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Abstract

Macromolecule transport within an artery is investigated and a comprehensive analytical solution is presented. The transport within
the lumen and the arterial wall are coupled. Arterial wall is modeled as a four-layer porous wall. The layers are all treated as macroscop-
ically homogeneous porous media. The volume-averaged porous media equations are employed to solve for transport through the por-
ous arterial layers. Staverman filtration coefficient is incorporated to account for selective permeability of each porous layer to
macromolecules. The problem encompasses complex interfacial transport phenomena involving various porous–porous as well as por-
ous–fluid interfaces. The method of matched asymptotic expansions is employed to solve for the fluid flow field and species concentration
distributions. For comparison purposes, the physiological and transport parameters associated with each porous layer are obtained from
the literature. The analytical results are in excellent agreement with previous numerical studies. The results presented in this work provide
the first comprehensive analytical solution representing arterial transport phenomena.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cardiovascular diseases (CVD) are the leading causes of
death in the United States. The American Heart Associa-
tion [1] reports that nearly 80 million American adults have
one or more types of CVD. Most cardiovascular events are
secondary to atherosclerosis, a progressive disorder of the
arterial wall. It is characterized by gradual and uneven nar-
rowing of the arteries due to abnormal infiltration and
accumulation of macromolecules such as low-density lipo-
proteins (LDL).

Today, scientists from various fields of study are con-
tributing in achieving a better understanding of the causes,
genesis, and development of atherosclerosis through the
analysis of the underlying processes. Over the years, vari-
ous models have been proposed to represent the anatomi-
cal structure of the arteries. The models are results of the
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trade-off between accuracy and feasibility. Khakpour and
Vafai [2] have presented a critical assessment of the arterial
transport models. As mentioned in their critical review, to
date, the multi-layer porous wall model is the most accu-
rate and complex model used in the study of arterial trans-
port phenomena. In this model, the arterial wall is treated
as a porous wall composed of four macroscopically homo-
geneous porous layers. These layers possess different trans-
port properties which dictate the distribution of the
macromolecule concentration.

Various analytical, numerical, and experimental/clinical
studies have been performed investigating several parame-
ters and processes pertinent to arterial transport. While a
great majority of these studies have used numerical and
experimental/clinical tools, a few analytical investigations
have also been attempted. Although the existing analytical
solutions [3] provide useful insight into the arterial trans-
port phenomenon, they are rather simplified, omitting
some important aspects. Their major drawback is to reduce
the problem to one dimension, neglecting the axial trans-
port. Another shortcoming of the existing analytical
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Nomenclature

c species concentration
D mass diffusion coefficient
Da Darcy number
F dimensionless inertia coefficient
~J unit vector oriented along the velocity vector
K permeability
M non-dimensional concentration
n direction normal to interface
p pressure
R radius of lumen
Rech Reynolds number ¼ ðuch

ffiffiffiffi
K
p
Þ=mf

Sc Schmidt number
U0,i streamwise velocity at the ith interface
u streamwise component of velocity field
uc Darcian convective velocity
umax Luminal centerline (maximum) velocity
~V velocity vector
v filtration velocity
x axial location
y radial location

Greek symbols

e gage parameter
q density
d porosity
rf Staverman filtration coefficient
l dynamic viscosity
n non-dimensional axial location
g non-dimensional radial location

Subscripts
e effective property
f fluid
s species field
m momentum field
i index i = 0, 1, 2, 3, and 4 representing lumen,

endothelium, intima, IEL, and media, respec-
tively

Symbol

h i ‘‘local volume average” of a quantity

Fig. 1. Schematic illustration of an artery and the coordinate systems used
in the analytical solution.
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solutions is to rely on the Kedem–Katchalsky solute trans-
port equation [4], which carries the problem of evaluating
the mean solute concentration used in its convective term.
As such, there remains a need for a comprehensive analyt-
ical solution to the arterial transport phenomena incorpo-
rating the axial transport as well as other influential
processes. In the present work, a robust theoretical solu-
tion to the macromolecule transport within an artery is pre-
sented. First, the governing equations are presented. Then
the fluid flow and mass transfer analysis is performed at
each interface. The method of matched asymptotic expan-
sions along with Laplace transformation is employed to
solve for the coupled transport phenomena within lumen
and the arterial wall. Using the transport parameters avail-
able in the literature, the analytical results are then com-
pared with those obtained via numerical simulations.

