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Transient Aspects of Heat Flux
Bifurcation in Porous Media: An
Exact Solution
The transient thermal response of a packed bed is investigated analytically. A local
thermal nonequilibrium model is used to represent the energy transport within the porous
medium. The heat flux bifurcation phenomenon in porous media is investigated for tem-
poral conditions and two primary types of heat flux bifurcations in porous media are
established. Exact solutions are derived for both the fluid and solid temperature distri-
butions for the constant temperature boundary condition. The fluid, solid, and total Nus-
selt numbers during transient process are analyzed. A heat exchange ratio is introduced
to estimate the influence of interactions between the solid and fluid phases through
thermal conduction at the wall within the heat flux bifurcation region. A region where the
heat transfer can be described without considering the convection contribution in the
fluid phase is found. The two-dimensional thermal behavior for the solid and fluid phases
is also analyzed. The temporal temperature differential between the solid and fluid is
investigated to determine the domain over which the local thermal equilibrium model is
valid. In addition, the characteristic time for reaching steady state conditions is
evaluated. �DOI: 10.1115/1.4003047�

Keywords: porous media, heat flux bifurcation, transient heat transfer, local thermal
nonequilibrium, analytical solution
Introduction
Porous media are used to transport and store energy in many

ndustrial applications such as heat pipe, solid matrix heat ex-
hangers, electronic cooling, and chemical reactors. For a solar
ollector with air or water as the working fluid, a porous medium
an provide an effective means for thermal energy storage. During
he period of charging and recovery, transient thermal response
spects of the process for the packed bed are of major concerns.

Local thermal equilibrium �LTE� and local thermal nonequilib-
ium �LTNE� models are the two primary ways for representing
eat transfer in a porous medium. Although LTE model is more
onvenient to use, more and more studies have suggested that LTE
odel is not valid for some problems such as storage of thermal

nergy, or heat transfer in porous media with internal heat genera-
ion. In these cases, the LTNE model should be used for solid and
uid phases in porous media �1–3�.
Many studies have focused on the transient flow and heat trans-

er in porous media. Schumann �4� presented an early analytical
olution for transient temperature distribution of a semi-infinite
orous prism that is initially at a uniform temperature and the
ides of the prism were adiabatic. Using a LTNE model, in which
he diffusion terms in both the transverse and axial directions were
eglected, the fluid and solid temperatures were found as a func-
ion of the axial position and time. Riaz �5� investigated the tran-
ient response of packed bed thermal storage system, and com-
ared the analytical solutions obtained from simplified LTE and
TNE models, in which Schumann results were used and the tran-
ient term in fluid phase was ignored. It is obvious that the tran-
ient term in fluid phase should be considered for many types of
pplications. Spiga and Spiga �6� analytically investigated the dy-
amic response of porous media and packed beds systems to an
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arbitrary time varying inlet temperature using a LTNE model, in
which the diffusion terms in both the transverse and axial direc-
tions were neglected. The temperature responses for step, ramp,
and periodic varying inlet temperatures were discussed.

Using a perturbation technique, Kuznetsov �7� presented inter-
esting and important aspects of the temperature difference be-
tween solid and fluid phases in a semi-infinite packed bed based
on a LTNE model, in which the diffusion terms in transverse
directions in both the fluid and solid phases were neglected. Kuz-
netsov �7� established that the temperature difference between the
fluid and solid phases forms a thermal wave localized in space.
Using the same technique, Kuznetsov �8� presented an analytical
solution for a packed bed subject to a constant temperature con-
dition at the walls, in which the dimensionless solid phase tem-
perature was considered to differ from the fluid phase temperature
by a small perturbation. It was shown that the transient component
of the temperature difference between the fluid and solid phases
describes a wave propagating in the axial direction from the fluid
inlet boundary.

Hendal et al. �9� presented an analytical solution for the tran-
sient thermal behavior of a two dimensional circulating porous
bed based on a LTE model. Their findings showed that the tem-
perature propagates throughout the bed in a wavelike form and
approach steady state results for large values of time. Beasley and
Clark �10� developed a numerical model to predict the transient
response of a packed bed based on the LTNE model, in which the
diffusion terms in both the transverse and axial directions in the
solid phase were neglected. Their numerical results compared fa-
vorably with the experimental measurement of temperature distri-
bution in a packed bed of uniform spheres with air as working
fluid. Amiri and Vafai �3� presented a comprehensive investigation
of the transient response within a packed bed. The temporal im-
pact of the non-Darcian terms and the thermal dispersion effects
on energy transport were investigated, and the range of the valid-
ity for LTE condition was established in detail.

