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A comprehensive analysis of bioheat transport through a double layer and multilayer
biological media is presented in this work. Analytical solutions have been developed for
blood and tissue phase temperatures and overall heat exchange correlations, incorporat-
ing thermal conduction in tissue and vascular system, blood-tissue convective heat ex-
change, metabolic heat generation, and imposed heat flux, utilizing both local thermal
nonequilibrium and equilibrium models in porous media theory. Detailed solutions as
well as Nusselt number distributions are given, for the first time, for two primary condi-
tions, namely, isolated core region and uniform core temperature. The solutions incorpo-
rate the pertinent effective parameters for each layer, such as volume fraction of the
vascular space, ratio of the blood, and the tissue matrix thermal conductivities, interfa-
cial blood-tissue heat exchange, tissue/organ depth, arterial flow rate and temperature,
body core temperature, imposed hyperthermia heat flux, metabolic heat generation, and
blood physical properties. Interface temperature profiles are also obtained based on the
continuity of temperature and heat flux through the interface and the physics of the
problem. Comparisons between these analytical solutions and limiting cases from previ-
ous works display an excellent agreement. These analytical solutions establish a compre-
hensive presentation of bioheat transport, which can be used to clarify various physical
phenomena as well as establishing a detailed benchmark for future works in this area.
�DOI: 10.1115/1.4000060�

Keywords: bioheat transfer, biological tissue/organ, hyperthermia, porous media,
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Introduction
Hyperthermia treatment is recognized as one of the main cancer

herapies following surgery, chemotherapy, and radiation tech-
iques. Understanding thermal transport and temperature distribu-
ion within biological tissues and body organs are important thera-
eutic aspects related to this treatment �1,2�. This technique is also
tilized for eradication or reduction in benign tumors, repair of
ports injuries, modification and remodeling of a targeted tissue
3�, gene therapy, and immunotherapy �vaccination� �4�. In hyper-
hermia, the tumor cells will be heated to a therapeutic value,
ypically 40°C–45°C, to damage or kill the cancer cells �5,6�.
lthough it has been known for many years that fever can damage

he cancer cells, hyperthermia technique is more recently being
eveloped as a cancer treatment by controlling and focusing the
eat on the cancer cells. This technique is being utilized for sev-
ral types of cancer �7�.

In contrast to healthy cells, a tumor is a tightly packed body of
ells in which blood circulation is restricted. Heat can cut off the
xygen and vital nutrients from the abnormal cells, resulting in a
reakdown in the tumor’s vascular system and destruction of the
ell’s metabolism and subsequent devastation of the tumor cells.
n addition, heat causes the formation of certain proteins in the
iseased cancer cells, the so-called heat shock proteins, which
ppear on the surface of the degenerated cells. The body’s im-
une system detects these proteins as extraneous cells, making

he abnormal cells visible to the immune system.
Hyperthermia technique also improves the efficiency of other

ancer therapies such as chemotherapy and radiotherapy �4,8,9�.
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Insolated cells, which would not respond to chemotherapy or ra-
diation alone, would be subjected to heat treatment. Hyperther-
mia, in conjunction with chemotherapy, causes the drug to pen-
etrate deeper into the tumor while augmenting the efficacy of the
drug delivered to the tumor. Hyperthermia treatment can be uti-
lized either on the whole body or locally targeting the cancer cells,
utilizing warm water bath balloons and blankets, hot wax, induc-
tive coils �similar to those in electric blankets�, thermal chambers,
ultra-high frequency sound waves, microwave, and laser �7�.

Heat transport through biological tissues, represented by bio-
heat models, involves thermal conduction in tissue and vascular
system, blood-tissue convection, and perfusion �through capillary
tubes within the tissues� and also metabolic heat generation. As-
suming local thermal equilibrium between the blood and the tis-
sue, Pennes �10� represented one of the early and simplified bio-
heat equations. This model has been further developed by others
such as Charny �11�, Wulff �12�, Klinger �13�, Chen and Holmes
�14�, Weinbaum et al. �15–17�, Mitchell and Myers �18�, Keller
and Seilder �19�, Chen and Xu �20�, Baish et al. �21,22�, and
Abraham and Sparrow �23�. Description of the established bioheat
transport models can be found in the literature �11,24–26�.

Advantages of utilizing porous media theory in modeling bio-
heat transfer, due to fewer assumptions as compared with different
established bioheat transfer models, are stressed by Khanafer and
Vafai �26�, Nakayama and Kuwahara �27�, Khaled and Vafai �28�,
and Mahjoob and Vafai �7�. The biological structure can be treated
as a blood saturated porous matrix including cells and interstices,
the so-called tissue. Utilizing the porous media theory, nonthermal
equilibrium between the blood and the tissue is addressed and the
blood-tissue convective heat exchange is taken into account. Vol-
ume averaging over each of the blood and tissue phases results in
an energy equation for each individual phase �29–37,7�, known as

the local thermal nonequilibrium model. The volume averaging
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ver a representative elementary volume containing both the
lood and tissue phases results in a local thermal equilibrium
odel referred to as the one equation model.
One of the shortcomings in most bioheat studies is modeling

he target tissue/organ as a single tissue/organ with the same tissue
roperties. This type of modeling may not predict precisely heat
ransport through tissue layers in which there is a considerable
ariation in properties of the adjacent layers. As such, there would
e a need to develop and utilize bioheat model for a dual layer.
ual layer bioheat modeling is also important relative to skin
ioheat transport and burn injuries �38,39�. In addition, in hyper-
hermia treatment, utilizing a two layer model �consisting of can-
erous and normal tissue layers� gives a more accurate prediction
f temperature profile and heat transport through these layers �40�.

Due to the importance of accurate prediction of temperature
rofile in tissues/organs in thermal therapies such as hyperthermia,
eat transport through multilayer biological tissues has been in-
estigated in this work. Mahjoob and Vafai �7� previously devel-
ped, for the first time, comprehensive analytical solutions for
issue and blood temperature profiles and heat transfer correlations
or a single layer tissue subject to an imposed heat flux. In this
ork, bioheat transport through dual layer tissues subject to an

mposed heat flux is investigated comprehensively. Precise corre-
ations are obtained for the first time for a two layer media, which
an be extended to a multilayer media.