2. Formulation

Steady state blood flow and solute transport within an
artery are considered. A schematic of the case of study is
presented in Fig. 1. The artery is modeled as a uniform axi-
symmetric circular pipe with a heterogeneous porous wall.
The wall is composed of four different macroscopically
homogeneous porous layers: endothelium, intima, internal
elastic lamina (IEL), and media. Changes in angular direc-
tion are assumed to be negligible; therefore the problem is
reduced to two dimensions. Due to symmetry about the x-
axis, half of the domain is considered. It should be noted
that our presented analytical solution can easily be
extended to different models composed of any number of
layers making up an arterial wall.
The luminal blood flow is assumed to be Newtonian,
isothermal and incompressible. Blood properties (i.e. vis-
cosity and diffusivity) are assumed to be constant.
Navier–Stokes equations coupled with mass transport
equations (advection–diffusion) are employed to solve for
the luminal blood flow and solute transport. These govern-
ing equations are given by

r � ~V ¼ 0 ð1Þ
q~V � r~V ¼ �rp þ lr2~V ð2Þ
~V � rc ¼ Dr2c ð3Þ

where ~V is the velocity vector, p the pressure, q the density,
l dynamic viscosity of blood, c the solute concentration,
and D is the solute diffusivity within the blood.



M. Khakpour, K. Vafai / International Journal of Heat and Mass Transfer 51 (2008) 2905–2913 2907
Due to complex nature of the arterial transport phe-
nomena, the inertial and boundary effects are to be
accounted for. Therefore, the volume-averaged equations
of transport through porous media are used to solve for
velocity and concentration fields [5,6]. The Staverman fil-
tration coefficient is incorporated to account for selective
permeation of species by the membranes [7,8]. The govern-
ing equations for the porous layers are given by

r � h~V i ¼ 0 ð4Þ
qf

d
hð~V � rÞ~V i ¼ �rhP if þ l

d
r2h~V i

� l
K
h~V i � qfF dffiffiffiffi

K
p ½h~V i � h~V i�~J ð5Þ

ð1� rfÞh~V i � rhci ¼ Derhci2 þ khci ð6Þ

where qf is the fluid density, d porosity of the porous med-
ium, F dimensionless inertia coefficient, and K is the perme-
ability of the porous medium. The parameters rf and De

represent the Stavernan filtration coefficient and the effec-
tive solute diffusivity in the porous medium, respectively.
The effective volumetric first-order reaction rate, k, takes
a value of zero for endothelium, intima, and IEL. The sym-
bol h i, represents the local volume average of a quantity
associated with the fluid. The parameters hPif and ~J are
the average pressure inside the fluid and a unit vector ori-
ented along the velocity vector ~V , respectively. It has been
shown that the convective term, hð~V � rÞ~V i, causing
boundary layer growth is significant only over a length of
the order of qf Kuc

lf
where uc is the Darcian convective veloc-

ity. This length is relatively small for most practical situa-
tions [6]. Therefore, a fully developed momentum
boundary layer is formed over a very short length. For this
case, the momentum Eq. (5) reduces to

l
d
r2h~V i � l

K
h~V i � qfF dffiffiffiffi

K
p ½h~V i � h~V i�~J �rhP if ¼ 0 ð7Þ

The blood velocity profile within the lumen is assumed
to be laminar and fully developed and is given by

u ¼ umax 1� y=Rð Þ2
� �

ð8Þ

where umax is the centerline (maximum) velocity, R the ra-
dius of the lumen, u the streamwise component of the
velocity vector, and y is the radial location. A continuity
boundary condition is employed at the interface between
the layers. This boundary condition requires the value of
velocity and its derivative to remain constant across the
interface. Similarly, the value of species concentration
and the total species flux must remain constant across the
interface [9]. At the inlet a uniform and constant species
concentration is prescribed. Also, at the media-adventitia
interface the concentration gradient in the direction normal
to the interface is assumed to be negligible.

