity
independent of shear rate). The normal range of viscosity
for healthy plasma is reported to range from 1.10 to
1.35 cP [7].

For a laminar blood flow, cellular elements act in dis-
turbing the flow streamlines and therefore influencing the
blood viscosity [8]. With increasing the amounts of cells,
flow lines are progressively disturbed, and viscosity of
blood increases as compared to that of plasma. Thus the
degree of disturbance of flow streamlines and consequently
the viscosity of blood depends mainly on the concentration
of the red blood cells, which is represented by the hemato-
crit. There is an exponential relationship between the
hematocrit value and blood viscosity, such that at higher
levels of hematocrit, blood viscosity becomes increasingly
sensitive to hematocrit alterations [9]. Due to their rela-
tively higher number and volume concentration, red blood
cells have a more pronounced role in the rheology of blood
in large arteries as compared to white cells and platelets. In
particular, the white blood cells have a very low number
and volume concentration as compared to red blood cells.
In the microcirculation, where blood vessel sizes are com-
parable to the size of red blood cells, every single red blood
cell may have the potential to influence the flow field.

Blood is approximately four times more viscous than
water. It does not exhibit a constant viscosity at all flow
rates and is especially non-Newtonian in the microcircula-
tory system. The non-Newtonian behavior of blood is most
evident at very low shear rates [10]. There are several con-
stitutive relationships to study the non-Newtonian behav-
ior of blood, i.e. power-law model, Casson model,
Quemada model and viscoelastic model. One of the most
commonly used constitutive relationships to express viscos-
ity of the blood is the power law model

l ¼ Kpj _cjnp�1 ð1Þ

where Kp, np, _c are the consistency coefficient, the power
law index, and the shear rate, respectively. The Casson
model represents a non-linear relationship between shear
stress and shear strain and is given by [11]:ffiffiffi

�s
p
¼

ffiffiffiffiffiffiffiffiffi
_cl1

p
þ ffiffiffiffi

sy
p ð2Þ

where �s, sy, and l1 denote the fluid shear stress, fluid yield
stress and viscosity at high shear rate (Casson viscosity or
asymptotic viscosity), respectively. The Quemada model
[12] is useful in evaluating the viscosity of concentrated dis-
perse systems based on shear rate and hematocrit. It is gi-
ven as

l ¼ l0 1� u
2

k0 þ k1
ffiffiffiffiffiffiffiffiffi
_c= _cc

p
1þ

ffiffiffiffiffiffiffiffiffi
_c=_cc

p
 ! !�2

ð3Þ

where l0 and u are the plasma viscosity and the hemato-
crit, respectively. The parameter _cc is defined by a phenom-
enological model. The parameters k0, and k1 are the lower
and upper limit Quemada viscosity constants, respectively.
In an investigation of Stokes’ second problem for non-
Newtonian fluids, Ai and Vafai [13] have studied and com-
pared the effects of reference shear rate on the wall shear
stress for different blood models. Reference shear rate is de-
fined as

_c0 ¼ U 0

ffiffiffiffiffiffiffiffiffiffi
f =m0

p
ð4Þ

where U0, f, and m0 are the reference velocity, frequency,
and the representative viscosity of the Newtonian fluid.
Fig. 3 shows the temporal variation of wall shear stress
with a reference shear of unity for different constitutive
blood viscosity models.

Due to the cyclic nature of the heart pump that creates
pulsatile conditions in all arteries, blood flow and pressure
are unsteady. The heart ejects blood during systole while it
rests during diastole (no blood is ejected). The flow out of
the heart is intermittent, going to zero when the aortic
valve is closed [6]. A nondimensional frequency parameter,
the Womersley number a, governs the relationship between
the unsteady and viscous forces and is given by

a ¼ R
ffiffiffiffiffiffiffiffiffiffi
xv=m

p
ð5Þ



Fig. 3. Temporal variation of wall shear stress with a reference shear of
1.0 [13].
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where R is the radius of the artery, xv is the angular veloc-
ity, and m is the kinematic viscosity. Pulsatile nature of the
blood flow in the cardiovascular system has a number of
hemodynamical and rheological effects. When flows are
changing with time, such as blood flow in the human circu-
lation, the liquid generally demonstrates elastic as well as
viscous effects, both of which determine the stress-to-strain
rate relationship. Such liquids are called viscoelastic. Blood
plasma normally shows viscosity only, while whole blood is
both viscous and elastic. The viscoelasticity of blood is
traceable to the elastic red blood cells, which occupy
roughly 40–50% of the volume.

When the red cells are at rest they tend to aggregate and
stack together in a space efficient manner. In order for
blood to flow freely, the size of these aggregates must be
reduced, which in turn provides some freedom of internal
motion. The forces that disaggregate the cells also produce
elastic deformation and orientation of the cells, causing
elastic energy to be stored in the cellular microstructure
of the blood. As flow proceeds, the sliding of the internal
cellular structure requires a continuous input of energy,
which is dissipated through viscous friction. These effects
make blood a viscoelastic fluid [14]. In the framework of
large and medium vessels, it is generally agreed that, under
physiological conditions, the Newtonian model for blood
rheology is acceptable and therefore, in most arteries,
blood is taken as a Newtonian fluid with a constant viscos-
ity of 4–6 cP for a normal hematocrit.

