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The phenomenon of temperature gradient bifurcation in a porous medium is analyzed by studying the
convective heat transfer process within a channel filled with a porous medium, with internal heat gen-
eration. A local thermal non-equilibrium (LTNE) model is used to represent the energy transport within
the porous medium. Exact solutions are derived for both the fluid and solid temperature distributions for
two primary approaches (Models A and B) for the constant wall heat flux boundary condition. The Nusselt
number for the fluid at the channel wall is also obtained. The effects of the pertinent parameters such as
fluid and solid internal heat generations, Biot number and fluid to solid thermal conductivity ratio are
discussed. It is shown that the internal heat generation in the solid phase is significant for the heat trans-
fer characteristics. The validity of the one equation model is investigated by comparing the Nusselt num-
ber obtained from the LTNE model with that from the local thermal equilibrium (LTE) model. The results
demonstrate the importance of utilizing the LTNE model in the present study. The phenomenon of tem-
perature gradient bifurcation for the fluid and solid phases at the wall for Model A is established and
demonstrated. In addition, the temperature distributions for Models A and B are compared. A numerical
study for the constant temperature boundary condition was also carried out. It was established that the
phenomenon of temperature gradient bifurcation for the fluid and solid phases for the constant temper-
ature boundary condition can occur over a given axial region.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Convective heat transfer in porous media is encountered in a
wide variety of industrial applications such as thermal energy
storage, nuclear waste repository, electronic cooling, geothermal
energy utilization, petroleum industry and heat transfer enhance-
ment. A number of situations involve internal heat generation such
as nuclear reactor applications, agricultural product storage, elec-
tronic cooling, or a solar air heater packed with a porous medium
where the packed material provides the heat transfer enhancement
and also acts as an absorbing media for the solar radiation [1].

Two primary models can be utilized for representing heat trans-
fer in a porous medium: LTE and LTNE, which incorporates the
temperature difference between the fluid and solid phases, thus
resulting in different energy equations for the fluid and solid
phases. Amiri and Vafai [2] employed a generalized model for the
momentum equation and LTNE to investigate the forced convective
heat transfer within a channel with a constant wall temperature.
They investigated in detail the inertial and boundary effects, poros-
ity variation, thermal dispersion and the validity of local thermal
equilibrium as well as other pertinent effects. Amiri et al. [3] pre-
ll rights reserved.
sented for the first time two primary approaches for the constant
wall heat flux boundary conditions under the local thermal non-
equilibrium condition in porous media. Based on the two-equation
model (LTNE), and using one of the two primary approaches given
in Amiri et al. [3], Lee and Vafai [4] investigated the forced convec-
tive flow through a channel filled with a porous medium subject to
a constant heat flux, and derived exact solutions for both fluid and
solid phase temperature fields. Marafie and Vafai [5] obtained ana-
lytical solutions for the fluid and solid phase temperature distribu-
tions for the forced convective flow through a channel filled with a
porous medium with a constant heat flux boundary condition, in
which the Brinkman–Forchhiemer-extended Darcy equation was
used to obtain the velocity field. Alazmi and Vafai [6] presented a
comprehensive analysis of the effect of using different boundary
conditions for the case of constant wall heat flux under the local
thermal non-equilibrium condition.

The main objective of the present study is to analyze the tem-
perature gradient bifurcation phenomenon in porous media by
investigating the heat transfer characteristics for convection
through a channel filled with a porous medium, with internal heat
generation in both the fluid and solid phases, and subject to a con-
stant heat flux boundary condition. The analytical solutions for the
fluid and solid phase temperature distributions and the Nusselt
number at the channel wall are obtained. The effects of pertinent

http://dx.doi.org/10.1016/j.ijheatmasstransfer.2010.05.060
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http://www.sciencedirect.com/science/journal/00179310
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Nomenclature

Bi Bi ¼ hiaH2

ks;eff
, Biot number defined by Eq. (13)

cp specific heat of the fluid [J kg�1 K�1]
E E ¼ Nu1�Nu

Nu , error in the Nusselt number defined by Eq. (73)
hi interstitial heat transfer coefficient [W m�2 K�1]
hw wall heat transfer coefficient defined by Eq. (25)