In the present work, the LTNE model is employed to represent
the energy transport within a porous medium. Two primary types

of heat flux bifurcations in porous media are investigated for tem-
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oral conditions. Heat transfer performances in terms of the fluid,
olid, and total Nusselt number are presented. Qualitative analyses
f the effects of thermal conduction at the wall on the total heat
xchange between the solid and fluid phases within the heat flux
ifurcation region are also performed. Both the transient and dif-
usion aspects are considered in the solid and fluid phases along
ith the convection and the fluid-solid interaction. The analytical

olution for transient response of a packed bed subject to a con-
tant temperature boundary condition is derived. The heat flux
ifurcation phenomenon in porous media is investigated for tem-
oral conditions, and the analytical two-dimensional thermal be-
avior and the LTE model is examined under transient conditions.
urthermore, the response time toward steady state conditions is

nvestigated.

Modeling and Formulation
The schematic diagram of the problem is shown in Fig. 1. Fluid

ows through a rectangular channel filled with a porous medium
ubject to a constant temperature boundary condition. The height
f the channel is 2H and the temperature at the wall is Tw. The
ollowing assumptions are invoked in the analyzing this problem.

�1� The flow is incompressible and represented by the Darcian
flow model.

�2� Natural convection and radiative heat transfer are negli-
gible.

�3� Axial heat conduction in both the solid and fluid phases are
negligible.

�4� Properties such as specific heat, density, and thermal con-
ductivity, as well as porosity are assumed to be constant.

2.1 Governing Equation and Boundary and Initial
onditions. Based on these assumptions, the following governing

quations are obtained from the work of Amiri and Vafai �3� em-
loying the local thermal nonequilibrium model.
luid phase

�
�� f

��
+

�� f

��
= k

�2� f

��2 + ��s − � f� �1�

olid phase

��s

��
=

�2�s

��2 − ��s − � f� �2�

oundary conditions

� f��=�1
= �s��=�1

= 0 �3a�

� �� f

��
�

�=0

= � ��s

��
�

�=0

= 0 �3b�

� f��=0 = �in �3c�

ig. 1 Schematic diagram for transport through a channel
lled with a porous medium and the corresponding coordinate
ystem
nitial conditions
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� f��=0 = �s��=0 = 1 �4�

where

� =
xhi�

� fcfu
� =

t

�1 − ���scs/�hi��

� =
y

�ks,ef f/�hi��
, �1 =

H
�ks,ef f/�hi��

= �Bi where Bi =
hi�H2

ks,ef f

� =
�� fcf

�1 − ���scs
, k =

kf ,ef f

ks,ef f
, � =

T − Tw

T0 − Tw
�5�

2.2 Solution Methodology. The nondimensional fluid and
solid temperature distributions, � f�� ,� ,�� and �s�� ,� ,�� are rep-
resented as

� f��,�,�� = Uf��,��V��� �6�

�s��,�,�� = Us��,��V��� �7�
Substituting Eqs. �6� and �7� into Eqs. �1� and �2� along with the

boundary conditions and applying the separation of variables and
Laplace transformation yield

� f��,�,�� = �
n=0

	

Ufn��,��cos�sn�� �8�

�s��,�,�� = �
n=0

	

Usn��,��cos�sn�� �9�

where

sn =
�n + 0.5�


�1
, n = 0,1,2, . . . �10�

�mWfn − �
2 sin�sn�1�

sn�1
+

�Wfn

��
− �Wsn − Wfn� = − sn

2kWfn

�11�

mWsn −
2 sin�sn�1�

sn�1
+ �Wsn − Wfn� = − sn

2Wsn �12�

where Wsn and Wfn are the Laplace transformations of Usn and
Ufn, respectively, given by

Wsn =	
0

	

Usne−m�d� �13�

Wfn =	
0

	

Ufne−m�d� �14�

Solving Eqs. �11� and �12� yields

Wfn = 
�in

m
−

��1 + m + sn
2� + 1

��m + sn
2k + 1��1 + m + sn

2� − 1
�2 sin�sn�1�

sn�1

�exp
− ��m + sn
2k + 1 −

1

1 + m + sn
2��

+
��1 + m + sn

2� + 1

��m + sn
2k + 1��1 + m + sn

2� − 1

2 sin�sn�1�
sn�1

�15�

By utilizing inverse Laplace transform, Usn and Ufn are ob-
tained as

Usn = ��s1 + �s2 + �s3 + �s4 + �s5 + �s6�
2 sin�sn�1�

�16�

sn�1
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Ufn = �� f1 + � f2 + � f3 + � f4 + � f5�
2 sin�sn�1�

sn�1
�17�

here

�s1 = �inf�p0�

�s2 = − � p1

p1 − p2
+

�sn
2 + � + 1

��p1 − p2�
 f�p1�

�s3 = − � p2

p2 − p1
+

�sn
2 + � + 1

��p2 − p1�
 f�p2�

�s4 = 
 1

p1 − p2
+

1

��p1 − p2��p1 + sn
2 + 1��exp�p1��

�s5 = 
 1

p2 − p1
+

1

��p2 − p1��p2 + sn
2 + 1��exp�p2��

�s6 = 
1 +
1

��p1 + sn
2 + 1��p2 + sn

2 + 1��exp�− �sn
2 + 1���

� f1 = �ing�p0�

� f2 = − � p1

p1 − p2
+

�sn
2 + � + 1

��p1 − p2�
g�p1�

� f3 = − � p2

p2 − p1
+

�sn
2 + � + 1

��p2 − p1�
g�p2�

� f4 = 
 p1

p1 − p2
+

�sn
2 + � + 1

��p1 − p2� �exp�p1��

� f5 = 
 p2

p2 − p1
+

�sn
2 + � + 1

��p2 − p1� �exp�p2��

f�p� = exp�− �ksn
2 + 1�� + p�� − ����	

0

�

I0�2��t1�exp�− �sn
2 + 1

+ p�t1�Q�� − t1 − ���dt1

g�p� = exp�− �ksn
2 + 1�� + p�� − ����	

0

���

�
I1�2��t1�exp�− �sn

2

+ 1 + p�t1�Q�� − t1 − ���dt1 + exp�− �ksn
2 + 1�� + p��

− ����Q�� − ���

here Q��� is the unit step function,

Q��� = �1, � � 0

0, �  0
�

nd

p0 = 0

p1 =
− ��sn

2 + � + ksn
2 + 1� + ���sn

2 + � − ksn
2 − 1�2 + 4�

2�

p2 =
− ��sn

2 + � + ksn
2 + 1� − ���sn

2 + � − ksn
2 − 1�2 + 4�

2�
�18�

By substituting Eqs. �16� and �17� in Eqs. �8� and �9�, the final
esulting solutions for Eqs. �1�, �2�, �3a�–�3c�, and �4� are obtained

s

ournal of Heat Transfer
�s =
2

�1
�
n=0

	

��s1 + �s2 + �s3 + �s4 + �s5 + �s6�
sin�sn�1�

sn
cos�sn��

�19�

� f =
2

�1
�
n=0

	

�� f1 + � f2 + � f3 + � f4 + � f5�
sin�sn�1�

sn
cos�sn��

�20�
The average temperature can be calculated from

�s
a =

1

�1
	

0

�1

�sd� �21�

� f
a =

1

�1
	

0

�1

� fd� �22�

Substituting Eqs. �19� and �20� into Eqs. �21� and �22� yields

�s
a =

2

�1
2�

n=0

	

��s1 + �s2 + �s3 + �s4 + �s5 + �s6�
1

sn
2 �23�

� f
a =

2

�1
2�

n=0

	

�� f1 + � f2 + � f3 + � f4 + � f5�
1

sn
2 �24�

2.3 Steady State Solution. The governing equations for
steady state conditions can be obtained from Eqs. �1� and �2� by
deleting the transient term. This results in

�ss =
2�in

�1
�
n=0

	

exp
− �ksn
2 + 1 −

1

sn
2 + 1

�� sin�sn�1�
sn�sn

2 + 1�
cos�sn��

�25�

� fs =
2�in

�1
�
n=0

	

exp
− �ksn
2 + 1 −

1

sn
2 + 1

�� sin�sn�1�
sn

cos�sn��

�26�
and the average temperature under steady state conditions are ob-
tained as

�ss
a =

2�in

�1
2 �

n=0

	

exp
− �ksn
2 + 1 −

1

sn
2 + 1

�� 1

sn
2�sn

2 + 1�
�27�

� fs
a =

2�in

�1
2 �

n=0

	

exp
− �ksn
2 + 1 −

1

sn
2 + 1

�� 1

sn
2 �28�

2.4 Solution for the Case Without the Convective Term in
the Fluid Phase. The governing equations for the case without
the convective contribution in the fluid phase can be obtained
from Eqs. �1� and �2�. This results in

�sNC =
2

�1
�
n=0

	

��s4 + �s5 + �s6�
sin�sn�1�

sn
cos�sn�� �29�

� fNC =
2

�1
�
n=0

	

�� f4 + � f5�
sin�sn�1�

sn
cos�sn�� �30�

The average temperatures for the case without the convective
contribution in the fluid phase are obtained as