Fluid dynamics of blood flow in arteries and the effects
of pertinent parameters on the vascular function and the
development of CVD have been reviewed in the literature
[6,15–23]. As blood flows along the endothelium, a shear
stress is generated to retard the flow. The wall shear stress
is thus central to the vascular response to hemodynamics.
A correlation between fluid dynamic forces and athero-
sclerotic disease has long been speculated. Over the years,
numerous analytical, numerical, and experimental studies
have been carried out to illuminate this correlation. The
hypothesis was based on the observation that atheroscle-
rotic disease is focal, often occurring at sites of complex
hemodynamics such as arterial bifurcations and junctions.
It is believed that hemodynamic factors, such as the wall
shear stress, particle residence time, recirculation zones,
arterial wall strain and wall compliance, play significant
roles in the onset and localization of atherosclerosis
[16,23]. Since these hemodynamic factors occur at the
lumen–endothelium interface, the behavior and dysfunc-
tion of endothelial cells is of great importance. Amongst
various hemodynamic parameters acting on the endothe-
lium, the wall shear stress and its derivatives are the
most influential on the distribution of atherosclerotic
lesion.

There are several prevailing hypotheses linking non-uni-
form hemodynamics with abnormal biological events
which are based on the wall-shear stress concept. For
example, the high shear stress theory suggests that acute
shearing stresses may cause endothelial dysfunction [24–
26]; hence, it may be responsible for local plaque forma-
tion. On the other hand, the low shear stress theory argues
that early atheroma occurs in regions of low wall shear
stress [27–29]. Work also points to oscillatory and pulsatile
shear stress effects [30–34] as well as the influence of spatial
shear stress gradients [35–40].

It has become widely accepted that regions of arterial
tree with low or oscillatory shear stress are more likely to
develop atherosclerosis [27,30,41]. For instance, the carotid
sinus is shown to be a preferential site of lipid deposition
[20]. Carotid bifurcation is a site where the main artery in
the neck (the common carotid artery) divides to form the
external and internal carotid arteries. Carotid sinus is a
localized dilation of the internal carotid artery right after
branching from the common carotid artery opposite the
flow divider. The carotid sinus is characterized by flow
recirculation zones, oscillatory levels of wall shear stress,
and increased particle residence time [20]. The hemody-
namic conditions in such zones may cause a longer cell-
to-cell interaction and trans-endothelial transport at the
endothelium–lumen interface.

4. Application of porous media in modeling transport

through biological tissues

The study of atherogenesis involves both hemodynamics
within the arteries and mass transport across the arterial
wall. As mentioned earlier, hemodynamical conditions
are believed to play an important role in localizing and ini-
tiation of atherosclerosis. The study of mass transport
across the arterial wall requires knowledge of arterial anat-
omy as well as sophisticated models to simulate the phe-
nomenon. Arterial wall, like a great majority of other
human tissues, can be treated as a porous medium. As
such, it is of great importance to characterize the porous
media transport models used in describing biological
phenomena.
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A porous medium is characterized by its porosity repre-
sented as the ratio of the void space to the total volume of
the medium. Most human tissues can be treated as porous
media as they are composed of dispersed cells separated by
connective voids where blood flows [42,43]. Earlier studies
in fluid flow through porous media have revealed the clas-
sical Darcy law which represents a linear relationship
between the flow velocity and the pressure gradient across
the porous medium:

~V ¼ �
K

l
rp ð6Þ

where K is the permeability tensor, ~V the velocity vector, l
the dynamic viscosity, and $p is the pressure gradient. Per-
meability is a measure of the flow conductivity in the por-
ous medium and is one of the key parameters
characterizing a porous medium. Darcy model has been
utilized in several biomedical studies [7,44–49].

Although useful, Darcy’s law has several substantial
shortcomings. It neglects the effects of a boundary or the
inertial forces on the fluid flow and heat transfer through
porous media [50]. As such, a number of modified models
have been proposed. One of these modified models which
accounts for the inertial effects is known as Darcy–Forch-
heimer model. It is given by

rp ¼ � l
K

V þ cFK�1=2qjV jV ð7Þ

where cF is a dimensionless parameter related to inertial ef-
fects. This model is obtained by adding an additional term
(Forchheimer term) to account for inertial effects. The
transition from Darcy-flow to Darcy–Forchheimer flow de-
pends on the permeability-based Reynolds number. This
Reynolds number is defined as

ReK ¼
up

ffiffiffiffi
K
p

m
ð8Þ

where up, K, and m are the pore velocity, permeability, and
kinematic viscosity, respectively. Different transition re-
gions are analyzed by Vafai et al. [51]. Brinkman model
takes into account the effect of solid boundaries. It permits
the application of no-slip boundary condition along the so-
lid walls that confine the porous medium. Brinkman’s
model is given by

rp ¼ � l
K

V þ ler2V ð9Þ

where le is the effective viscosity of the porous medium. In
the current literature, le is often assumed to be equal to l.
For isotropic porous medium, Bear and Bachmat [52] have
stated that the effective viscosity is related to the porosity
through the following relation:

le ¼ l k�eð Þ�1 ð10Þ
where e and k* are the porosity and tortuosity of the med-
ium, respectively. Tortuosity is one of the important char-
acteristics of a porous medium and represents the
hindrance to flow diffusion imposed by local boundaries
or local viscosity. Brinkman’s model has been used in a
number of biological transport studies [53–55]. In cases
where fluid inertia is not negligible, the form drag exerted
by the fluid on the solid becomes significant. Vafai and
Tien [50] arrived at a generalized model for flow transport
through porous media which accounts for various perti-
nent effects. This generalized model is given by the follow-
ing equation [50]:

qf

e
ohV i
ot
þ V � rð ÞVh i

� �

¼ �rhP if þ l
e
r2hV i � l

K
hV i � qf F e

K1=2
hV i � hV i½ �J ð11Þ

where F and qf are the dimensionless inertia coefficient and
the fluid density, respectively. The parameters hPif and J

are the average pressure inside the fluid and a unit vector
oriented along the velocity vector V, respectively. The sym-
bol h i, represents the local volume average of a quantity
associated with the fluid. This generalized model also ac-
counts for the convective terms. It is important to utilize
this equation in tissue media especially those located near
the aortas or in skeletal tissues that have higher perfusion
rates. A more limited form of this generalized model is re-
ferred to as the Brinkman–Forchheimer–Darcy equation.
The treatment of species propagation in a mixture that is
flowing through a porous medium is given by [2]

ohci
ot
þ hV i � rhci ¼ Der2hci þ _x ð12Þ

where c is the species concentration, De is the effective dif-
fusivity, and _x is the source/sink term accounting for the
rate of species generation/consumption per unit time and
volume.