[W m�2 K�1]
hw1 wall heat transfer coefficient calculated from one equa-

tion model, defined by Eq. (32) [W m�2 K�1]
H half height of the channel [m]

k k ¼ kf ;eff

ks;eff
, ratio of the fluid effective thermal conductivity

to that of the solid, defined by Eq. (12)
kf,eff effective thermal conductivity of the fluid [W m�1 K�1]
ks,eff effective thermal conductivity of the solid [W m�1 K�1]
Nu Nusselt number for the LTNE model, defined by Eq. (26)
Nu1 Nusselt number for the LTE model, defined by Eq. (33)
qw heat flux at the wall [W m�2]
Q integrated internal heat transfer exchange between the

solid and fluid phases [W m�2]
Re Re ¼ uð4HÞ

mf
, Reynolds number

Sf internal heat generation within the fluid phase [W m�3]
Ss internal heat generation within the solid phase [W m�3]
T temperature [K]
u fluid velocity [m s�1]
x longitudinal coordinate [m]
y transverse coordinate [m]

Greek symbols
Dh non-dimensional temperature difference, Dh = hs � hf

a interfacial area per unit volume of the porous medium
[m�1]

b b ¼ SsH
qw

, parameter defined by Eq. (14)

b1 b1 ¼ k
ð1þkÞ tanhðkÞ �

1
1þk, parameter defined by Eq. (56)

b2 b2 ¼ � kk
ð1þkÞ tanhðkÞ �

1
1þk, parameter defined by Eq. (57)

b3 b3 ¼ � Bi
3 1�1

k tanhðkÞ½ � �
1

1þk, parameter defined by Eq. (70)

g non-dimensional transverse coordinate, defined by Eq.
(6b)

n non-dimensional axial length scale, defined by Eq. (51)
h non-dimensional temperature, defined by Eq. (6a) for

Model A, defined by Eqs. (36) and (37) for Model B, or
defined by Eq. (50) for constant temperature case

hb non-dimensional bulk mean temperature for the LTE
model

hf,b non-dimensional bulk mean temperature of the fluid,
defined by Eq. (24)

k parameter defined by Eq. (21)
q fluid density [kg m�3]

Subscripts
f fluid phase
s solid phase
w wall

Other symbols
hi average over the channel cross section
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parameters such as internal heat generation, Biot number and
thermal conductivity ratio are discussed. By comparing the Nusselt
number obtained from the two-equation (LTNE) model with that
from the one equation (LTE) model, the validity of the one equation
model is investigated. In addition, the temperature distributions
for two different approaches (Models A and B) for the constant wall
heat flux boundary condition are compared. Furthermore, a
numerical study for the constant temperature boundary condition
was also carried out to investigate the temperature gradient bifur-
cation for that case. To the best of authors’ knowledge, the present
analysis of the temperature gradient bifurcation in porous medium
is presented for the first time in the literature.
Fig. 1. Schematic diagram for flow through a channel filled with a porous medium
and the corresponding coordinate system.
2. Modeling and formulation

The schematic diagram of the problem is shown in Fig. 1. Fluid
flows through a rectangular channel filled with a porous medium
subject to a constant heat flux boundary condition. We consider
uniform but different internal heat generations in both the solid
and fluid phases, Ss and Sf, respectively. The height of the channel
is 2H and the heat flux applied at the wall is qw. The following
assumptions are invoked in analyzing this problem.

(1) The flow is steady and incompressible.
(2) Natural convection and radiative heat transfer are negligible.
(3) Properties such as porosity, specific heat, density and ther-

mal conductivity are assumed to be constant.
(4) Thermally developed condition is considered and the fluid

flow is represented by the Darcian flow model.

Based on these assumptions, the following governing equations
are obtained from the works of Amiri et al. [2,3] employing the lo-
cal thermal non-equilibrium model.
Fluid phase

kf ;eff
@2Tf

@y2 þ hiaðTs � Tf Þ þ Sf ¼ qcpu
@Tf

@x
ð1Þ

Solid phase

ks;eff
@2Ts

@y2 � hiaðTs � Tf Þ þ Ss ¼ 0 ð2Þ

where Tf and Ts are the fluid and solid temperatures, u the fluid
velocity, kf,eff and ks,eff the effective fluid and solid thermal conduc-
tivities, respectively, q and cp the density and specific heat of the
fluid, hi the interstitial heat transfer coefficient, and a is the interfa-
cial area per unit volume of the porous medium.