�sNC
a =

2

�1
2�

	

��s4 + �s5 + �s6�
1

sn
2 �31�
n=0
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�=2

0

� fNC
a =

2

�1
2�

n=0

	

�� f4 + � f5�
1

sn
2 �32�

Results and Discussion
The dimensionless temperature distributions for the fluid and

olid phases are shown in the Fig. 2. When � is small, the tem-
erature distribution is mainly dependent on the initial condition.
owever, when � is large enough, the temperature distribution is
rimarily dependent on the inlet condition. Although the tempera-
ure difference between the fluid and solid phases is relatively

Fig. 2 Dimensionless temperature distribution
=5, �=2, and �in=−0.4: „a… �=0.2, „b… �=1.0, „c…
mall when steady state conditions are reached, it is relatively

52602-4 / Vol. 133, MAY 2011
large compared with the fluid and solid temperatures during the
transient process. These results show that the LTE model might be
unsuitable to describe the transient heat transfer process in porous
media. This figure also discloses that the thermal boundary layer
grows as � increases, which indicates a substantial two-
dimensional thermal characteristic.

It is important to note that the direction of the temperature
gradient for the fluid and solid phases are different at the wall
��=�1� in Figs. 2�c� and 2�d�. This leads to a heat flux bifurcation
around these times. The concept of temperature gradient bifurca-
tion in the presence of internal heat generation in both the fluid

r fluid and solid phases for k=0.1, �=0.02, �1
.2, „d… �=3.0, „e… �=5.0, and „f… steady state
s fo
and solid phases has been established in detail for the first time by

Transactions of the ASME
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ang and Vafai �11�. Utilizing the analytical solutions given in
qs. �19� and �20�, the region over which heat flux bifurcation
henomenon occurs is established and illustrated in Fig. 3. It is
ound that this phenomenon occurs only over a given axial region
t a given time frame. The bifurcation region moves downstream
s � increases, and is dependent on the pertinent parameters k, �,
nd �in. When k, �, and �in decrease, the bifurcation region moves
orward at a faster rate. It should be noted that bifurcation phe-
omenon only occurs during the transient period. Bifurcation phe-

Fig. 3 Bifurcation region variations as a f
omenon disappears when steady state conditions are reached. It

ournal of Heat Transfer
should be noted that the bifurcation aspects related to phase
change as analyzed in Ref. �12� have not been investigated in this
work.

The dimensionless transverse average temperature distributions
for fluid and solid phases for k=0.1, �=0.02, �1=5, and �in=
−0.4 are shown in Fig. 4. It is found that the transverse average
temperatures approach the case with no convection in the fluid
phase when the axial length is large enough. Based on Eqs. �19�,
�20�, �29�, and �30�, if � satisfies the condition

ction of pertinent parameters �, k, and �in
MAY 2011, Vol. 133 / 052602-5
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onvection will have an insignificant impact on the temperature
istributions for fluid and solid phases. This is because that the
nlet condition effects do not propagate far enough to influence
hat time level.

The difference between �s
a and �ss

a presents the transient com-
onent of the average solid temperature �s

a, and the difference
etween � f

a and � fs
a presents the transient component of the aver-

ge fluid temperature � f
a. These differences are shown in Fig. 5 for

=0.1, �=0.02, �1=5, and �in=−0.4. It is found that the peak
ositions for the transient components of the solid and fluid
hases moves downstream with time, while the magnitude of the
eak decreases with time.

The transverse average temperature difference distributions be-
ween the solid and fluid phases for k=0.1, �=0.02, �1=10, and
in=−0.4 is shown in Fig. 6. It is found that there is a peak for the
emperature difference at a given �, and that the peak moves
ownstream as time progresses. For unsteady flow of a gas
hrough a porous medium, Vafai and Sozen �13� utilized the maxi-

um difference between the solid and fluid phase temperatures to
stablish the validity of local thermal equilibrium assumption. It
as found that the local thermal equilibrium assumption becomes
ore viable as both the Darcy and particle Reynolds numbers

ecrease. They had shown that a decrease in the Darcy number
ranslates into a decrease in the particle diameter, which results in
n increase in the specific surface area ���, thus increasing the
uid-to-solid heat transfer interaction by offering a larger surface
rea. Furthermore, as the fluid velocity increases the time for the

ig. 4 Dimensionless transverse average temperature distri-
utions for fluid and solid phases for k=0.1, �=0.02, �1=5, and
in=−0.4

ig. 5 Variations of the transient component of the average
emperature for fluid and solid phases for k=0.1, �=0.02, �1

5, and �in=−0.4

52602-6 / Vol. 133, MAY 2011
solid-to-fluid heat exchange interaction decreases, resulting in a
decrease in the efficiency of heat exchange between the solid and
fluid phases, thus increasing the deviation from the local thermal
equilibrium. Similarly here based on the definition of � given in
Eq. �5�, an increase in the specific surface area ��� and a decrease
in the fluid velocity can be translated into an increase in �. As
such the temperature difference between the solid and fluid phases
becomes smaller at larger value of �, as can be seen in Fig. 6.