Utilizing the local thermal nonequilibrium model of porous me-
ia theory, exact solutions for the tissue and blood temperature
istributions in each layer are established, for the first time, for
wo primary tissue/organ models representing isolated and uni-
orm temperature conditions. Each layer can have its own proper-
ies independent of the other layer. These exact solutions can be
tilized for different types of tissues and organs considering each
ayer’s effective parameters such as the vascular volume fraction,
issue matrix permeability and size, blood pressure and velocity,

etabolic heat generation, and also imposed heat flux and body
ore temperature. As a result, the current models for temperature
rediction during thermal therapies can be modified to present a
ore accurate temperature distribution within healthy and dis-

ased cells.

Modeling and Formulation

2.1 Problem Description. Biological media usually consist
f blood vessels, cells, and interstitial space, which can be catego-
ized as vascular and extravascular regions �Fig. 1�a��. As such, a
iological structure can be modeled as a porous matrix, including
ells and interstitial space, called tissue, in which the blood infil-
rates through. In this work, a dual layer, which can be expanded
o a multilayer, biological media subject to an imposed heat flux,
s in hyperthermia, while incorporating blood and tissue local heat
xchange, is investigated. The blood and tissue temperature pro-
les in each layer are established analytically, incorporating the
ffects of the imposed heat flux, blood and tissue physical prop-
rties, arterial blood velocity, volume fraction of the vascular
pace and geometrical properties of the biological structure, inter-
al heat generation within the tissue �e.g., metabolic heat genera-
ion� at each layer, and the heat penetration depth. The analysis is
erformed for two primary conditions, namely, isolated core re-
ion and uniform core temperature conditions. For the first model,
thermally isolated boundary condition exists at a depth of �D1
D2� from the surface of the tissue, where D1 is the thickness of

he layer exposed to the heat flux and D2 is the thickness of the
djacent layer. This model is also applicable as a symmetry ther-
al boundary condition, in which the heat flux is imposed from

oth sides of the organ �Fig. 1�b��. The second primary model is
ased on the physical representation of the core tissue/organ at a
rescribed temperature value at depth �D1+D2� through imposi-
ion of a uniform temperature at that depth. Flow is considered to

e hydraulically and thermally developed. Natural convection and
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radiation are assumed to be negligible and thermodynamic prop-
erties of the tissue and blood are considered to be temperature
independent over the range of temperature variations considered
in bioheat transport applications.

2.2 Physical Description of Governing Equations and
Boundary Conditions. The anatomic structure is modeled as a
porous medium consisting of the blood and the tissue �solid ma-
trix� phases. The governing energy equations for the blood and
tissue phases incorporating internal heat sources �e.g., metabolic
reactions� and local thermal nonequilibrium conditions, developed
based on the theory of porous media �26–37�, are represented in
Ref. �7�. The imposed heat flux at the organ’s surface can be
represented under the local thermal nonequilibrium conditions, in
which the flux is divided between the two tissue and blood phases
based on their effective thermal conductivity and temperature gra-
dient. The temperature at the tissue/organ surface subject to im-
posed heat flux is likely to be uniform and the same as those of the
tissue solid matrix and the blood adjacent the organ surface
�7,33,36,37�.

The external heat flux influences the tissue within a depth of
D1+D2. As discussed earlier, two primary models are investigated
for the boundary condition at the depth of D1+D2 from the sur-
face, which is subject to a given heat flux. These are the �i� iso-
lated core region and �ii� uniform core temperature �Tc� at a depth
�D1+D2�, as shown in Fig. 1. The value of the uniform tempera-
ture �Tc� can be assigned as the body core temperature or a safe
temperature so as not to damage the healthy tissues. At the inter-
face of the layers, the continuity of temperature and flux is valid.
The tissue and blood temperatures at the interface of the layers
�Tt,i and Tb,i� should be evaluated by solving the governing equa-
tions in each layer and applying the boundary conditions.

2.3 Normalization. The governing equations are normalized
by utilizing the following nondimensional variables �j is a layer
indicator, which is either 1 or 2 for the first or second tissue layer,
respectively�:

� =
y

D1
, �b,j =

kt,eff,1��Tb,j�b − Ts�
qsD1

, �t,j =
kt,eff,1��Tt,j�t − Ts�

qsD1

� j =
�1 − � j�D1q̇gen,j

qs
, Bij =

htb,jatb,jD1
2

kt,eff,1
, � =

kb,eff,1

kt,eff,1
�1�

�t =
kt,eff,2

kt,eff,1
, �b =

kb,eff,2

kt,eff,1
, D =

D1

D2

where parameters �Tb�b, �Tt�t, kb,eff, kt,eff, and � represent the in-
trinsic phase average blood and tissue temperatures, blood and
tissue effective thermal conductivities, and porosity �the volume
fraction of the vascular space�, respectively. The blood-tissue in-
terfacial heat transfer coefficient is represented by htb and the
specific surface area by atb, and q̇gen is the heat generation within
the biological tissue �e.g., metabolic heat generation� �7�. The Biot
number Bi in this case represents the ratio of the conduction re-
sistance within the tissue matrix to the thermal resistance associ-
ated with the internal convective heat exchange between the tissue
matrix and the blood phase.

2.4 Governing Equations and Boundary Conditions. Bio-
logical tissues differ from each other in both their porous features
and compositions. Therapeutic approaches can be optimized
through understanding a range of phenomena including the re-
sponse of tissues under different physiological conditions. Tissue
usually consists of blood vessels, cells, and interstitial space,
which can be, categorized as vascular and extravascular regions.
The properties of tissues can be approximated based on the as-
sumption that it is a homogeneous porous medium. Direct mea-
surement of the properties of tissues is difficult. Efforts have been

devoted to the characterization of the pertinent parameters. The
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btained analytical expressions offer a versatile approach by al-
owing incorporation of variations in the representative volume
raction as well as various physical attributes. Some prior inves-
igations have been performed based on the assumption that the
rterial wall layers/tissues are porous structures with physical
roperties, which can be identified using the pore theory described
y Khakpour and Vafai �41�. The properties for various layers can
e based upon appropriate pore theory �41,42�, fiber matrix mod-
ls �42–47�, and in vivo and in vitro experiments. The governing
quations given by Mahjoob and Vafai �7� can be casted as
ollows:

First layer (with an imposed heat flux at the top):