In what follows, the method of matched asymptotic
expansions is used to solve for the flow field and species con-
centration distribution. At each step, two media and the
interface between them are considered. The coordinate sys-
tem is chosen to lie at the interface between the two media.
It should be noted that several coordinate systems are intro-
duced and used throughout the analysis. A gauge parameter
is utilized to non-dimensionalize the coordinate system. The
dependent variable of interest (i.e. velocity or species con-
centration) is expanded in terms of powers of an appropri-
ate parameter. Throughout the analysis, the choice of the
gauge parameters involved in the perturbation solutions
for velocity and concentration is found to be inherently tied
to the physics of the problem and therefore an important
physical metric. This leads to the use of a number of differ-
ent gauge functions for describing the fluid mechanics and
the concentration distributions within an artery.

3. Fluid flow analysis

3.1. Fluid flow within lumen and endothelium (fluid–porous)

Lumen, endothelium, and the interface between them are
considered. The coordinate system is chosen to lie at the
lumen–endothelium interface, as shown in Fig. 1. Solving
the Navier–Stokes equation using a slip boundary condi-
tion at the interface, the luminal velocity field is found to be

u0 ¼ �g2
m;0 þ 2gm;0 þ U 0;1 ð9Þ

where gm,0 = y0/R is the non-dimensional normal coordi-
nate for the lumen. u0 and U0,1 are the non-dimensionalized
streamwise velocities within the lumen and at the lumen–
endothelium interface, respectively. The velocity field is
non-dimensionalized using a reference velocity given as

uch;0 ¼ �
R2

2lf

dp
dx

ð10Þ

It should be noted that at this stage U0,1 is unknown. It
will be found through evaluation of the velocity field within
the endothelium layer, which is governed by Eqs. (4) and
(7). By introducing the gauge parameter

em;1 ¼
1

R

ffiffiffiffiffiffi
K1

d1

r
ð11Þ

the generalized equation becomes

d2u1

dg2
m;1

� u1 � a1u2
1 þ 2d1e

2
m;1 ¼ 0 ð12Þ

where gm,1 is the non-dimensional normal coordinate for
endothelium given by gm;1 ¼ y1=

ffiffiffiffiffiffiffiffiffiffiffiffi
K1=d1

p
. The parameter

a1 is given as a1 = F1d1Rech,1 where Rech;1 ¼ ðuch;0

ffiffiffiffiffiffi
K1

p
Þ=

mf . The non-dimensional streamwise component of velocity
vector within the endothelium, u1 = hu1i/uch,0, is expanded
in terms of the powers of the gauge parameter as

u1 ¼ em;1u1;1 þ e2
m;1u1;2 þ e3

m;1u1;3 ð13Þ

Using the method of matched asymptotic expansions, the
first three orders of the inner solution for endothelium
are found to be
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u1;1 ¼ 2e�g�
m;1 ð14Þ

u1;2 ¼ �
8a1

3
e�g�

m;1 þ 4a1

3
e�2g�

m;1 þ 2d1 ð15Þ

u1;3 ¼
2a2

1

3
e�3gm;1 � 32a2

1

9
e�2gm;1 � 4a1d1gm;1e�gm;1

þ 46a2
1

9
� 4a1d1

� �
e�gm;1 ð16Þ

By setting gm,1 = 0, the interface velocity is found to be

U 0;1 ¼ 2em;1 þ 2d1 �
4a1

3

� �
e2

m;1 þ
20a2

1

9
� 4a1d1

� �
e3

m;1

ð17Þ
Streamwise component of velocity field within the endothe-
lium layer at locations relatively far from the lumen–endo-
thelium interface (gm,1 ?1) is given by