5. Mass transport across arterial wall

Mass transport through the arteries has been studied
using various experimental, analytical, and computational
methods. Extensive experimental investigations related to
the mass transfer through the arterial wall have been pur-
sued [55–62]. Some of the challenges met in the experimen-
tal works include the suitability of animal models for the
human disease condition, the challenge of properly control-
ling all relevant experimental conditions in animal models,
and the difficulty of obtaining measurements with adequate
spatial resolution, to name a few. Mathematical and
numerical modelings have been successful in handling some
of these difficulties. There are three important challenges in
modeling the mass transport within the arteries, i.e. accu-
rate geometrical description of the artery, proper set of
governing equations, and appropriate choice of boundary
conditions.

Several geometrical models of the arterial wall have been
proposed in the literature. Based on the description of the
arterial wall and the underlying assumptions, Prosi et al.
[63] have classified these models as three major types, i.e.
wall-free, homogenous-wall, and multi-layer-wall models.
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The simplest models are named wall-free models. This
model solves for the blood flow in the lumen while account-
ing for the effects of the arterial wall simply by means of an
appropriate set of boundary conditions. As such, the solu-
tion is independent of the mass transport processes inside
the arterial wall. The values of boundary conditions, for
instance the filtration velocity, are usually taken directly
from the literature. Because of their simplicity, the wall-free
models need a relatively small number of parameters, i.e. the
diffusivity in plasma, the overall mass transfer coefficient of
the wall with respect to the considered solute and the filtra-
tion velocity. Nonetheless, they cannot provide any infor-
mation on the concentration profiles within the wall. This
model is mostly used in the study of hemodynamics and
the role of hemodynamical parameters in localizing and
the onset of atherosclerosis. This model has been used for
the study of the dynamics of different solutes such as oxygen,
albumin, and low-density lipoprotein (LDL) [64–67].

Back et al. [64] examined the oxygen transport to multi-
ple non-obstructive plaque regions in the main coronary
arteries. They employed numerical simulations to solve
for the oxygen convective and diffusive processes in the
lumen. They considered actual variations of blood flow
rate and the velocity field during the cardiac cycle. The flow
field was obtained by solving the Navier–Stokes equation
for a pulsatile luminal blood flow. They non-dimensional-
ized the oxygen concentration using its value at the wall
and in the free stream. Rappitsch and Perktold [65] and
Rappitsch et al. [66] performed numerical simulation of
the blood flow and mass transport in large arteries. They
obtained the flow field by solving an unsteady three dimen-
sional incompressible Navier–Stokes equations for a New-
tonian fluid. They applied no-slip and constant (zero) cross
flow on the walls. Solute (albumin or LDL) transport was
modeled by an advection–diffusion equation. They
included both constant and shear-dependent wall perme-
ability model in the boundary conditions of the advec-
tion–diffusion equation.

Wada and Karino [67] applied these relatively simple
models to study the concentration polarization of LDL
at the luminal surface of an artery. In their study, they con-
sidered a steady blood flow with an advection–diffusion
equation representing the LDL transport. They assumed
that an arterial wall was rigid and permeable to water
and applied a filtration velocity of Vw = 4 � 10�5 mm/s
which was previously obtained for the filtration of water
through a natural artery. At the arterial wall, they
employed a mass conservation boundary condition given
by

V wcw � D
oc
on

����
w

¼ Docw ð13Þ

where cw is the concentration of LDL at the luminal sur-
face of the vessel (surface concentration), n is the direction
normal to the surface, and Do is the overall mass transfer
coefficient of LDL at the vessel wall.
Second type of the mass transfer models are the homo-
geneous-wall models. In these models, the arterial wall is
present; however, its complex heterogeneous structure is
approximated by a simple homogeneous layer. The proper-
ties of wall are usually approximate values based on the
assumption that the arterial wall is a homogeneous porous
medium. Such models represent a reasonable compromise
between the complexity of the input data and the accuracy
of the results and are functional in cases where the
concentration distribution across the arterial wall is not
of primary importance. In addition to the study of hemo-
dynamics and its localizing role, the homogenous-wall
model can be used as a tool to investigate the interaction
between the hemodynamical parameters and the arterial
wall, for instance shear-dependent permeability of the
endothelium.

Homogeneous-wall models have been used by Ethier
and Moore [68] and Stangeby and Ethier [69] to study
the concentration of oxygen and LDL within the arterial
walls. Stangeby and Ethier [69] modeled the fluid flow
within both the lumen and wall of a constricted and axi-
symmetrically stenosed artery and utilized the resulting
flow pattern to study LDL transport from blood to the
arterial wall. They coupled luminal blood flow and trans-
mural fluid flow through the solution of Brinkman’s model.
They prescribed a constant pressure at the adventitial vasa
vasorum. In addition, they allowed variations in wall per-
meability due to the occurrence of plaque. They employed
an unsteady Navier–Stokes equation of the form

a2 ou
ot
þ Reu � ruþ Re1rp �r2u ¼ 0 ð14Þ

where a is the Womersley number. The parameters Re and
Re1 are defined as Re = U0R/m and Re1 = max(1, Re),
where U0 and R are the characteristic velocity and the ra-
dius of the artery, respectively. They utilized a limited form
of the generalized equation given by