2.1. Boundary conditions [Model A]

When a solid substrate of finite thickness and high thermal con-
ductivity is attached to the porous medium as shown in Fig. 1., the
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temperature of the solid and the fluid at the wall interface will be
the same [4,5].

Tf jy¼H ¼ Tsjy¼H ¼ Tw ð3Þ

where Tw is the temperature at the wall interface. Based on the
work of Amiri et al. [3], the total heat flux qw will be divided be-
tween the fluid and solid phases depending on the physical values
of their effective conductivities and their corresponding tempera-
ture gradients at the wall.

qw ¼ kf ;eff
@Tf

@y

����
y¼H

þ ks;eff
@Ts

@y

����
y¼H

ð4Þ

In this part, we utilize the approach for the constant heat flux
boundary condition given by Eqs. (3) and (4) and discussed in detail
in Amiri et al. [3] and Alazmi and Vafai [6] as Model A. Due to the
symmetry condition at the center of the channel, the following
boundary condition can be used:

@Tf

@y

����
y¼0
¼ @Ts

@y

����
y¼0
¼ 0 ð5Þ
2.2. Normalization

To normalize the governing equation and the boundary condi-
tions, the following dimensionless variables are introduced:

h ¼ ks;eff ðT � TwÞ=H
qw

ð6aÞ

g ¼ y
H

ð6bÞ

Adding governing Eqs. (1) and (2), and integrating the resultant
equation from the center to the wall and applying the boundary
conditions given by Eqs. (3)–(5), the following equation is obtained.

qcphui
@Tf

@x

� �
¼ qw

H
þ Sf þ Ss ð7Þ

where hi refers to the area average over the channel cross section.
Using Eqs. (6) and (7), and the Darcian flow model, the governing
Eqs. (1) and (2) and boundary conditions (3) and (5) can be rewrit-
ten as:

k
@2hf

@g2 þ Biðhs � hf Þ ¼ 1þ b ð8Þ

@2hs

@g2 � Biðhs � hf Þ þ b ¼ 0 ð9Þ

hf

��
g¼1 ¼ hsjg¼1 ¼ 0 ð10Þ

@hf

@g

����
g¼0
¼ @hs

@g

����
g¼0
¼ 0 ð11Þ

where the thermal conductivity ratio, k, Biot number, Bi and b are
defined as:

k ¼ kf ;eff

ks;eff
ð12Þ

Bi ¼ hiaH2

ks;eff
ð13Þ

b ¼ SsH
qw

ð14Þ

Based on Eqs. (8)–(14), it is obvious that the uniform internal heat
generation in the fluid phase, Sf, has no influence on the dimension-
less temperature distributions, hs and hf. However, Sf has an influ-
ence on the dimensional temperature distributions, Ts and Tf.
2.3. Temperature distribution

Utilizing the two coupled governing Eqs. (8) and (9), which in-
volve two unknown functions, hf andhs, the following governing
equations for the fluid and solid temperatures are obtained.

kh0000f � ð1þ kÞBih00f ¼ �Bi ð15Þ
kh0000s � ð1þ kÞBih00s ¼ �Bi ð16Þ

Two more sets of boundary conditions are required to solve the
above fourth-order differential equations in addition to the bound-
ary conditions given by Eqs. (10) and (11). By utilizing the bound-
ary conditions (10) and (11) in Eqs. (8) and (9), the following
equations are obtained.

h00f ð1Þ ¼ ð1þ bÞ=k; h00s ð1Þ ¼ �b ð17Þ
h000f ð0Þ ¼ h000s ð0Þ ¼ 0 ð18Þ

The temperature distribution is found by solving Eqs. (15) and
(16) and applying the boundary Eqs. (10), (11), (17) and (18). The
resultant equations are

hf ¼
1

1þ k
1
2

g2 � 1
� �

þ 1
1þ k

þ b

� �
1
Bi

coshðkgÞ
coshðkÞ � 1

	 
� �
ð19Þ

hs ¼
1

1þ k
1
2
ðg2 � 1Þ þ 1

1þ k
þ b

� �
k
Bi

1� coshðkgÞ
coshðkÞ

	 
� �
ð20Þ

where; k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið1þ kÞ=k

q
ð21Þ

When there is no internal heat generation in a porous medium,
b = 0, and Eqs. (19) and (20) will transform into the analytical
expressions given in Lee and Vafai [4]. Based on Eqs. (19) and
(20), the temperature difference between the solid and fluid phases
is derived as:

DhjModel A ¼ hs � hf ¼
1

1þ k
þ b

� �
1
Bi

1� coshðkgÞ
coshðkÞ

	 

ð22Þ

Considering when @jDhj
@g ¼ 0; the maximum jDhj is derived as:

jDhjModel A;max ¼
1

1þ k
þ b

����
���� 1
Bi

1� 1
coshðkÞ

	 

ð23Þ
2.4. Nusselt number expressions

Using Eq. (19), the non-dimensional bulk mean temperature of
the fluid can be calculated as

hf ;b ¼
R 1

0 hf ðgÞudg
hui

¼ � 1
1þ k

1
3
þ 1

1þ k
þ b

� �
1
Bi

1� 1
k

tanhðkÞ
	 
� �

ð24Þ

The wall heat transfer coefficient is obtained from

hw ¼
qw

Tw � Tf ;b
ð25Þ

and the Nusselt number from

Nu ¼ hwð4HÞ
kf ;eff

¼ � 4
khf ;b

ð26Þ

where 4H is the hydraulic diameter of the channel. Substituting Eq.
(24) in Eq. (26), results

Nu ¼ 4ð1þ kÞ
k

1
3
þ 1

1þ k
þ b

� �
1
Bi

1� 1
k

tanhðkÞ
	 
� ��1

ð27Þ
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2.5. One equation model

The governing equation for the one equation model can be ob-
tained by adding Eqs. (8) and (9), and assuming that the tempera-
tures of the fluid and solid phases are the same. This result in

ðkþ 1Þ @
2h
@g2 ¼ 1 ð28Þ

The corresponding boundary conditions are

hjg¼1 ¼ 0 ð29Þ

@h
@g

����
g¼0
¼ 0 ð30Þ

The temperature distribution for the one equation model is derived
as

h ¼ 1
2ð1þ kÞ ðg

2 � 1Þ ð31Þ

The wall heat transfer coefficient for the one equation model is ob-
tained from

hw1 ¼
qw

Tw � Tb
ð32Þ

where Tb is bulk mean temperature of the fluid. The Nusselt number
for the one equation model is obtained as

Nu1 ¼
hw1ð4HÞ

kf ;eff
¼ � 4

khb
¼ 12

1þ k
k

ð33Þ

Unlike the LTNE model, Eqs. (31) and (33) show that the uniform
internal heat generation in porous media has no influence on the
dimensionless temperature distribution, h, and the Nusselt number,
Nu1, for the LTE model. However, the heat generation plays a role in
the dimensional temperature distribution for the LTE model.

2.6. Analytical solutions for the other primary constant heat flux
boundary condition [Model B]

The other primary approach for handling the constant wall heat
flux boundary is also based on the work presented by Amiri et al.
[3] and analyzed in detail in Alazmi and Vafai [6]. For this case,
[Model B], the fluid phase or the solid phase at the wall are each
exposed to a heat flux qw. The corresponding representation for
Model B is given by

qs;w ¼ ks;eff
@Ts

@y

����
y¼H

¼ qw ð34Þ

qf ;w ¼ kf ;eff
@Tf

@y

����
y¼H

¼ qw ð35Þ

The above approach for incorporating a constant heat flux boundary
condition represented by Eqs. (34) and (35), is defined as Model B.

It should be noticed that the temperature of the solid and the
fluid at the wall interface may not be the same based on the
boundary conditions (34) and (35). Therefore, the dimensionless
temperature for the solid and fluid phases are redefined as

hs ¼
ks;eff ðTs � Ts;wÞ=H

qw
ð36Þ

hf ¼
ks;eff ðTf � Ts;wÞ=H

qw
ð37Þ

where Ts,w is the solid temperature at the wall. Adding governing
Eqs. (1) and (2), and integrating the resultant equation from the
center to the wall and applying the boundary conditions given by
Eqs. (5), (34) and (35), the following equation is obtained.
qcphui
@Tf