u1 ¼ 2d1e
2
m;1 ð18Þ
3.2. Fluid flow within the porous arterial layers

A schematic of the coordinate system used in the evalu-
ation of the velocity within intima and IEL is presented in
Fig. 1. First, the governing equations are non-dimensional-
ized using the Darcian convective velocity given as

uc;i ¼ �
Ki

lf

d pih i
f

dx

 !
ð19Þ

where the subscript i refers to the properties and parame-
ters of the ith porous medium. The generalized equation
of transport through the two porous media (i.e. endothe-
lium and intima) reduces to

d2ui

dg2
m;i
� ui � aiu2

i þ 1 ¼ 0 ð20Þ

The velocities, ui, are expanded in terms of powers of
porosities, di, as

ui ¼ ui;0 þ diui;1 þ d2
i ui;2 ð21Þ

The solutions for the first three orders of the inner solution
for intima are found to be

u2;0 ¼ 1þ U 0
0;2 � 1

� �
expð�gm;2Þ ð22Þ

u2;1 ¼ U 1
0;2 expð�gm;2Þ

þ b2

�1þ expð�gm;2Þ
1� gm;2 U 0

0;2 � 1
� �

�

1=3 U 0
0;2 � 1

� �2

2
4

3
5þ

1=3 expð�2gm;2Þ U 0
0;2 � 1

� �2

0
BBBB@

1
CCCCA

ð23Þ
u2;2 ¼ U 2

0;2 expð�gm;2Þ

þ b2U 1
0;2

� expð�gm;2Þ gm;2 þ 2=3 U 0
0; 2 � 1

� �h i
þ

2=3 expð�2gm;2Þ U 0
0;2 � 1

� �
0
@

1
A

þ b2
i

2þ expð�gm;2Þ A2g2
m;2 þ B2gm;2 þ C2

h i
þ

expð�2gm;2Þ½D2gm;2 þ E2� þ 1=12 expð�3gm;2Þ U 0
0;2 � 1

� �3

0
@

1
A

ð24Þ
where

A2¼1=2 U 0
0;2�1

� �2

ð25Þ

B2¼1=3 U 0
0;2�1

� �2

þ3=2 U 0
0;2�1

� �
�1 ð26Þ

C2¼5=36 U 0
0;2�1

� �3

þ2=3 U 0
0;2�1

� �2

�2=3 U 0
0;2�1

� �
�2 ð27Þ

D2¼�2=3 U 0
0;2�1

� �2

ð28Þ

E2¼2=3 U 0
0;2�1

� �
1� U 0

0;2�1
� �

�1=3 U 0
0;2�1

� �2
� �

ð29Þ

U 0
0;2¼

1þ/1

/
ð30Þ

U 1
0;2¼�

b2

3/
U 0

0;2

� �2

/2þ U 0
0;2

� �
/3þ/4

� �
ð31Þ

U 2
0;2¼

1

3/
�bU 0

0;2 /3þ2/2U 0
0;2

� �
þb2

2 /5 U 0
0;2

� �3
��

þ/6 U 0
0;2

� �2

þ/7U 0
0;2þ/8

��
ð32Þ

/¼1þ r1=r2ð Þ1=2 ð33Þ

/1¼ r1=r2ð Þ1=2 r1r3ð Þ�1 ð34Þ

/2¼1þ r4r3=2
2

� ��1

ð35Þ

/3¼1þ r1r4r3r3=2
2

� ��1

ð36Þ

/4¼1þ r2
1r2

3r4r3=2
2

� ��1

ð37Þ

/5¼1þ r1=2
1 r5=2

2 r2
4

� ��1

ð38Þ

/6¼1þ r3=2
1 r5=2

2 r3r2
4

� ��1

ð39Þ

/7¼1þ r5=2
1 r5=2

2 r2
3r2

4

� ��1

ð40Þ

/8¼1þ r7=2
1 r5=2

2 r3
3r2

4

� ��1

ð41Þ

r1¼
K1

K2

ð42Þ

r2¼
d1

d2

ð43Þ

r3¼
ðdp=dxÞ1
ðdp=dxÞ2

¼1 ð44Þ

r4¼
F 1

F 2

ð45Þ

A similar approach is used to obtain the velocity distri-
bution within the IEL and Media layers. The dimensional
values of the streamwise component of the velocity field
for each layer relatively far from the interfaces (gm,i ?1)
are given as
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u1;1 ¼ 2d1e
2
m;1uch;0 ð46Þ

u2;1 ¼
K2

K1

2d1e
2
m;1uch;0

� �
1� a2 þ 2a2

2

	 