a2 ou
ot
þ Reu � ruþ Re1rp �r2uþ R2

K
u ¼ 0 ð15Þ

where K the Darcian permeability of the artery. In their
study, Stangeby and Ethier [69] employed the following un-
steady advection–diffusion equation to solve for the con-
centration field:

a2 oc
ot
þ Reu � rc� 1

Sc
r2c ¼ 0 ð16Þ

where Sc is the Schmidt number.
Sun et al. [70] studied the effects of wall shear stress on

the mass transport from blood to and within the wall of a
stenosed artery under steady conditions. They used a
homogenous-wall model and developed shear dependent
endothelial transport properties for different species
(LDL and oxygen). They assumed that LDL transport
was influenced by shear-dependent hydraulic conductivity,
while shear dependent permeability was applied to oxygen
transport. Flow and species transport in the lumen was rep-
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resented by Navier–Stokes and advection–diffusion equa-
tions. They used Darcy’s law to solve for the transmural
flow in the arterial wall. In their numerical study, Sun
et al. [70] coupled the mass transport within the artery with
the transmural flow and solved the following advection–
diffusion-reaction equation to obtain the species distribu-
tion across the arterial wall

r � �Dwrcw þ K lcwuwð Þ ¼ kwcw ð17Þ
where cw is the solute concentration in the arterial wall, Dw

is the solute diffusivity in the arterial wall, Kl is the solute
lag coefficient, and kw is the reaction (consumption) rate
constant. At the lumen–wall interface, they applied the
transmural velocity, Jv, and solute flux, Js. The solute
transfer boundary condition at the lumen–wall interface
was given as

�Dwrcwnw þ cwuwnw ¼ J s ð18Þ
where nw represents the interfacial the unit vector normal
to the interface. The transmural velocity and solute flux
were obtained from Kedem–Katchalsky equations [71], gi-
ven by

J v ¼ LpðDp � rdDpÞ ð19Þ
J s ¼ KendDcþ ð1� rfÞJ v�c ð20Þ

where Lp, Kend, and �c are the hydraulic conductivity, solute
permeability, and mean solute concentration of endothe-
lium, respectively. The terms Dp, Dc, and Dp are the pres-
sure differential, the solute concentration difference, and
the corresponding osmotic pressure differential across the
endothelium, respectively. The parameters rf and rd are
the Staverman filtration and osmotic reflection (which ac-
count for the selective permeability of biological mem-
branes to certain solutes) coefficients, respectively. Curry
[73] has demonstrated that the Staverman reflection coeffi-
cients rf and rd for the convective transport in the fiber ma-
trix can be expressed as

rd ¼ rf ¼ ð1� /fÞ
2 ð21Þ

where /f is the partition coefficient, defined based on the
distribution of spaces available to a certain spherical mol-
ecule in a random fiber matrix made of infinitely long, stiff
rods satisfying the Poisson distribution. In addition, Sun
et al. [70] prescribed a constant pressure at the adventitial
boundary (outer boundary of the arterial wall).

To date, the most comprehensive model used to charac-
terize the arterial wall is the multi-layer model [74–78,63,2].
This model represents the arterial wall to be composed of
several heterogeneous porous layers, i.e. endothelium,
intima, IEL and media. The multi-layer model is advanta-
geous over the homogeneous-wall model in that it accounts
for the particular characteristics and properties of each
porous layer. As mentioned earlier, atherosclerosis is char-
acterized as an abnormal thickening of the intima. There-
fore it is essential to investigate the interaction between
arterial layers and the role of each layer in the uptake of
the macromolecules and development of atherosclerosis.
Using a multi-layer model and solving a proper set of gov-
erning equations and boundary conditions can result in an
accurate description of dynamics and distribution of mac-
romolecules across the arterial wall.

Indeed, this model provides the most realistic descrip-
tion of the arterial anatomy. However, it requires a large
number of parameters to characterize the transport proper-
ties of each layer. There are limitations in the direct mea-
surement of the properties of tissues (specifically human
tissues). For this reason, many efforts have been devoted
to the characterization of these parameters. A number of
investigations have been performed based on the assump-
tion that the arterial wall layers are porous structures with
physical properties which can be identified using the pore
theory [73,79,57,58,61,3,72,76,77].

Karner and Perktold [76] investigated the influence of
endothelial damage and blood pressure on albumin accu-
mulation in the arterial wall. They assumed a fully devel-
oped stationary blood flow and calculated the filtration
velocity in the wall layers using Darcy’s law. Using a
numerical model they coupled the mass transport processes
in the arterial lumen and in the various layers of the arterial
wall: endothelium, intima, IEL and media. They used a sta-
tionary convection diffusion equation to model the luminal
mass transport. The transport in the porous intima and
media was modeled applying the volume-averaged station-
ary convection–diffusion-reaction equation. In their analy-
sis, the transport processes in the lumen, intima, and media
were coupled by the flux across the endothelium and IEL
based on using the Staverman–Kedem–Katchalsky equa-
tions. These equations are given as