�
�4�b,1

4 − Bi1�1 + k�� �2�b,1
2 � = � �2�

Fig. 1 Schematic diagram of „a… the multi
ripheral heat flux or isolated core region…,
�� ��

ournal of Heat Transfer
�
�4�t,1

��4 − Bi1�1 + k�� �2�t,1

��2 � = � �3�

Second layer (with an isolated or uniform temperature region at
the bottom):

�b

�4�b,2

��4 − Bi2�1 +
�b

�t
� �2�b,2

��2 = �� �4�

�b

�4�t,2

��4 − Bi2�1 +
�b

�t
� �2�t,2

��2 = �� �5�

where in model I �isolated core region�

r tissue-vascular system, „b… model I „pe-
„c… model II „uniform core temperature…
laye
� = − Bi1�1 + �f1 + g1� �6�

MARCH 2010, Vol. 132 / 031101-3
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�� =
DBi2

�t
��f1 + g1� �7�

nd in model II �uniform core temperature�

� = − Bi1�1 + ��b,i + �t,i� �8�

�� = Bi2	− D2�1 +
�b

�t
��c +

D�D�b + ��
�t

�b,i +
D�D�t + 1�

�t
�t,i


�9�

nd

f1 = � ��b,1

��
�

�=1

�10�

g1 = � ��t,1

��
�

�=1

�11�

�c =
kt,eff,1�Tc − Ts�

qsD1
�12�

�b,i =
kt,eff,1�Tb,i − Ts�

qsD1
�13�

�t,i =
kt,eff,1�Tt,i − Ts�

qsD1
�14�

Furthermore, the normalized boundary conditions are presented
or each model as follows. Additional boundary conditions to
olve the obtained fourth order blood/tissue energy equations
Eqs. �2�–�9�� can be obtained by evaluating the second or third
rder derivatives of �b and �t at the boundaries. This results in the
ollowing set of boundary conditions for each model:

Boundary conditions:

�b,1��=0 = �t,1��=0 = 0 �15�

�b,1��=1 = �b,2��=1 = �b,i �16�

�t,1��=1 = �t,2��=1 = �t,i �17�

� �2�t,1

��2 �
�=0

= − �1 �18�

� �2�t,1

��2 �
�=1

= − �1 + Bi1��t,i − �b,i� �19�

� �2�t,2

��2 �
�=1

=
− 1

�t
��2 + Bi2��b,i − �t,i�� �20�

��
��b,1

��
�

�=1
+ � ��t,1

��
�

�=1

= �b� ��b,2

��
�

�=1

+ �t� ��t,2

��
�

�=1

�21�
The other normalized boundary conditions for the two primary
odels are as follows:
For model I (isolated core region):

� �2�b,1

��2 �
�=0

=
1

�
�1 + �1 + �f1 + g1� �22�

� �2�b,1

��2 �
�=1

=
1

�
�1 + �1 + �f1 + g1 + Bi1��b,i − �t,i�� �23�

� �2�b,2

��2 � =
1

�b
�− D��f1 + g1� + �2 + Bi2��b,i − �t,i�� �24�
�=1

31101-4 / Vol. 132, MARCH 2010
� ��b,2

��
�

�=1+1/D
= � ��t,2

��
�

�=1+1/D
= 0 �25�

� �3�b,2

��3 �
�=1+1/D

= � �3�t,2

��3 �
�=1+1/D

= 0 �26�

and for model II (uniform core temperature):

� �2�b,1

��2 �
�=0

=
1

�
�1 + �1 + ��b,i + �t,i� �27�

� �2�b,1

��2 �
�=1

=
1

�
�1 + �1 + �� + Bi1��b,i + �1 − Bi1��t,i� �28�

� �2�b,2

��2 �
�=1

=
1

�b
�
Bi2 − D�D�b + ����b,i

− 
Bi2 + D�D�t + 1���t,i + �2� + D2�1 +
�t

�b
��c

�29�

�b,2��=1+1/D = �t,2��=1+1/D = �c �30�

� �2�b,2

��2 �
�=1+1/D

= − D�D +
�

�b
��b,i −

D

�b
�D�t + 1��t,i

+ D2�1 +
�t

�b
��c +

�2

�b
�31�

� �2�t,2

��2 �
�=1+1/D

= −
�2

�t
�32�

2.5 Blood, Tissue, and Surface Temperature Fields. Blood
and tissue phase temperature distributions can be obtained by
solving the governing equations and utilizing the Neumann and
Dirichlet boundary conditions. After a lengthy analysis, the blood
and tissue temperature profiles are obtained as follows �for brev-
ity, the volume averaging sign �� �� is dropped�.

2.5.1 Model I: Isolated Core Region

2.5.1.1 First layer.

�b,1 =
1

1 + �
��

2

�1 + �f1 + g1�� − �1 − 2��b,i − 2�t,i + �f1 + g1��

−
1 + �1 + ���1 + �f1 + g1

�1 + ��Bi1
	1 −

e�� + e��1−��

1 + e� 

+ ��b,i − �t,i�

e��1+�� − e��1−��

e2� − 1
� �33�

�t,1 =
1

1 + �
��

2

�1 + �f1 + g1�� − �1 − 2��b,i − 2�t,i + �f1 + g1��

+
��1 + �1 + ���1 + �f1 + g1�

�1 + ��Bi1
	1 −

e�� + e��1−��

1 + e� 

− ���b,i − �t,i�

e��1+�� − e��1−��

e2� − 1
� �34�

where

� = �Bi1�1 + ��/� �35�

The blood �b,i and tissue �t,i temperatures at the interface would
be evaluated after obtaining their corresponding temperature pro-
files in the second layer. Terms f1 and g1 can be evaluated based
on their definition �Eqs. �10� and �11�� and the obtained blood and

tissue temperature profiles in the first layer. This results in
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f1 =
1