ð47Þ

u3;1 ¼
K3

K1

2d1e
2
m;1uch;0

� �
1� a3 þ 2a2

3

	 

ð48Þ

u4;1 ¼
K4

K1

2d1e
2
m;1uch;0

� �
1� a4 þ 2a2

4

	 

ð49Þ

Darcy’s law is employed to calculate the filtration veloc-
ity across the arterial wall (in a direction normal to the
luminal blood flow). Applying Darcy’s law to the arterial
wall and observing the continuity of the filtration velocity
across the arterial layers, we get

v ¼ �Kwall

lf

Dp
l

����
wall

ð50Þ

where v is the filtration velocity, Dp
l

��
wall

is the transmural
pressure gradient, and Kwall is the average permeability of
the arterial wall given by

l
K

����
wall

¼
X

i

li

Ki
ð51Þ

where the index i represents the arterial layers.

4. Mass transfer analysis

In this section, analytical solutions are obtained for con-
centration distributions within the arterial wall. The gov-
erning species conservation equation was earlier
presented in its general form as Eqs. (3) and (6). The
method of matched asymptotic expansions is used to solve
for the concentration profiles. In non-dimensional form the
species concentration equation is given by

u
oM
on
þ v

oM
ogs

¼ De

o2M
og2

s

ð52Þ

where u and v are the non-dimensional components of the
velocity vector given by

u ¼ ð1� dfÞhui=uch ð53Þ
v ¼ ð1� dfÞhvi=uch ð54Þ

and M represents the non-dimensional species
concentration.

4.1. Mass transport at the lumen–endothelium interface

In this part, lumen, endothelium, and the interface
between them are considered. The chosen coordinate sys-
tem is shown in Fig. 1. In the vicinity of the lumen–endo-
thelium interface, it is assumed that the radial component
of the velocity vector within the lumen remains constant
and equal to the filtration velocity. Inside the concentration
boundary layer, we are interested in small values of gm.
This suggests expansions of the streamwise component of
the velocity vector for small values of gm. This results in
u0 ¼ U 0 þ 2gs;0Sc�1=2
0

ffiffiffiffiffiffiffiffiffiffiffi
K=R2

q
ð55Þ

U 0;1 ¼ 2em;1 þ 2d1 �
4a1

3

� �
e2

m;1 þ
20a2

1

9
� 4a1d1

� �
e3

m;1

ð56Þ

u1 ¼ 2� gs;1Sc�1=2
1

� �
em;1 þ 2d1 �

4a1

3

� �
e2

m;1

þ 20a2
1

9
� 4a1d1

� �
e3

m;1 ð57Þ

where gs,0 and gs,1 are non-dimensional coordinates used in
the mass transfer analysis and are given by

gs;0 ¼ y0=es;0 ¼ y0

ffiffiffiffiffiffiffi
Sc0

K

r
ð58Þ

gs;1 ¼ y1=es;1 ¼ y1

ffiffiffiffiffiffiffiffiffi
dSc1

K

r
ð59Þ

where Sc is the Schmidt number. Using the coordinate
transformation and the velocity distribution given in Eqs.
(55)–(57), the species conservation equation and the corre-
sponding boundary conditions for lumen can be written as