V ¼ K 0

l
ðDp � rdDpÞ ð22Þ

N 00S ¼ D0eDcþ ð1� rfÞV �c ð23Þ

where V is the velocity vector of bulk flow across the mem-
brane, N 00S the absolute molar flux of the solute across the
membrane, Dp the pressure differential across the mem-
brane, Dp the corresponding osmotic pressure differential,
Dc the solute concentration differential, K0 the permeability
per unit length, D0e the effective diffusivity per unit length, �c
the mean solute concentration over the membrane, and rf

and rd are the Staverman filtration and osmotic reflection
(which account for the selective permeability of biological
membranes to certain solutes) coefficients, respectively.
The Staverman–Kedem–Katchalsky membrane equations
are usually used to model the transport processes in the
endothelium and IEL in the previous multi-layer models.
However, the traditional Staverman–Kedem–Katchalsky
equations have at least two substantial disadvantages: it
is derived based on the existence of pseudo-steady state
condition, which is in conflict with the real physiological
conditions existing within both endothelium and IEL and
it ignores the boundary effects on the flow across the mem-
brane, which is not valid when the boundaries of the por-
ous membrane have to be accounted for [2].
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Karner and Perktold [76] demonstrated a high resistance
of the healthy endothelium to macromolecule exchange
between blood and the arterial wall. They also discussed
that reduced resistance of an injured endothelium causes
an increased mass flux into the wall which results in higher
concentration levels within the wall. Their results showed
that the effect of the blood pressure on the wall concentra-
tion level is different for healthy and injured endothelium.
In the case of a healthy endothelium a blood pressure
increase caused a decrease of the intimal concentration
and an increase of the media concentration, whereas in
the case of an injured endothelium an increased blood pres-
sure resulted in higher concentration levels within the
intima and media.

In their mathematical and numerical study of LDL
transport within the arteries, Prosi et al. [63] employed a
multi-layer model composed of endothelium, intima, IEL,
and media. They solved Navier–Stokes equation and the
advection–diffusion equation to obtain the flow and con-
centration fields within the lumen. For the transport pro-
cesses within the arterial layers, they used Darcy’s law
coupled with the species equation given by

ohci
ot
þr � �Derhci þ

ch

e
hV ihci

� �
þ khci ¼ 0 ð24Þ

where ch is the hindrance coefficient for the transport of
species. They considered available data on the LDL con-
centration profiles [80,81,55,59] and computed for each
model a set of parameters that best fit these measurements.
To fulfill this task, they applied the basic equations govern-
ing the mass transport through the arterial wall, reinter-
preting these equations by means of an electric analogy.
Fig. 4. Multi-layer model of an arterial w
Through the analogy, they derived a set of algebraic equa-
tions to determine the unknown physical parameters with
respect to available measured data.

Yang and Vafai [2] developed a new fundamental four-
layer model for the description of the mass transport in the
arterial wall coupled with the mass transport in the arterial
lumen. In their study, the arterial wall layers, i.e. endothe-
lium, intima, IEL and media, were considered as macro-
scopically homogeneous porous media. A schematic of
their model is presented in Fig. 4. They obtained the lumi-
nal flow field and species distribution by solving the
unsteady Navier–Stokes and advection–diffusion equa-
tions. They mathematically modeled LDL transport across
their four-layer model using proper types of the volume
averaged porous media equations, with the Staverman fil-
tration and osmotic reflection coefficients employed to
account for selective permeability of each porous layer to
certain solutes. They used the following equations for the
endothelium and IEL layers

qf

e
ohV i
ot
þ l

K
hV i ¼ �rhPif þ RuTrdrcþ ler2hV i ð25Þ

ohci
ot
þ ð1� rfÞhV i � rhci ¼ Der2hci ð26Þ
where Ru and T are the universal gas constant and the
absolute temperature of the medium, respectively. For
the intima and media, the osmotic effect in the transport
modeling is not included. This is due to the fact the maxi-
mum osmotic pressure gradient is far below the hydraulic
pressure gradient. As such, they employed the following
set of governing equations for the intima and media layers
all presented by Yang and Vafai [2].



Fig. 5. The influence of transmural pressure and endothelial diffusivity on
LDL distribution across the arterial layers [2].

Fig. 6. Effects of different concentration boundary conditions at the media
adventitia interface on the LDL distribution across the arterial layers [2].
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qf

e
ohV i
ot
þ l

K
hV i ¼ �rhP if þ ler2hV i ð27Þ

ohci
ot
þ ð1� rfÞhV i � rhci ¼ Der2hci þ khci ð28Þ

where k is the effective volumetric first order reaction rate
coefficient. To investigate the effects of media–adventitia
boundary condition on the LDL distribution across the
arterial layers, Yang and Vafai [2] used three types of con-
centration boundary conditions at the media–adventitia
interface

c
C0

¼ 0;
c

C0

¼ 0:01;
oc
on
¼ 0 ð29Þ

where C0 is the reference value for the species concentra-
tion. At the interfaces between lumen, endothelium, intima,
IEL, and media the following concentration boundary con-
dition was employed

ð1� rfÞVc� De
oc
on

� �
þ
¼ ð1� rfÞVc� De

oc
on

� �
�

ð30Þ

They also studied the effects of hypertension on the
LDL transport within the arterial wall to identify possible
factors that might be responsible for enhanced arterial
wall uptake of LDL under hypertensive conditions. They
concluded that a pressure-induced increase of endothelial
diffusive permeability, plus pressure-driven convective
flow, is mainly responsible for the enhanced LDL uptake
at a higher transmural pressure, which might explain
increased atherosclerosis susceptibility in the presence of
hypertension. They also stated that hypertension greatly
increases the transmural filtration and concentration
polarization at the lumen/endothelium interface. Fig. 5
shows the influence of transmural pressure and endothelial
diffusivity on LDL distribution across the arterial layers.
It is shown that the LDL uptake within different layers
is largely affected by the transmural pressure and endothe-
lial diffusivity.

They also reported that the filtration velocity and LDL
concentration profile in the media layer is dependent on
different types of boundary conditions, as shown in
Fig. 6. The LDL concentration in the endothelium, intima,
and IEL show no dependence on the type of boundary con-
dition at the adventitia. For example, they found that the
traction-free boundary condition leads to a significant
jump in the filtration velocity profile near the outlet. Yang
and Vafai [2] also found that pulsatile flows play a minor
role in the LDL transport within the arterial wall when a
straight axisymmetric geometry is considered.