@x

� �
¼ 2qw

H
þ Sf þ Ss ð38Þ

Using Eqs. (6b), (36), (37) and (38), and the Darcian flow model,
the governing Eqs. (1) and (2) and boundary conditions (5), (34)
and (35) can be rewritten as:

k
@2hf

@g2 þ Biðhs � hf Þ ¼ 2þ b ð39Þ

@2hs

@g2 � Biðhs � hf Þ þ b ¼ 0 ð40Þ

@hf

@g

����
g¼0
¼ @hs

@g

����
g¼0
¼ 0 ð41Þ

@hf

@g

����
g¼1
¼ 1

k
ð42Þ

hsjg¼1 ¼ 0 ð43Þ

Based on Eqs. (39)–(43), it can be deduced that the uniform
internal heat generation in the fluid phase, Sf, has again no influ-
ence on the dimensionless temperature distributions, hs and hf,
when Model B is used in applying the constant heat flux boundary
condition. The temperature distribution is found by solving Eqs.
(39) and (40) and applying the boundary Eqs. (41)–(43). The resul-
tant equations are

hf ¼
1� k

ð1þ kÞk sinhðkÞ
coshðkgÞ

k
þ coshðkÞ

	 

þ g2 � 1

1þ k

� 2
ð1þ kÞBi

� b
Bi

ð44Þ

hs ¼
1� k

ð1þ kÞk sinhðkÞ coshðkÞ � coshðkgÞ½ � þ g2 � 1
1þ k

ð45Þ

Based on Eq. (45), it is found that the uniform internal heat gen-
eration in the solid phase, Ss, has no influence on the dimensionless
solid temperature distribution, hs, when Model B is used for the
constant heat flux boundary condition. Furthermore, Sf has no
influence on either hs or hf. However, again the heat generations
have an influence on the dimensional temperature distributions.
The temperature difference between the solid and fluid phases,
when Model B is used for the constant heat flux, is derived as:

DhjModelB ¼ hs � hf

¼ k� 1
ð1þ kÞk sinhðkÞ

coshðkgÞ
k

þ coshðkgÞ
	 


þ 2
ð1þ kÞBi

þ b
Bi

ð46Þ
2.7. Constant temperature boundary condition

The temperature gradient bifurcation was also examined
numerically for the constant temperature boundary condition,
while incorporating the axial conduction. The corresponding
boundary conditions for the constant temperature condition were
expressed as

Tf jy¼H ¼ Tsjy¼H ¼ Tw ð47Þ

@Tf

@y

����
y¼0
¼ @Ts

@y

����
y¼0
¼ 0 ð48Þ

Tf

��
x¼0 ¼ Tsjx¼0 ¼ Tin ð49Þ

The governing equations and the boundary conditions are
solved using a finite difference method. Upwind discretization
scheme is used for the convection term and central differencing
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is used for diffusion terms. Variable and uniform grid distributions
were used for the y and x-directions, respectively. The convergence
was assumed to have been reached when the relative variation of
the temperature between two successive iterations was less than
10�10. The sensitivity to the grid interval and the convergence cri-
teria were examined to insure grid independence results. The fol-
lowing dimensionless variables were introduced to show the
results for this case.

h ¼ ks;eff ðT � TwÞ
SsH

2 ð50Þ

n ¼ x
H

ð51Þ

Re ¼ uð4HÞ
mf

ð52Þ
3. Results and discussion

The dimensionless temperature distributions for the fluid and
solid phases for Model A for different pertinent parameters b, Bi
and k are shown in the Figs. 2 and 3. When Bi is small, which trans-
lates into a weak internal heat transfer between the fluid and solid
phases, the temperature difference between the two phases is rel-
atively large, especially for a small k, as shown in Figs. 2(a) and
3(a). As k increases, the influence of the fluid thermal conduction
becomes significant over most of the channel.