� V
oM0

ogs;0

þ U 0;1 þ 2gs;0Sc�1=2
0

ffiffiffiffiffiffiffiffiffiffiffi
K=R2

q� �
oM0

on

¼ 1

Rech;0

ffiffiffiffiffiffiffiffi
Da1

p o2M0

og2
s;0

ð60Þ

M0ðn ¼ 0; gs;0Þ ¼ 0 ð61Þ
M0ðn; gs;0 ¼ 0Þ ¼ f0ðnÞ ð62Þ

Similarly, for the endothelium, the equation can be written
as

V
oM1

ogs;1

þ U 0;1 � gs;1Sc�1=2
1 em;1

h i oM1

on

¼ 1

Rech;1

ffiffiffiffiffiffiffiffi
Da1

p o
2M1

og2
s;1

ð63Þ

M1ðn ¼ 0; gs;1Þ ¼ 0 ð64Þ
M1ðn; gs;1 ¼ 0Þ ¼ f1ðnÞ ð65Þ

where the non-dimensional concentrations are given by

Mi ¼
ci � c1;i

cref

ð66Þ

The concentration field is expanded in terms of Sc�1/2 as

Mi n; gs;i

	 

¼ M1

i n; gs;i

	 

þM2

i n; gs;i

	 

Sc�1=2

i þ � � � ð67Þ

with the interface concentration expanded as

fi n; gs;i

	 

¼ f 1

i n; gs;i

	 

þ f 2

i n; gs;i

	 

Sc�1=2

i þ � � � ð68Þ

As mentioned before, the interface concentration itself is
obtained using the continuity conditions for both mass
concentration and flux. Using the method of matched
asymptotic expansions and Laplace transformations, the
zeroth- and first-order luminal concentration distributions
are found to be
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M0
0ðn; gs;0Þ ¼ f 0

0 exp �A0ð Þ 1þ B2
0C0

2

� �
Erfc

B0

2
ffiffiffi
n
p

� ��

�B0C0ffiffiffi
p
p

ffiffiffi
n

p
exp �B2

0

4n

� ��
ð69Þ

M1
0ðn; gs;0Þ ¼

f 1
0 exp �A0ð Þ

8
8þ 2B2

0C0

	 
 ffiffiffi
n

p
exp �B2

0

4n

� ��

�B0

ffiffiffi
p
p

4þ B2
0C0 þ 2C0n

	 

Erfc

B0

2
ffiffiffi
n
p

� ��

þ
f 0

0 h0 exp �A0 � C0nð Þg3
s;0

4
ffiffiffi
p
p

B2
0

ffiffiffi
n
p B0 exp �B2

0

4n

� ��

�Erfc
B0

2
ffiffiffi
n
p

� ��
ð70Þ

It should be noted that the presented luminal concentration
distribution applies to close proximities of the lumen–endo-
thelium interface, where the normal component of velocity
is assumed constant and equal to the filtration velocity
across the wall. The zeroth and first order concentration
distributions within endothelium are found to be

M0
1ðn; gs;1Þ ¼ f 0

1 expðA1Þ 1þ B2
1C1

2

� �
Erfc

B1

2
ffiffiffi
n
p

� ��

�B1C1ffiffiffi
p
p

ffiffiffi
n

p
exp �B2

1

4n

� ��
ð71Þ

M1
1ðn; gs;1Þ ¼

f 1
1 expðA1Þ

8
8þ 2B2

1C1

	 
 ffiffiffi
n

p
exp �B2

1

4n

� ��

�B1

ffiffiffi
p
p

4þ B2
1C1 þ 2C1n

	 

Erfc

B1

2
ffiffiffi
n
p

� ��

þ
f 0

1 h1 expðA1 � C1nÞg3
s;1

4
ffiffiffi
p
p

B2
1

ffiffiffi
n
p B1 exp �B2

1

4n

� ��

�Erfc
B1

2
ffiffiffi
n
p

� ��
ð72Þ

We have

Ai ¼
V gs;i

2Qi

ð73Þ

Bi ¼ gs;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 0;1=Qi

q
ð74Þ

Ci ¼
V 2

4U 0;1Qi

ð75Þ

Qi ¼
1

Rech;i
ffiffiffiffiffiffiffi
Dai
p ð76Þ

h0 ¼
2
ffiffiffiffi
K
p

R
ð77Þ

h1 ¼ �em;1 ð78Þ

where index i takes the values i = 0, 1 representing lumen
and endothelium, respectively.