In another study, Ai and Vafai [78] utilized a similar
four-layer-wall model to study the macromolecule trans-
port in a stenosed arterial wall. They employed the funda-
mental equations of porous media to characterize the
properties associated with the wall layers. Starting from
these governing equations and the well established experi-
mental data of the wall permeability and concentration
profile in the media, they determined the parameters asso-
ciated with each layer. Ai and Vafai [78] then utilized these
parameters in their model and investigated the effects of
hypertension in both normal and stenosed arteries. Their
model gave good estimation of velocity and species distri-
butions in the lumen and within the arterial wall. They
found that the maximum shear rate appears before the
throat while the velocity vector reaches its maximum value
slightly after the throat. In addition, they established that
the wall concentration is substantially enhanced near the
region of stenosis and approaches its unperturbed value
shortly after the stenosis.

Table 1 represents the types of governing equations used
in arterial transport modeling. Different types of boundary
conditions utilized in the arterial transport modeling are
presented in Table 2.



Table 1
Summary of the governing equations used in arterial transport modeling

Fluid flow governing equations Species transport governing equations

Lumen Navier–Stokes equation [64–67,76,63,2,78]:

q
oV
ot
þ qV � rV ¼ �rp þ lr2V

Advection–diffusion equation [64–67,76,63,2,78]:

oc
ot
þ V � rc ¼ Dr2c

Navier–Stokes equation incorporating Womersley parameter [69]:

a2 ou
ot
þ Reu � ruþ Re1rp �r2u ¼ 0

Advection–diffusion equation incorporating Womersley parameter [69]:

a2 oc
ot
þ Reu � rc� 1

Sc
r2c ¼ 0

Arterial
wall

Darcy equation [76,63,70]:

~V ¼ �
K

l
:rp

Advection–diffusion equation [70,76]:

oc
ot
þ V � rc ¼ Dr2c

Brinkman equation:

l
K
:hV i ¼ �rhpif þ ler2hV i

Advection–diffusion equation incorporating Womersley parameter [68,69]:

a2 oc
ot
þ Reu � rc� 1

Sc
r2c ¼ 0

Expanded Brinkman equation incorporating Womersley parameter [68,69]:

a2 ou
ot
þ Reu � ruþ Re1rp �r2uþ R2

K
u ¼ 0

Advection–diffusion-reaction equation [76]:

oc
ot
þ V � rc ¼ Dr2cþ _x

Volume averaged generalized equation:

qf

e
ohV i
ot
þ hðV � rÞV i

� �
¼ �rhPif þ l

e
r2hV i � l

K
hV i � qf F e

K1=2
hV i � hV i½ �J

Kedem–Katchalsky membrane species transport equation [76,63,2,78]:

N 00S ¼ D0eDcþ ð1� rfÞV �c

Kedem–Katchalsky membrane transport equation [76,63,2,78]:

V ¼ K 0

l
Dp � rdDpð Þ

Advection–diffusion-reaction equation incorporating a hindrance coefficient
[63]:

ohci
ot
þr � �Derhci þ

c
e
hV ihci

� �
þ khci ¼ 0

Volume-averaged momentum equation accounting for Staverman osmotic reflection coefficient for
endothelium and IEL [2,78]:

qf

e
ohV i
ot
þ l

K
hV i ¼ �rhP if þ RuTrdrcþ l0r2hV i

Volume-averaged species transport equation accounting Staverman filtration
coefficient:

for endothelium and IEL ½2; 78� : ohci
ot
þ ð1� rfÞhV i � rhci ¼ Derhci2

for Intima and Media ½2; 78� : ohci
ot
þ ð1� rf ÞhV i � rhci ¼ Derhci2 þ khci
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Table 2
Summary of the boundary conditions used in arterial transport modeling

Model Interface/boundary Boundary condition

Fluid flow Species transport

Wall-free [64–67] Luminal side boundaries Constant filtration velocity [64–67]:
Vfilt = const.

Net transmural flux [64–67]:

V wcw � D
oc
on

����
w

¼ J s

Homogeneous wall
[68–70]

Inner interface (lumen–
wall)

Constant filtration velocity [68–70]:
Vfilt = const.

Net transmural flux [68–70]:

V wcw � D
oc
on

����
w

¼ J s

Outer interface
(wall-adventitia)

Zero variation in normal
direction [68–70]:

oV
on

����
w

¼ 0

Zero variation in normal direction [68–70]:

oc
on

����
w

¼ 0

Multi-layer wall
[76,63,2,78]

Lumen–endothelium
interface

Zero variation in normal
direction [76,63,2,78]:

oV
on

����
w

¼ 0

Net transmural flux [76,63,2,78]:

ð1� rf ÞVc� De
oc
on

� �
þ
¼ ð1� rf ÞVc� De

oc
on

� �
�

Endothelium–intima
interface
Intima–IEL interface
IEL–media interface

Media–adventitia Homogeneous Neumann in
normal direction [76,63,2,78]:

oV
on

����
w

¼ 0

Homogeneous Dirichlet [76,63,2,78]:

c
C0

¼ 0

Non-homogeneous Dirichlet [63,2,78]:

c
C0

¼ 0:01

Homogeneous Neumann [63,2,78]:

oc
on
¼ 0
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6. Conclusions

Transport processes are present in various aspects of
biological sciences. Interactions involving fluid mechanics,
heat transfer, and mass transport in biology and medicine
are fundamental in understanding the causes of diseases
and in the development of new prophylactic, diagnostic,
and therapeutic procedures. Nearly all the human tissues
are categorized as porous media; thus transport process
in porous media plays a substantial role in biology. The
application of transport through porous media in biologi-
cal and biomedical sciences is an ever-expanding field of
research. It has been utilized to study numerous pertinent
transport processes including diffusion-weighted magnetic
resonance imaging (DW-MRI), drug delivery, and trans-
port within tissues and their role in initiation and develop-
ment of cardiovascular diseases. Over the past few decades,
various research works have been performed; each provid-
ing additional understanding of transport processes
involved in the onset and development of cardiovascular
diseases such as atherosclerosis. One of the fields of study,
which has substantially benefited from porous media mod-
eling, is transport within the arteries.