It is important to note that the direction of the temperature gra-
dient for the fluid and solid phases for Model A are different at the
wall (g = 1) in Fig. 2(c) and (d) and Fig. 3(a) (b) and (c). This leads to
a temperature gradient bifurcation for Model A for those cases.
From Eqs. (19) and (20), the temperature gradients at the wall
for the fluid and solid for Model A are obtained as:
Fig. 2. Dimensionless temperature distributions for fluid and solid phases for Models A a
(d) Bi = 50 and k = 10.
h0f ð1Þ ¼
1

1þ k
þ 1
ð1þ kÞkþ

b
k

	 

1
k

tanhðkÞ ð53Þ

h0sð1Þ ¼
1

1þ k
� 1
ð1þ kÞ þ b

	 

1
k

tanhðkÞ ð54Þ

If b satisfies the following condition, the direction of the tem-
perature gradients for Model A at the wall for fluid and solid phases
are different.

b > b1 or b < b2 ð55Þ

where; b1 ¼
k

ð1þ kÞ tanhðkÞ �
1

1þ k
ð56Þ

b2 ¼ �
kk

ð1þ kÞ tanhðkÞ �
1

1þ k
ð57Þ

It should be noted that k
tanh kð Þ > 1 for k > 0. Therefore, b1 > 0, and

b2 < �1. The variations of b1 and b2 as a function of pertinent
parameters Bi and k for Model A are shown in Figs. 4 and 5. b1 is
found to increase as Bi becomes larger and k becomes smaller, while
b2 decreases as Bi becomes larger.

When Model A is used for the constant wall heat flux boundary
condition, the integrated internal heat transfer exchange between
the solid and fluid phases is obtained from

Q ¼
Z h

0
hiaðTs � Tf Þdy ¼ qw

Z 1

0
Biðhs � hf Þdg ð58Þ

Substituting Eq. (22) in Eq. (58), results in

Q ¼ qw
1

1þ k
þ b

� �
1� tanhðkÞ

k

	 

ð59Þ

The heat flux at the wall for the solid phase is obtained from
nd B for: b = 5 (a) Bi = 0.5 and k = 0.01; (b) Bi = 50 and k = 0.01; (c) Bi = 0.5 and k = 10;



Fig. 3. Dimensionless temperature distributions for fluid and solid phases for Models A and B for b = �5: (a) Bi = 0.5 and k = 0.01; (b) Bi = 50 and k = 0.01; (c) Bi = 0.5 and
k = 10; (d) Bi = 50 and k = 10.

Fig. 4. The variations of b1 as a function of pertinent parameters Bi and k.
Fig. 5. The variations of b2 as a function of pertinent parameters Bi and k.
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qs ¼ ks;eff
@Ts

@y

����
y¼H

¼ qwh0sð1Þ ð60Þ

Substituting Eq. (54) in Eq. (60), results in

qs ¼ qw
1

1þ k
� 1
ð1þ kÞ þ b

	 

1
k

tanhðkÞ
� �

ð61Þ

Based on Eqs. (59) and (61), the difference between Q and qs can
be expressed as

Q � qs ¼ qwb ¼ SsH ð62Þ

When b > b1 or b < b2, and Ss > 0, the following inequalities are
obtained

SsH > Q > 0 and SsH > �qs > 0 ð63Þ
It can be inferred from Eqs. (62) and (63) that, when b > b1 or
b < b2, and Ss > 0, part of the internal heat generation in the solid
phase will transfer to fluid phase through the thermal conduction
at the wall, instead of through internal heat transfer exchange be-
tween the fluid and solid. This paves the way for the occurrence of
the temperature gradient bifurcation at the wall. When b = 0,
which translates into no internal heat generation, based on Eq.
(55), the temperature gradient directions for the fluid and solid
phases at the wall are kept the same. This explains why this phe-
nomenon was not observed in the works of Lee and Vafai [4] and
Marafie and Vafai [5]. In their works, the internal heat generation
was not included.

Unlike the Nusselt number for the one equation model (based
on Eq. (33)), which is just the function of k, the variations of Nus-
selt number for two-equation model is a function of pertinent



Fig. 6. Nusselt number variations as a function of pertinent parameters b, Bi and k, (a) b = 5; (b) b = �0.5; (c) b = �50.

Fig. 7. The variations of b3 as a function of pertinent parameters Bi and k.
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parameters b, Bi and k as shown in Fig. 6, which is based on Eq.
(27). This figure reveals the asymptotic characteristics of the Nus-
selt number, which can be analyzed using the following relation-
ship [4].