4.2. Species transport within intima and IEL

Consider endothelium and intima and the interface
between them. Using the coordinate system presented in
Fig. 1, the species conservation equation can be written as
V i
oMi

ogs;i
þ U 0;2 þ Kigs;iSc�1=2

i

h i oMi

on
¼ 1

Rech;i
ffiffiffiffiffiffiffi
Dai
p o2Mi

og2
s;i
ð79Þ

where index i takes the values of i = 1, 2 representing endo-
thelium and intima, respectively. U0,2 represents the
streamwise component of velocity field at the interface be-
tween the two media. According to the coordinate system
presented in Fig. 1, the filtration velocity takes different
signs within endothelium and intima, i.e. V2 = V and
V1 = �V. Also, the parameter Ki is given by

Ki ¼ 1� U 0
0;i

� �
� di U 1

0;i þ
b1

3
U 0

0;i

� �2

þ U 0
0;i þ 1

� �� �

� d2
i U 2

0;i þ
b1U 1

0;i

3
2U 0

0;i þ 1
� �

þ
b2

1U 1
0;i

18
7 U 0

0;i

� �3
�"

�11 U 0
0;i

� �2

� 62U 0
0;i þ 72

�#
ð80Þ

The normal coordinates are defined as

gs;i ¼ yi=es;i ¼ yi

ffiffiffiffiffiffiffiffiffiffi
Scidi

Ki

s
ð81Þ

The concentration field is expanded similar to Eqs. (67) and
(68). Using the method of matched expansions, Laplace
transforms in n domain, and the continuity of species con-
centration and flux at the interface, the zeroth- and first-
order concentration distributions in the intima are found
to be

M0
i ðn; gs;iÞ ¼ f 0
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ð82Þ

M1
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where

Ai ¼
V igs;i

2Qi

ð84Þ

Bi ¼ gs;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 0;2=Qi

q
ð85Þ

Ci ¼
V 2

i

4U 0;2Qi

ð86Þ

A similar approach can also be used to find the species con-
centration profile within IEL.
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4.3. Species transport within media

Consider IEL and media and the interface between
them. The species conservation equation for IEL can be
written as

�V
oM3

ogs;3

þ U 0;4 þ K3gs;3Sc�1=2
3

h i oM3

on

¼ 1

Rech;3

ffiffiffiffiffiffiffiffi
Da3

p o
2M3

og2
s;3

ð87Þ

In the case of LDL transport, a chemical reaction occurs
within media. This reaction process is modeled as an irre-
versible first-order chemical reaction. The species conserva-
tion equation within the media layer is given by

V
oM4

ogs;4

þ U 0;4 þ K4gs;4Sc�1=2
4

h i oM4

on

¼ 1

Rech;4

ffiffiffiffiffiffiffiffi
Da4

p o2M4

og2
s;4

� rcM4 � Rc ð88Þ

where rc is the non-dimensional chemical reaction rate
given as

rc ¼
kes;4

uch;0

ð89Þ

The term Rc is the residue of the non-dimensionalization
process of the chemical reaction term and is given by

Rc ¼
kc1;4es;4

uch;0cref

ð90Þ

Index i takes the values of i = 3, 4 representing IEL and
media, respectively. Using the method of matched asymp-
totic expansions, Laplace transform in n domain, and the
continuity of species concentration and flux at the inter-
face, the zeroth- and first-order concentration distributions
in the intima are found to be
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Table 1
Physiological properties of the arterial layers

Endothelium

Thickness, l (m) 2 � 10�6

Permeability, K (m2) 4.32 � 10�21

Porosity, d 0.0005
Effective diffusivity, De (m2/s) 6.00 � 10�17

Filtration reflection coefficient, rf 0.9979
Reaction rate coefficient, r (1/s) 0.00
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A4 ¼
V 4gs;4

2Q4
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C4 ¼
V 2

4 þ 4rcQ4

4U 0;4Q4

ð95Þ

G ¼ rc

U 0;4

ð96Þ
5. Results and discussion

In this section, the derived analytical results are com-
pared with previously obtained numerical results utilizing
the transport properties pertinent to LDL transport. The
transport and physiological properties are taken from liter-
ature [7] and presented in Table 1. The results are discussed
for different pertinent parameters.