There are three major challenges in modeling of the
arterial transport. These are accurate description of the
artery, proper set of governing equations, and appropriate
choice of boundary conditions. Over the years, different
arterial transport models have been proposed as a result
of a trade-off between accuracy and feasibility/cost. Three
major models used in the arterial transport modeling were
analyzed. Out of these three, the multi-layer model
describes the arterial anatomy most accurately. In this
model, the arterial wall is composed of four porous layers
with different physiological characteristics. The multi-layer
model requires a number of transport parameters
(properties) for each layer and in return provides an accu-
rate profile for macromolecule distribution across the arte-
rial wall, illuminating the role and behavior of each porous
layer in transport of macromolecules across the arterial
wall.
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Another important factor in the accurate modeling of
arterial transport is the use of a proper set of governing
equations that take into account the dominant processes
involved in the transport phenomenon. Various types of
governing equations and boundary conditions have been
used in each arterial transport model. Transport within
lumen is obtained by solving the Navier–Stokes equation
along with the species advection–diffusion equation. Due
to their relative simplicity, Darcy and Brinkman models
have often been employed to solve for the momentum
transport within the porous layers. However, in addition
to an oversimplification, these models do not account for
the osmotic pressure, as discussed by Yang and Vafai [2],
and Ai and Vafai [78]. In a number of studies, species
transport is represented via an advection–diffusion equa-
tion. This equation does not include the change in the spe-
cies concentration due to biochemical reactions. In
addition, it does not incorporate the selective permeability
of each porous layer to certain solutes. As described by
Yang and Vafai [2], and Ai and Vafai [78], the Staverman
filtration and osmotic reflection coefficients must be
included to account for the selective rejection of species
by the endothelium and IEL porous membranes as well
as the effects of osmotic pressure.

Although advancing rapidly, the study of biological
transport phenomena is faced with a number of challenges.
Some aspects of transport through porous media in rela-
tion to biological tissues have not been properly addressed
and more fundamental research is warranted. For instance,
to date, more accurate measurement of the transport prop-
erties of biological tissues, such as porosity, permeability,
and diffusivity remains one of the challenges in the model-
ing of transport processes within biological tissues. Appli-
cability and validity of animal-based experimental results
to human diseases and lack of human-based results pose
another challenge. While a great majority of studies are
devoted to cases of normal arteries and stenosed arteries,
the transition between the two stages, that is the initiation
and growth of the stenosis in time, has not been modeled.

References

[1] American Heart Association Heart Disease and Stroke Statistics-
2007. Update. American Heart Association, Dallas, TX, 2007.

[2] N. Yang, K. Vafai, Modeling of low-density lipoprotein (LDL)
transport in the artery-effects of hypertension, Int. J. Heat Mass
Transfer 49 (2006) 850–867.

[3] Z.J. Huang, J.M. Tarbell, Numerical simulation of mass transfer in
porous media of blood vessel walls, Am. J. Physiol. 273 (1997) H464–
H477.

[4] R.P. Vito, S.A. Dixon, Blood vessel constitutive models —1995–2002,
Annu. Rev. Biomed. Eng. 5 (2003) 413–439.

[5] A. Quarteroni, M. Tuveri, A. Veneziani, Computational vascular
fluid dynamics: problems, models, and methods, Comput. Visual. Sci.
2 (2000) 163–197.

[6] D.N. Ku, Blood flow in arteries, Ann. Rev. Fluid Mech. 29 (1997)
399–434.

[7] G.D.O. Lowe, J.C. Barbenel, Plasma and blood viscosity, in: G.D.O.
Lowe (Ed.), Clinical Blood Rheology, vol. 1, CRC Press, Boca Raton,
FL, 1988.
[8] S. Chien, Biophysical behavior of red cells in suspension, in: D.M.
Surgenor (Ed.), Red Blood Cell, vol. 3, Academic Press, New York,
1975.

[9] O.K. Baskurt, H.J. Meiselman, Blood rheology and hemodynamics,
Semin. Thromb. Hemost. 29 (2003) 435–450.

[10] R.L. Replogle, H.J. Meiselman, E.W. Merrill, Clinical implications of
blood rheology studies, Circulation 36 (1967) 148.

[11] N.A. Casson, Flow Equation for the Pigment Oil Suspensions of the
Printing Ink Type. Reology of Disperse Systems, Pergamon Press,
NewYork, 1959, pp. 84–102.

[12] D. Quemada, Rheology of concentrated disperse systems II. A model
for non-newtonian shear viscosity in steady flows, Rheol. Acta 17
(1978) 632–642.

[13] L. Ai, K. Vafai, An investigation of Stokes’ second problem for
non-Newtonian fluids, Numer. Heat Transfer A 47 (2005) 955–
980.

[14] M.W. Rampling, Red cell aggregation and yield stress, in: G.D.O.
Lowe (Ed.), Clinical Blood Rheology, vol. 1, CRC Press, Boca
Ration, FL, 1988, pp. 65–86.

[15] R. Nerem, Hemodynamics and the vascular endothelium, ASME J.
Biomech. Eng. 115 (1993) 510–514.

[16] R. Nerem, Vascular fluid mechanics, arterial wall and atherosclerosis,
ASME J. Biomech. Eng. 114 (1992) 274–282.