1
k

tanhðkÞ � 1� k2=3 as k! 0
0 as k!1

(
ð64Þ

Based on Eqs. (27) and (64), when k ? 0, the asymptotic behav-
ior of the Nusselt number, for Model A, is obtained as

Nu � 12
1þ b

ð65Þ

Based on the definition of k, given in Eq. (21), the condition,
k ? 0, occurs when

Bi� k
1þ k

ð66Þ

On the other hand, when k ?1, the asymptotic behavior of the
Nusselt number for Model A is obtained as

Nu � 4ð1þ kÞ
k

1
3
þ 1

1þ k
þ b

� �
1
Bi

	 
�1

ð67Þ

Furthermore, when Bi ?1 and jbj � Bi, the Nusselt number ap-
proaches 12ð1þkÞ

k , i.e.,

Nu � 12ð1þ kÞ
k

ð68Þ

This is the same as the Nusselt number for one equation model.
This is because the temperature difference between the fluid and
solid phases disappears as Bi ?1.
It could be seen in Fig. 6 that the Nusselt number for Model A
could be either positive or negative for different ranges of b, Bi
and k. Based on Eq. (27), if b satisfies the following condition, the
Nusselt number, Nu, will be a positive number.

b > b3 ð69Þ

where; b3 ¼ �
Bi

3 1� 1
k tanhðkÞ

� �� 1
1þ k

ð70Þ

When b ? b3, the non-dimensionalized bulk mean temperature
of the fluid, hf,b approaches zero, and the Nusselt number ap-
proaches infinity. The variations of b3 as a function of pertinent
parameters Bi and k for Model A, is shown in the Fig. 7. This figure
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reveals that the thermal conductivity ratio, k, has a substantially
smaller influence on b3 as compared to the Biot number. Compar-
ing Eqs. (57) and (70), one can conclude that

b3 6 b2 ð71Þ
However; when k! 0;b2 � b3 ! �1 ð72Þ

A comparison between the Nusselt number for the LTE Model
And that for the LTNE model for the boundary conditions repre-
sented by Model A are shown in Fig. 8, in which the error in the
Nusselt number based on using the LTE model is evaluated through
the analytical solutions given in Eqs. (27) and (33).

E ¼ Nu1 � Nu
Nu

¼ 3
1

1þ k
þ b

� �
1
Bi

1� 1
k

tanhðkÞ
	 


ð73Þ

For most of the values of the pertinent parameters b, Bi and k,
for Model A, the error in using the one equation model is quite
large as can be seen in Fig. 8. This difference becomes smaller as
the Biot number increases. It should be noted that, for b = �0.5,
the error in using the one equation model becomes zero when
k = 1, as shown in Fig. 8(b). Based on Eq. (22), when b = �1/
(1 + k), the temperature difference between the fluid and solid
phases will disappear, and the Nusselt number for the two-equa-
tion model will collapse to that for the one equation model. This
criterion is then expressed by:

b ¼ � 1
1þ k

ð74Þ

This is also the reason why the Nusselt number is independent
of the Biot number for k = 1 in Fig. 6(b). The dimensionless temper-
ature distributions for the fluid and solid phases for Model B for
Fig. 8. Nusselt number based error maps when using the LTE model i
different pertinent parameters b, Bi and k are also shown in the
Figs. 2 and 3. When Bi increases, the temperature difference be-
tween the two phases becomes smaller. Compared with the results
for Model A, the temperature distributions for Model B are quite
different. It is found that the temperature gradient for the fluid
and solid phases for Model B are always in the same direction at
the wall (g = 1) in Figs. 2 and 3, which is consistent with the
boundary condition Eqs. (34) and (35).

For the constant temperature boundary condition, the dimen-
sionless temperature distributions for the solid and the fluid are
shown in Fig. 9 for Bi ¼ 0:5; k ¼ 0:01; hin ¼ �16:64; Sf

Ss
¼ 1

5 and
Re = 500 at n = 2, n = 5 and n = 40. It is found that for this case the
phenomenon of temperature gradient bifurcation for the fluid
and solid phases at the wall occurs only over a given axial region.
For example, for the cited case it occurs at n = 5, but not at n = 2 and
n = 40. Another interesting aspect is that after a certain axial length
the temperature distribution results from the constant tempera-
ture case match the analytical results obtained for the constant
heat flux case [Model A]. This situation can be seen in Fig. 9(c).