1 + �
� 
2 + �1 + ���1 + 2��b,i + 2�t,i��e� − 1�

���1 + e��

+ ���b,i − �t,i�
e2� + 1

e2� − 1
+ 1 + 2��b,i + 2�t,i� �36�

g1 =
− 1

1 + �
� 
2 + �1 + ���1 + 2��b,i + 2�t,i��e� − 1�

��1 + e��

+ ����b,i − �t,i�
e2� + 1

e2� − 1
− 1 − 2��b,i − 2�t,i� �37�

ubstituting f1 and g1 in Eqs. �33� and �34� gives

�b,1 =
1

1 + �
��
�1 + ��b,i + �t,i�� − 1� + ��b,i − �t,i�

e��1+�� − e��1−��

e2� − 1

−
2�1 + ��b,i + �t,i� + �1 + ���1

�1 + ��Bi1
	1 −

e�� + e��1−��

1 + e� 
� �38�

�t,1 =
1

1 + �
��
�1 + ��b,i + �t,i�� − 1� − ���b,i

− �t,i�
e��1+�� − e��1−��

e2� − 1
+

��2�1 + ��b,i + �t,i� + �1 + ���1�
�1 + ��Bi1

		1 −
e�� + e��1−��

1 + e� 
� �39�

As such, the temperature difference between the tissue and
lood phases and the blood mean temperature can be written as


�1 = �t,1 − �b,1 = ��b,i − �t,i�
e��1−�� − e��1+��

e2� − 1

+
2�1 + ��b,i + �t,i� + �1 + ���1

�1 + ��Bi1
	1 −

e�� + e��1−��

1 + e� 

�40�

�b,1,m = �2�2 + 2��b,i + 2�t,i + �1 + ���1�
�3��1 + ��

+
�b,i − �t,i

��1 + ���� e� − 1

e� + 1
�

+
− 1 + 2��b,i + 2�t,i

6�1 + ��
−

1

�2��1 + ��

	
2 + 2��b,i + 2�t,i + �1 + ���1� �41�
2.5.1.2 Second layer.

ournal of Heat Transfer
�b,2 =
1

��b + �t�
��1 + 2��b,i + 2�t,i�	�− D

2
� + D + 1�� − 1 −

D

2

+
D�t

2

Bi2��b + �t�

 + �t��b,i − �t,i +

�2

Bi2

−
D�t�1 + 2��b,i + 2�t,i�

Bi2��b + �t�
�� e����−1� + e���1+�2/D�−��

e2��/D + 1
�

+ �b�b,i + �t�t,i −
�t�2

Bi2
� �42�

�t,2 =
1

��b + �t�
��1 + 2��b,i + 2�t,i�	�− D

2
� + D + 1�� − 1 − D/2

−
D�b�t

Bi2��b + �t�

 − �b��b,i − �t,i +

�2

Bi2

−
D�t�1 + 2��b,i + 2�t,i�

Bi2��b + �t�
�� e����−1� + e���1+�2/D�−��

e2��/D + 1
�

+ �b�b,i + �t�t,i +
�b�2

Bi2
� �43�

where

�� =��b + �t

�b�t
Bi2 �44�

Based on the above results, the temperature difference between
the tissue and blood phases for the second layer is obtained as


�2 = �t,2 − �b,2 = − ��b,i − �t,i +
�2

Bi2
−

D�t�1 + 2��b,i + 2�t,i�
Bi2��b + �t�

�
	� e����−1� + e���1+�2/D�−��

e2��/D + 1
� −

D�t�1 + 2��b,i + 2�t,i�
Bi2��b + �t�

+
�2

Bi2

�45�

Finally, the mean blood temperature for the second layer can be
written as
�b,2,m = D�t�Bi2��b + �t���b,i − �t,i� − D�t�1 + 2��b,i + 2�t,i� + ��b + �t��2

��Bi2��b + �t�2 � e2��/D − 1

e2��/D + 1
+ �1 + 2��b,i + 2�t,i�	 1

3D��b + �t�
+

D�t
2

Bi2��b + �t�2

+

�b�b,i + �t�t,i

�b + �t
−

�t�2

Bi2��b + �t�
�46�

2.5.1.3 Interface blood and tissue temperatures. To evaluate the blood and tissue temperatures at the interface of the layers ��b,i and
t,i�, two equations are required. One of these equations is obtained based on the fully developed temperature profile subject to a
niform heat flux on one side and an insulated condition on the other side. This results in

1 + 2��b,i + 2�t,i =
��cpua�1D1D2�1 − �2�q̇gen,2 − ��cpua�2D2�qs + D1�1 − �1�q̇gen,1�

qs���cpua�2D2 + ��cpua�1D1�
�47�
MARCH 2010, Vol. 132 / 031101-5
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The other equation is obtained by utilizing the derived analyti-
al solution for a single layer �7�. The temperature profiles for the
lood and tissue phases in a double layer �present work� are taken
o be the same as those in a single layer �7�, within the distance of

1 from the surface subject to an imposed heat flux. Rewriting the
eveloped equations for a single layer �7� in the present coordi-

ate system �0���1+ �1 /D�� gives

nd
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�t,i − �b,i =

D1

�D1 + D2�
+ �1 + ���1

�1 + ��Bi1
�1 −

e� + e��1+�2D2/D1��

1 + e2��1+�D2/D1�� �
�48�
The above two equations �Eqs. �59� and �60�� result in
�t,i =
1

2�1 + ��
� ��cpua�1D1D2�1 − �2�q̇gen,2 − ��cpua�2D2�qs + D1�1 − �1�q̇gen,1�

qs���cpua�2D2 + ��cpua�1D1�

+ 2�
D1 + �1 + ���D1 + D2��1

�1 + ���D1 + D2�Bi1
�1 −

e� + e��1+�2D2/D1��

1 + e2��1+�D2/D1�� � − 1� �49�

�b,i =
1

2�1 + ��	 ��cpua�1D1D2�1 − �2�q̇gen,2 − ��cpua�2D2�qs + D1�1 − �1�q̇gen,1�
qs���cpua�2D2 + ��cpua�1D1�

− 1
 −
D1 + �1 + ���D1 + D2��1

�1 + ��2�D1 + D2�Bi1
�1 −

e� + e��1+�2D2/D1��

1 + e2��1+�D2/D1�� �
�50�

The dimensional blood mean temperature and the body organ surface temperature, which is subject to an imposed heat flux, are
erived to be