[17] S. Glagov, C. Zarins, D.P. Giddens, D.N. Ku, Hemodynamics and
atherosclerosis: insights and perspectives gained from studies of
human arteries, Arch. Pathol. Lab. Med. 112 (1988) 1018–1031.

[18] H.F. Younis, M.R. Kaazempur-Mofrad, R.C. Chan, A.G. Isasi, D.P.
Hinton, A.H. Chau, L.A. Kim, R.D. Kamm, Hemodynamics and
wall mechanics in human carotid bifurcation and its consequences for
atherogenesis: investigation of inter-individual variation, Biomech.
Model Mechanobiol. 3 (2004) 17–32.

[19] W.W. Nichols, M.F. O’Rourke, McDonald’s Blood Flow in Arteries,
Edward Arnold, London, 1990.

[20] C. Zarins, D. Giddens, B. Bharadvaj, V. Sottiurai, R. Mabon, S.
Glagov, Carotid bifurcation atherosclerosis: quantitative correlation
of plaque localization with flow velocity profiles and wall shear stress,
Circ. Res. 53 (1983) 502–514.

[21] A.M. Malek, S.L. Alper, S. Izumo, Hemodynamic shear stress and its
role in atherosclerosis, JAMA 282 (1999) 2035–2042.

[22] S.A. Berger, L.-D. Jou, Flows in stenotic vessels, Annu. Rev. Fluid
Mech. 32 (2000) 347–382.

[23] Z. Lou, W.J. Yang, Biofluid dynamics at arterial bifurcations, Crit.
Rev. Biomed. Eng. 19 (1992) 455–493.

[24] D.L. Fry, Acute vascular endothelial changes associated with
increased blood velocity gradients, Circ. Res. 22 (1968) 165–197.

[25] D.L. Fry, Certain histological and chemical responses of the vascular
interface to acutely induced mechanical stress in the aorta of the dog,
Circ. Res. 24 (1969) 93–108.

[26] R. Rayman, R.G. Kratky, M. Roach, Steady flow visualization in a
rigid canine aortic cast, J. Biomech. 18 (1985) 863–875.

[27] C.G. Caro, J.M. Fitz-Gerald, R.C. Schroter, Atheroma and arterial
wall shear observations correlation and proposal of a shear dependent
mass transfer mechanism for atherogenesis, Proc. Roy. Soc. Lond. B
177 (1971) 109–159.

[28] K. Kandarpa, N. Davids, Analysis of the fluid dynamic effects on
atherogenesis at branching sites, J. Biomech. 9 (1976) 735–741.

[29] T. Karino, M. Motomiya, H. Goldsmith, Flow patterns at the major
T-junctions of the dog descending aorta, J. Biomech. 23 (1990) 537–
548.

[30] D.N. Ku, D.P. Giddens, C.K. Zarins, S. Glagov, Pulsatile flow and
atherosclerosis in the human carotid bifurcation – positive correlation
between plaque location and low and oscillating shear stress,
Arteriosclerosis 5 (1985) 293–302.

[31] G. Helmlinger, R.V. Geiger, S. Schreck, R.M. Nerem, Effects of
pulsatile flow on cultured vascular endothelial cell morphology, J.
Biomech. Eng. 113 (1991) 123–131.

[32] J.E. Moore Jr., D.N. Ku, C.K. Zarins, S. Glagov, Pulsatile flow
visualization in the abdominal aorta under differing physiologic



M. Khakpour, K. Vafai / International Journal of Heat and Mass Transfer 51 (2008) 807–822 821
conditions: implications for increased susceptibility to atherosclerosis,
J. Biomech. Eng. 114 (1992) 391–397.

[33] E.M. Pedersen, A.P. Yoganathan, X.P. Lefebvre, Pulsatile flow
visualization in a model of the human abdominal aorta and aortic
bifurcation, J. Biomech. 25 (1992) 935–944.

[34] D.P. Giddens, C.K. Zarins, S. Glagov, The role of fluid mechanics in
the localization and detection of atherosclerosis, J. Biomech. Eng. 115
(1993) 588–594.

[35] P.F. Davies, A. Remuzzi, E.J. Gordon, C.F. Dewey Jr., M.A.
Gimbrone Jr., Turbulent fluid shear stress induces vascular endothe-
lial cell turnover in vitro, Proc. Natl. Acad. Sci. USA 83 (1986) 2114–
2117.

[36] N. DePaola, M.A. Gimbrone Jr., P.F. Davies, C.F. Dewey Jr.,
Vascular endothelium responds to fluid shear stress gradients,
Arterioscler. Thromb. 12 (1992) 1254–1257.

[37] M. Lei, C. Kleinstreuer, G.A. Truskey, Numerical investigation and
prediction of atherogenic sites in branching arteries, J. Biomech. Eng.
117 (1995) 350–357.

[38] M. Lei, C. Kleinstreuer, G.A. Truskey, A focal stress-dependent mass
transfer mechanism for atherogenesis in branching arteries, Med.
Eng. Phys. 18 (1996) 326–332.

[39] C. Kleinstreuer, M. Lei, J.P. Archie, Flow input waveform effects on
the temporal and spatial wall shear stress gradients in a femoral graft-
artery connector, J. Biomech. Eng. 118 (1996) 506–510.

[40] C. Kleinstreuer, J.R. Buchanan Jr., M. Lei, G.A. Truskey, Compu-
tational analysis of particle-hemodynamics and prediction of the
onset of arterial diseases, in: C.T. Leondes (Ed.), Biomechanics
Systems Techniques and Applications, Gordon & Breach, New York,
1998.

[41] M.H. Friedman, G.M. Hutchins, C.B. Bargeron, O.J. Deters, F.F.
Mark, Correlation of human arterial morphology with hemodynamic
measurements in arterial casts, J. Biomech. Eng. 103 (1981) 204–207.
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