5.1. Velocity field

Using Eq. (51), the average arterial permeability is
found to be Kwall = 3.77 � 10�19 m2. Subsequently, the fil-
tration velocity for transmural pressures of 70 mm Hg and
160 mm Hg is calculated to be 2.283 � 10�8 m/s and
5.218 � 10�8 m/s, respectively. These values are within
roughly 1% of the ones reported by Yang and Vafai [7].

The radial variation of the streamwise component of the
velocity field, u, is calculated using Eqs. (22)–(49). Unlike
the filtration velocity, the streamwise velocity is different
in each layer, with endothelium and intima having the low-
est and highest values, respectively. Streamwise velocity
within endothelium is roughly four orders of magnitude
smaller than that within intima. Therefore, neglecting the
streamwise velocity and its convective effects may be justi-
fied for endothelium but it can result in significant error in
intimal mass concentration distribution.
Intima IEL Media

1 � 10�5 2 � 10�6 2 � 10�4

2.00 � 10�16 4.392 � 10�19 2.00 � 10�18

0.983 0.002 0.258
5.40 � 10�12 3.18 � 10�15 5.00 � 10�14

0.8272 0.9827 0.8836
0.00 0.00 3.197 � 10�4
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5.2. LDL transport

Fig. 2 shows the radial variation of LDL concentration
across intima and IEL layers for different values of trans-
mural pressure and endothelium effective diffusivity at an
axial location of x = 60 mm. The results are in good agree-
ment (within 1%) with the numerical results of Yang and
Vafai [7]. Fig. 3 shows the variation of LDL concentration
within media layer for different values of transmural pres-
sure and endothelium effective diffusivity at an axial loca-
tion of x = 60 mm. The analytical results predict a
slightly faster decay in LDL concentration within media.
Overall, there exists a good agreement between the numer-
ical and analytical results. Radial variation of LDL con-
centration across intima and IEL layers at different axial
locations are presented in Fig. 4. These results correspond
to a transmural pressure of DP = 160 mm Hg and endothe-
Fig. 2. Radial variation of LDL concentration across intima and IEL
layers (radial distance with respect to endothelium–intima interface) for
different values of transmural pressure and endothelium effective diffusiv-
ity, x = 60 mm.

Fig. 3. Variation of LDL concentration within media (radial distance with
respect to IEL-media interface) for different values of transmural pressure
and endothelium effective diffusivity, x = 60 mm.

(radial distance with respect to endothelium–intima interface) at different
axial locations.
lium effective diffusivity of De = 2.40 � 10�16. The axial
variation of LDL concentration predicted by the analytical
solution is in excellent agreement with the numerical
results.
6. Conclusions

Arterial transport is analyzed and a comprehensive ana-
lytical solution for the fluid flow and macromolecule trans-
port within an artery is presented. The artery is modeled as
a uniform axisymmetric circular pipe with a heterogeneous
porous wall. The wall is composed of four different macro-
scopically homogeneous porous layers. Changes in angular
direction are assumed to be negligible; therefore the prob-
lem is reduced to two dimensions. Due to symmetry, we
only consider half the arterial section. Navier–Stokes equa-
tions coupled with mass transport equations are employed
to solve for the luminal blood flow and solute transport.
The volume-averaged equations of transport through por-
ous media are used to solve for velocity and concentration
fields. The Staverman filtration coefficient is incorporated
to account for selective permeation of species by the mem-
branes. The method of matched asymptotic expansions in
conjunction with Laplace transformation is used to solve
for the flow field and species concentration distribution.
The analytical solutions are found to be in excellent agree-
ment with the numerical results. The results presented in
this work provide the very first comprehensive analytical
solution representing arterial transport phenomena. Our
analytical solution can easily be extended to different mod-
els composed of any number of layers making up an arte-
rial wall.
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