Tb,1,m =
qs + �1 − �1�D1q̇gen,1 + D2�1 − �2�q̇gen,2

��cpua�2D2 + ��cpua�1D1
x + Ta,1 �51�

Tb,2,m =
qs + D1�1 − �1�q̇gen,1 + �1 − �2�D2q̇gen,2

��cpua�2D2 + ��cpua�1D1
x + Ta,2 �52�

Ts = −
qsD1

kt,eff,1
�� 4�e� − 1�

�3��e� + 1�
+

1

3
−

2

�2�
� ��cpua�1D1�− qs + D2�1 − �2�q̇gen,2� − ��cpua�2D2�2qs + D1�1 − �1�q̇gen,1�

2qs�1 + �����cpua�2D2 + ��cpua�1D1�

+ �2�2 + �1 + ���1�
�3��1 + ��

−
D1 + �1 + ���D1 + D2��1

��1 + ��2�D1 + D2�Bi1
�1 −

e� + e��1+�2D2/D1��

1 + e2��1+�D2/D1�� ��� e� − 1

e� + 1
� −

1

6�1 + ��
−

2 + �1 + ���1

�2��1 + ��
�

+
qs + �1 − �1�D1q̇gen,1 + D2�1 − �2�qgen,2

��cpua�2D2 + ��cpua�1D1
x + Ta,1 �53�

he Nusselt number can be represented as

Nus =
hsDh

kb,eff,1
=

− 2

��b,1,m
�1 +

1

D
�

=

− 2

�
�1 +

1

D
�

��2�2 + 2��b,i + 2�t,i + �1 + ���1�
�3��1 + ��

+
�b,i − �t,i

��1 + ���� e� − 1

e� + 1
� +

− 1 + 2��b,i + 2�t,i

6�1 + ��
−

1

�2��1 + ��
�2 + 2��b,i + 2�t,i + �1 + ���1��

�54�

2.5.2 Model II: Uniform Core Temperature

2.5.2.1 First layer.

�b,1 =
1

�1 + �����b,i + �t,i + 1

2
�2 +

��b,i + �t,i − 1

2
� −

1

Bi1
���b,i + �t,i + 1

1 + �
+ �1�	1 −

�e�� + e��1−���
�1 + e�� 


+ ��b,i − �t,i�
e��1+�� − e��1−��

e2� − 1
� �55�

�t,1 =
1

�1 + �����b,i + �t,i + 1

2
�2 +

��b,i + �t,i − 1

2
� +

�

Bi1
���b,i + �t,i + 1

1 + �
+ �1�	1 −

�e�� + e��1−���
�1 + e�� 


− ���b,i − �t,i�
e��1+�� − e��1−��

e2� − 1
� �56�

here

� = �Bi1�1 + ��/� �57�
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�1 = �t,1 − �b,1 =
1

Bi1
���b,i + �t,i + 1

1 + �
+ �1�	1 −

�e�� + e��1−���
�1 + e�� 
 − ��b,i − �t,i�

e��1+�� − e��1−��

e2� − 1
�58�

�b,1,m =
1

�1 + ������b,i + �t,i + 1�� 5

12
−

1

Bi1�1 + ��	1 −
2�e� − 1�
��1 + e��
� −

�1

Bi1
	1 −

2�e� − 1�
��1 + e��
 +

��b,i − �t,i��e� − 1�
��1 + e��

−
1

2
� �59�

2.5.2.2 Second layer.

�b,2 =
A�e���1+�2/D�−�� − e����−1�� + B�e���1+�1/D�−�� − e����1/D�−1+���

�e�2��/D� − 1�
+ �D2

2
�c −

D�D�b + ��
2��b + �t�

�b,i −
D�D�t + 1�
2��b + �t�

�t,i��2

+ 	D�0.5 − D��c +
�b,i

�b + �t
�− �bD + �D + 0.5��D�b + �1�� +

�t,i

�b + �t
�− D�t + �D + 0.5��D�t + 1��
�

− �c� D2�t
2

Bi2��b + �t�
+

D

2
�1 − D�� +

�b,i

�b + �t�−
D�b�t�D�b + ��

Bi2��b + �t�
+

D�t�D�b + ��
Bi2

+

�b�1 + D� −
�1 + D�

2
�D�b + �� �

+
�t,i

�b + �t
�−

D�b�t�D�t + 1�
Bi2��b + �t�

+
D�t�D�t + 1�

Bi2
−

�1 + D�
2

�D�t + 1� + �t�1 + D�� −
�t�2

Bi2��b + �t�
�60�

�t,2 =
A��e���1+�2/D�−�� − e����−1�� + B��e���1+�1/D�−�� − e����1/D�−1+���

�e�2��/D� − 1�
+ �D2

2
�c −

D�D�b + ��
2��b + �t�

�b,i −
D�D�t + 1�
2��b + �t�

�t,i��2

+ 	D�0.5 − D��c +
�b,i

�b + �t
�− �bD + �D + 0.5��D�b + �1�� +

�t,i

�b + �t
�− D�t + �D + 0.5��D�t + 1��
� + �c� D2�b�t

Bi2��b + �t�
+

D

2
�D − 1��

−
�b,i

�b + �t�
D�b�t�D�b + ��

Bi2��b + �t�
+

D�D�b + ��
2

−

�b�1 + D� +
D�b + �

2
� −

�t,i

�b + �t
�D�b�t�D�t + 1�

Bi2��b + �t�
+

D�D�t + 1�
2

+
D�t + 1

2
− �t�1 + D�� +

�b�2

Bi2��b + �t�
�61�


�2 = �t,2 − �b,2 =
A��e���1+�2/D�−�� − e����−1�� + B��e���1+�1/D�−�� − e����1/D�−1+���

�e�2��/D� − 1�
+

�tD
2

Bi2
�c −

D�t�D�b + ��
Bi2��b + �t�

�b,i −
D�t�D�t + 1�
Bi2��b + �t�

�t,i +
�2

Bi2

�62�
here

A =
�t

�b + �t
	 �tD

2

Bi2
�c + �1 −

D�t�D�b + ��
Bi2��b + �t�

��b,i

− �1 +
D�t�D�t + 1�
Bi2��b + �t�

��t,i +
�2

Bi2

 �63�

B =
�t

��b + �t�Bi2
	− �tD

2�c +
D�t�D�b + ��

��b + �t�
�b,i +

D�t�D�t + 1�
��b + �t�

�t,i

− �2
 �64�

A� =
�t

�b + �t
	−

�bD2

Bi2
�c + �−

�b

�t
+

D�b�D�b + ��
Bi2��b + �t�

��b,i

+ � �b

�t
+

D�b�D�t + 1�
Bi2��b + �t�

��t,i −
�b�2

Bi2�t

 �65�

B� =
�t

�b + �t
	 �bD2

Bi2
�c −

D�b�D�b + ��
Bi2��b + �t�

�b,i −
D�b�D�t + 1�
Bi2��b + �t�

�t,i

+
�b�2
 �66�

Bi2�t
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A� = −
�tD

2

Bi2
�c + �D�t�D�b + ��

Bi2��b + �t�
− 1��b,i + �D�t�D�t + 1�

Bi2��b + �t�
+ 1��t,i

−
�2

Bi2
�67�

B� =
�tD

2

Bi2
�c −

D�t�D�b + ��
Bi2��b + �t�

�b,i −
D�t�D�t + 1�
Bi2��b + �t�

�t,i +
�2

Bi2
�68�

�� =��b + �t

�b�t
Bi2 �69�

2.5.2.3 Interface blood and tissue temperatures. Blood and
tissue temperatures at the interface of the layers ��b,i and �t,i� can
be evaluated by utilizing the boundary condition given by Eq.
�21�, the derived analytical solution for one layer hyperthermia for
the equivalent case �7�, and the derived profiles for blood and

tissue in each layer. This results in
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0

�t,i =
1

2�1 + �� + D��b + �t�� �2� + D�b�	�1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1


�1 + ��Bi1�1 +
1

D
�2 �1 −

e� + e�/D

1 + e��1+�1/D��� + D��b + �t��c − 1� �70�

�b,i =
1

2�1 + �� + D��b + �t��−

�2 + D�t�	�1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1


�1 + ��Bi1�1 +
1

D
�2 �1 −

e� + e�/D

1 + e��1+�1/D��� + D��b + �t��c − 1� �71�

The dimensional blood mean temperature, body organ surface temperature, and heat exchange rate represented by a Nusselt number
t the body organ surface, which is subjected to an imposed heat flux, are derived to be

Tb,1,m =
qsx

��cpua�1D1�2�1 + ��+
D��b + �t�

��D��b + �t��1 + �1 + ���c� + � + 1 + D��b − ��t�� �1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1

�1 + ��Bi1�1 +
1

D
�2 �

	 �1 −
e� + e�/D

1 + e��1+�1/D���� +
�1 − �1�q̇gen,1

��cpua�1
x + Ta,1 �72�

Tb,2,m =
qsx

��cpua�2D2�2�1 + ��+
D��b + �t�

��D��b + �t��1 + �1 + ���c� + � + 1 + D��b − ��t�� �1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1

�1 + ��Bi1�1 +
1

D
�2 �

	 �1 −
e� + e�/D

1 + e��1+�1/D���� +
�1 − �2�q̇gen,2

��cpua�2
x + Ta,2 �73�

Ts =
qsx

��cpua�1D1�2�1 + �� + D��b + �t���D��b + �t��1 + �1 + ���c� + � + 1 + D��b − ��t�� �1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1

�1 + ��Bi1�1 +
1

D
�2 �

	 �1 −
e� + e�/D

1 + e��1+�1/D���� −
qsD1

kt,eff,1�1 + ���
� 5

12
−

1

Bi1�1 + ��	1 −
2�e� − 1�
��1 + e��
� −

�1

Bi1
	1 −

2�e� − 1�
��1 + e��


−
	�1 + ����c + �1�1 +

1

D
�2� +

1

D
+ 1
�1 −

e� + e�/D

1 + e��1+�1/D����e� − 1�

�1 + ���Bi1�1 + e���1 +
1

D
�2 −

1

2� +
�1 − �1�q̇gen,1

��cpua�1
x + Ta,1 �74�

us =
hsDh

kb,eff,1

=
− 2

��b,1,m
�1 +

1

D
�

=

− 2

�
�1 +

1

D
�

1

�1 + ���
� 5

12
−

1

Bi1�1 + ��
	1 −

2�e� − 1�

��1 + e��

� −

�1

Bi1
	1 −

2�e� − 1�

��1 + e��

 −

	�1 + ����c + �1�1 +
1

D
�2� +

1

D
+ 1
�1 −

e� + e�/D

1 + e��1+�1/D����e� − 1�

�1 + ���Bi1�1 + e���1 +
1

D
�2

−
1

2�
�75�
here
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2�1 + �� + D��b + �t��D��b + �t��1 + �1 + ���c� + � + 1 + D��b − ��t�� �1 + ����c + �1�1 +
1

D
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Fig. 2 Comparison of the temperature profiles obtained from double layer analytical solution with similar properties
„utilizing two equation modeling… with those obtained from a single layer model †7‡ for blood and tissue phases with model
I „isolated core region… for �=0.111, �b=0.111, �t=1, ε1=ε2=0.1 and Bi1=Bi2=10, „a… D=1, „b… D=2, and „c… D=1/2
2.6 Simplified Solution. A simplified solution can be ob-
ained by assuming thermal equilibrium between the blood and
issue phases, i.e., �1=�b,1=�t,1 and �2=�b,2=�t,2. Adding the en-
rgy equations and utilizing the boundary conditions �Eqs.
15�–�32��, and following the same procedure described for the
onequilibrium model, the blood and tissue temperature distribu-
ions and the Nusselt number are obtained as follows:

For model I (isolated core region):
nd

ournal of Heat Transfer
�b,1 = �t,1 =
�

1 + �
��1 + �1 + ���i�� − 1� �77�

�b,2 = �t,2 =
1 + 2�1 + ���i

2��b + �t�
	D�− � + 2�1 +

1

D
��� − D − 2
 + �i

�78�
where
�i =
��cpua�1D1�− qs + q̇gen,2�1 − �2�D2� − ��cpua�2D2�2qs + q̇gen,1�1 − �1�D1�

2qs�1 + �����cpua�1D1 + ��cpua�2D2�
�79�
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��i +