Fig. 10 shows the heat flux distributions for solid and the fluid
at the wall, qs and qf, and the corresponding total heat flux distri-
bution, qw for the constant temperature boundary condition for
Bi ¼ 0:5; k ¼ 0:01; hin ¼ �16:64; Sf

Ss
¼ 1

5 and Re = 500. It is found that,
when 4.24 < n < 5.53, qs < 0 and qf > 0, i.e. the phenomenon of tem-
perature gradient bifurcation for the fluid and solid phases at the
wall will occur. When n > 20, the total heat flux becomes invariant
with the axial length, n, and qw = �(Ss + Sf)H. This is because when n
is large enough, all the internal heat generation will be transferred
out of the channel through the wall, and the temperatures for solid
and fluid phases will remain unchanged. Since the total heat flux
does not change when n is large enough, we should be able to
nstead of the LTNE model for: (a) b = 5; (b) b = �0.5; (c) b = �50.



Fig. 9. Dimensionless temperature distributions for the solid and the fluid for constant temperature boundary condition for Bi ¼ 0:5; k ¼ 0:01; hin ¼ �16:64; Sf
Ss
¼ 1

5

and Re = 500 at: (a) n = 2, (b) n = 5, (c) n = 40.

Fig. 10. Heat flux distributions for the solid and the fluid at the wall, qs and qf, and
the corresponding total heat flux distribution, qw for the constant temperature
boundary condition for Bi ¼ 0:5; k ¼ 0:01; hin ¼ �16:64; Sf

Ss
¼ 1

5 and Re = 500.
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use our analytical solution for Model A for the constant heat flux
boundary condition for this case. Such a comparison was shown
earlier in Fig. 9(c). As was mentioned earlier, there is an excellent
agreement between the constant temperature solution for larger
values of n and the analytical solution for the constant heat flux case.
It should be noted after the total heat flux becomes invariant, the
corresponding b can be presented as b1 > b ¼ � Ss

SsþSf
> b2 for Ss > 0

and Sf > 0. Therefore, based on Eq. (55), the phenomenon of temper-
ature gradient bifurcation will not occur for larger values of n.
4. Conclusions

The phenomenon of temperature gradient bifurcation in a por-
ous medium is analyzed in this work. To this end, convective heat
transfer within a channel filled with a porous medium subject to a
constant wall heat flux boundary condition, with internal heat gen-
eration in both the fluid and solid phases, is investigated analyti-
cally. A local thermal non-equilibrium (LTNE) model is used to
represent the energy transport. Exact solutions are derived for both
the fluid and solid temperature distributions for two different pri-
mary approaches (Models A and B) for the constant wall heat flux
boundary condition. It is shown that the dimensionless tempera-
ture distributions for the two phases are independent of the inter-
nal heat generation of the fluid phase for both Models A and B. As
expected, the temperature difference between the fluid and the so-
lid phases is found to become smaller as the Biot number increases.
When Model A is used for the constant wall heat flux boundary
condition, the Nusselt number is obtained as a function of the per-
tinent parameters b, Biot number, Bi and thermal conductivity ra-
tio, k. The internal heat generation in the solid phase is found to
have a significant impact on the heat transfer characteristics, rep-
resented by the parameter b. It is found that:

(a) When b > b1 or b < b2, the phenomenon of temperature gra-
dient bifurcation for the fluid and solid phases at the wall
will occur.

(b) When b ? b3, the Nusselt number will approach infinity.
(c) When b = �1/(1 + k), the fluid and solid phase temperatures

become equal.

The validity of the one equation model is assessed by presenting
an error map based on the obtained analytical Nusselt number
expressions. It is shown that good agreement between the two
models is obtained when Bi ?1 or b ? �1/(1 + k).

When Model B is used for the constant wall heat flux boundary
condition, the derived temperature distributions are different from
those obtained for Model A. The phenomenon of opposite temper-
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ature gradient directions for the fluid and solid phases at the wall
will not occur when Model B is used. It was shown that the
temperature gradient bifurcation can also occur for the constant
temperature boundary condition over a given axial length. It was
shown that when the axial length is large enough, the temperature
gradient bifurcation phenomenon does not occur, and the analyti-
cal solution for Model A for the constant heat flux boundary condi-
tion can be used for the constant temperature boundary case.
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