1

3��b + �t�D
�81�

T1,m =
qs + q̇gen,1�1 − �1�D1 + q̇gen,2�1 − �2�D2

��cpua�1D1 + ��cpua�2D2
x + Ta,1 �82�

T2,m =
qs + q̇gen,1�1 − �1�D1 + q̇gen,2�1 − �2�D2

��cpua�1D1 + ��cpua�2D2
x + Ta,2 �83�

Ts =
qs + D1�1 − �1�q̇gen,1 + q̇gen,2�1 − �2�D2

��cpua�1D1 + ��cpua�2D2
x +

qsD1

6�1 + ��kt,eff,1
+ Ta,1

−
D1

3kt,eff,1
� ��cpua�1D1�− qs + q̇gen,2�1 − �2�D2� − ��cpua�2D2�2qs + q̇gen,1�1 − �1�D1�

2�1 + �����cpua�1D1 + ��cpua�2D2�
� �84�

Nus =
hsDh

kb,eff,1
=

− 2

��b,1,m
�1 +

1

D
� =

12qs

�1 + ��
�

���cpua�1D1 + ��cpua�2D2��1 +
1

D
�

��cpua�1D1�2qs − q̇gen,2�1 − �2�D2� + ��cpua�2D2�3qs + q̇gen,1�1 − �1�D1�
�85�

nd for model II (uniform core temperature):

�b,1 = �t,1 =
� ��1 + �1 + ���i��� + 1� − 1� �86�

Fig. 3 Comparison of the temperature profiles obtained from double layer analytical solution with similar properties
„utilizing one equation modeling… with those obtained from a single layer model †7‡, for model I „isolated core region… with
�=0.111, �b=0.111, �t=1, ε1=ε2=0.1 and Bi1=Bi2=10, „a… D=1, „b… D=2, and „c… D=1/2
1 + � 2

31101-10 / Vol. 132, MARCH 2010 Transactions of the ASME



w

a

3

v
p
s
d
t
i
m
w
t
l
t
p
v
b
e
M

J

�b,2 = �t,2 =
D��� − 2�

2
�D��c − �i� −

1 + �

�b + �t
�i� +

�

2
�D��c − �i� +

1 + �

�b + �t
�i� +

D�D − 1�
2

��c − �i� + �1 −
1 + D

2

1 + �

�b + �t
��i �87�
here

�i =
D��b + �t��c − 1

D��b + �t� + 2�1 + ��
�88�
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12D��b + �t�
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T1,m =
1

��cpua�1D1
� D��b + �t��c − 1

D��b + �t� + 2�1 + ��
qs�1 + ��

+ qs + q̇gen,1�1 − �1�D1�x + Ta,1 �91�
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1

��cpua�2D2

	� 1 − D��b + �t��c

D��b + �t� + 2�1 + ��
qs�D��b + �t� + � + 1�+

qsD��b + �t��c + q̇gen,2�1 − �2�D2
�x + Ta,2
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Ts =
x

��cpua�1D1
�qs�1 + ���D��b + �t��c − 1�

D��b + �t� + 2�1 + ��

+ qs + q̇gen,1�1 − �1�D1� +
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D��b + �t� + 2�1 + ��

+
1

1 + �
� + Ta,1 �93�

Nus =
hsDh

kb,eff,1
=

− 2

��b,1,m
�1 +

1

D
� =

− 24

�
�1 +

1

D
�

5�D��b + �t��c − 1�
D��b + �t� + 2�1 + ��

−
1

1 + �

�94�

Results and Discussions
The presented analytical expressions allow for incorporating

ariations in the representative volume fraction as well as various
hysical attributes. Comparing temperature profiles for any of the
ingle layers with the available data in the literature provided
etailed validations. Exact solutions for forced convective flow
hrough a channel filled with a porous medium and subject to an
mposed heat flux �which is equivalent to the isolated core region

odel without a metabolic heat generation� were presented in the
orks of Lee and Vafai �33� and Marafie and Vafai �37�. As such,

he tissue and blood temperature profiles were compared with ana-
ytical correlations obtained by Lee and Vafai �33�. The tempera-
ure distributions were found to be in excellent agreement for both
hases with the results presented by Lee and Vafai �33� for a
ariety of blood-tissue interstitial heat exchange parameters. The
lood and tissue temperature profiles were also found to be in
xcellent agreement with the analytical and numerical results of

arafie and Vafai �37�. Numerical results based on an implicit,

ournal of Heat Transfer
pressure-based, cell-centered finite volume method, second order
upwinding and under relaxation, was also compared with the ob-
tained analytical temperature distribution for single layer model
for both isolated and uniform core temperature condition models.
These comparisons were found to be in excellent agreement and
were presented in some detail in the works of Mahjoob and Vafai
�7�. The temperature profiles obtained from the present analytical
correlations can effectively predict the tissue and blood tempera-
tures. The temperature distribution is very crucial for an effective
thermal therapy such as hyperthermia cancer treatment. Based on
the cited values in the literature �26�, a typical volume fraction of
0.1 for the vascular system is utilized. However, the present es-
tablished analytical expressions allow for incorporating variations
in the representative volume fraction as well as various physical
attributes. Figures 2�a�–2�c� represent the blood and tissue tem-
perature profiles for a dual layer region, incorporating isolated
core region for different layer thickness ratio �D�. Since the physi-
cal properties of both layers is the same, the profiles have been
compared with the profiles obtained from the exact solutions for a
single layer with equivalent properties �7�. The comparison indi-

Fig. 4 Comparison of the temperature profiles obtained from
the first layer of the double layer analytical solution with those
obtained from a single layer model †7‡ for model II „uniform
core temperature… with �=0.111, �b=0.111, �t=1, ε1=ε2=0.1,
and Bi1=Bi2=10, utilizing „a… two equation and „b… one equation

models
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ates an excellent agreement in all cases. In Figs. 3�a�–3�c�, the
emperature profiles for each layer of the double layer analytical
olution �utilizing one equation model� are compared with those
btained for the single layer model �7�, for model I �isolated core
egion�, under equivalent conditions. The comparisons also indi-
ate a very good agreement.

The temperature profiles obtained from model II �uniform core
emperature� are presented in Fig. 4. Tissue and blood temperature
rofiles obtained for the first of the double layer analytical solu-
ion �utilizing the two equation model� are compared with those
btained for the single layer model �7� under the equivalent con-
itions. The comparison displays a very good agreement. Com-
arison is also done for the case of one equation model, further
alidating the present analytical solution �Fig. 4�b��.

Figure 5 displays the effect of vascular volume fraction on the
lood and tissue temperature profiles in a dual layer biological
edia. An increase in the volume fraction, in the cases with uni-

orm vascular volume fraction in both layers, results in a more
niform temperature profile through the layers, possibly leading to
more effective hyperthermia treatment. It should be noted that a

hange in the vascular volume fraction also translates in a change
n the blood and tissue effective thermal conductivities. The body
egulates the temperature during hyperthermia treatment by utiliz-
ng the arterial blood, while modifying the vascular volume frac-
ion of the biological structure. The natural body thermal regula-
ion system increases or decreases the vascular volume fraction of
he biological structure when exposed to a higher or lower tem-
erature, respectively. The physical attributes obtained from this
nalytical solution can be used to improve the efficiency of ther-

ig. 5 The effect of vascular volume fraction variation in bio-
ogical layers, for model I „isolated core region…, for similar
lood and tissue properties in the layers, D=1, Bi1=Bi2=10,
1 / „1−ε1…=�2 / „1−ε2…=0.55, „a… tissue phase, „b… blood phase
al therapy techniques. An increase in the vascular volume frac-

31101-12 / Vol. 132, MARCH 2010
tion of the second layer increases the nonuniformity in tempera-
ture profiles. However, the tissue and blood temperature
uniformity is more prominently affected by the vascular volume
fraction of the first layer, which is subject to the imposed heat
flux.

Figure 6 represents the effect of metabolic heat generation on
the blood and tissue temperature profiles. As can be seen the meta-
bolic heat generation has more pronounced effect on the nondi-
mensional blood phase since temperature rise in the tissue phase
and organ’s surface is higher than that of the blood phase. As
such, a larger heat generation ratio results in higher temperatures
in the organ as well as the blood within it and more distinct
temperature nonuniformity. The effect of variable heat generation
on the biological layers is also presented in Fig. 6. In the previous
works by authors, the effects of thermal conductivities of the tis-
sue and blood phases and the nondimensional Biot number �Bi�
have been discussed extensively �7,33,48–50�.

4 Conclusions
A detailed analysis of bioheat transport through dual layer bio-

logical media is presented in this work for the first time. These
analytical solutions enable an understanding of heat transfer pro-
cesses and temperature distributions within biological media,
which are key issues in thermal therapy techniques. The compre-
hensive analytical solutions represent the blood and tissue tem-
perature distributions as well as the Nusselt number correlations
for two primary conditions, namely, isolated core region and uni-
form core temperature. The analytical solutions encompass vari-

Fig. 6 The effect of metabolic heat generation in biological
layers, for model I „isolated core region…, for similar blood and
tissue properties in the layers, D=1, �=0.111, �b=0.111, �t=1,
ε1=ε2=0.1, Bi1=Bi2=10, „a… tissue phase, „b… blood phase
ous pertinent parameters such as the volume fraction of the vas-
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ular system, the blood and tissue thermal conductivities,
nterfacial blood-tissue heat exchange, metabolic heat generation,
issue/organ depth, arterial velocity and temperature, body core
emperature, imposed hyperthermia heat flux, and the blood’s
hysical properties. Analytical solutions are also presented for a
implified case corresponding to local thermal equilibrium be-
ween the blood and tissue phases. The comparisons, utilizing
oth local thermal nonequilibrium and equilibrium assumptions,
ndicate an excellent agreement. The effect of the variable vascu-
ar volume fraction and metabolic heat generation within the bio-
ogical media is also discussed.

omenclature
atb 
 specific surface area �m−1�
Bi 
 Biot number, htbatbD1

2 /kt,eff,1
cp 
 blood specific heat �J kg−1 K−1�

D1 
 depth of the first layer of tissue/organ �m�
D2 
 depth of the second layer of tissue/organ �m�
D 
 nondimensional parameter for depth, D1 /D2

Dh 
 hydraulic diameter of the channel, 2�D1+D2�
�m�

htb 
 blood-tissue interstitial heat transfer coefficient
�W m−2 K−1�

hs 
 surface heat transfer coefficient for the thermal
nonequilibrium model, qs / �Ts-Tb,m,1�
�W m−2 K−1�

kb,eff 
 effective thermal conductivity of the blood
phase �W m−1 K−1�

kt,eff 
 effective thermal conductivity of the tissue
phase �W m−1 K−1�

Nus 
 Nusselt number at the organ’s surface
q 
 heat flux �W m−2�

qs 
 heat flux at the body organ surface �W m−2�
q̇gen 
 heat generation within the biological tissue

�W m−3�
T 
 temperature �K�

Ta 
 arterial blood temperature entering the organ
�K�

Tb,m 
 blood mean temperature �K�
Tc 
 body core temperature �K�
Ts 
 temperature of the body organ surface subject

to an imposed heat flux �K�
ua 
 arterial blood velocity entering the tissue layer

�m s−1�
x 
 longitudinal coordinate �m�
y 
 transverse coordinate �m�

reek Symbols
� 
 nondimensional transverse coordinate, y /D1
� 
 nondimensional heat generation within the bio-

logical tissue, �1−��D1q̇gen /qs

� 
 ratio of the effective blood thermal conductiv-
ity to that of the tissue in the first layer,
kb,eff,1 /kt,eff,1

� 
 blood density �kg m−3�
�b 
 nondimensional effective blood thermal con-

ductivity of the second layer, kb,eff,2 /kt,eff,1
�t 
 nondimensional effective tissue thermal con-

ductivity of the second layer, kt,eff,2 /kt,eff,1
� 
 parameter, �Bi1�1+�� /�

�� 
 parameter, ���b+�t�Bi2 /�b�t

� 
 nondimensional temperature,
kt,eff,1�T−Ts� /qsD1

�b,m 
 nondimensional blood mean temperature
�c 
 nondimensional body core temperature,
kt,eff,1�Tc−Ts� /qsD1

ournal of Heat Transfer

� 
 nondimensional temperature difference be-
tween tissue and blood phases

� 
 blood perfusion rate �s−1�

Subscripts/Superscripts
1 
 first layer
2 
 second layer
B 
 blood phase

b ,m 
 blood mean
c 
 body core

eff 
 effective property
j 
 indicator
s 
 body organ surface subject to an imposed heat

flux
t 
 tissue phase

Symbol
� � 
 intrinsic volume average of a quantity
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