The time �s or � f that it takes for either the solid or fluid phase
to reach steady state condition is based on when the quantities
defined by

� �s
a��,�s� − �ss

a ���
�ss

a ���
� = 0.01 �34a�

� � f
a��,� f� − � fs

a ���
� fs

a ���
� = 0.01 �34b�

are achieved, respectively.
The characteristic times for solid and fluid phases to reach

steady state are shown in Fig. 7. As can be seen, the characteristic
time for the solid is always larger than that for the fluid phase. It
can also be seen that the characteristic times increase as k, �, �1,
or �in increase. It is found that the characteristic times remain
almost unchanged with k at any given � when k1. This is due to
the negligible influence of the fluid thermal conduction.

4 Nusselt Number Results
The Nusselt numbers for fluid and solid phases can be pre-

sented as

Nuf = −
4�1

� f
a � �� f

��


�=�1

�35�

Nus = −
4�1

� f
ak
� ��s

��


�=�1

�36�

The Nusselt numbers for fluid and solid phases are presented
along the axial coordinate in Fig. 8. It can be seen that the Nusselt
numbers approach infinity at a specific axial location at any given
time up to approximately when the steady state conditions are
reached. It is also found that, far enough downstream of the en-
trance, the Nusselt number becomes invariant with position. This
phenomenon occurs when the dimensional wall temperature value
is within the range specified by the initial and inlet temperature
values. This is the reason why this phenomenon did not occur in
the work of Amiri and Vafai �3�. In their work, the wall tempera-

Fig. 6 Spatial and temporal variations of the average tempera-
ture difference between the solid and fluid phases for k=0.1,
�=0.02, �1=10, and �in=−0.4
ture was larger than the entrance and the initial temperature. As

Transactions of the ASME
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uch in their work the dimensionless average temperature did not
pproach a zero value. Furthermore, it should be noted this phe-
omenon is a manifestation of nondimensional temperature quan-
ities.

The fully developed temperature distributions for fluid and
olid phases under steady state conditions can be derived from
qs. �25� and �26�,

� fs_d =
2�in

�1
exp
− �ks0

2 + 1 −
1

s0
2 + 1

�� sin�s0�1�
s0

cos�s0��

�37�

�ss_d =
2�in

�1
exp
− �ks0

2 + 1 −
1

s0
2 + 1

�� sin�s0�1�
s0�s0

2 + 1�
cos�s0��

�38�
Furthermore, the average fully developed temperature distribu-

ions for fluid and solid under steady state conditions can be ob-
ained as

� fs_d
a =

2�in

�1
2 exp
− �ks0

2 + 1 −
1

s0
2 + 1

�� 1

s0
2 �39�

�ss_d
a =

2�in

�1
2 exp
− �ks0

2 + 1 −
1

s0
2 + 1

�� 1

s0
2�s0

2 + 1�
�40�

Fig. 7 Characteristic time variations of the s
parameters k, �, �1, and �in
By utilizing Eqs. �37�–�40�, the following equations is obtained:

ournal of Heat Transfer
�ss_d

�ss_d
a =

� fs_d

� fs_d
a =




2
cos�s0�� =

Tfs_d − Tw

Tfs_d
a − Tw

=
Tss_d − Tw

Tss_d
a − Tw

�41�

As such the dimensionless fully developed temperature distri-
butions, �Tfs_d−Tw� / �Tfs_d

a −Tw� and �Tss_d−Tw� / �Tss_d
a −Tw�, be-

come independent of the axial length when condition given by Eq.
�39� is achieved. By utilizing Eqs. �37�–�39�, the fully developed
Nusselt numbers for fluid and solid phases under steady state con-
dition are obtained as

Nufs_d = 
2 �42�

Nuss_d =
4�1

2
2

k�
2 + 4�1
2�

�43�

Defining a total Nusselt number, which is the sum of Nuf and
Nus, we obtain

Nuts_d = Nufs_d + Nuss_d =
4�1

2
2

k�
2 + 4�1
2�

+ 
2 �44�

As can be seen, the total fully developed Nusselt number under
steady state condition increases with �1, which is directly related
to the Biot number, and decreases with the thermal conductivity

and fluid phases as a function of pertinent
olid
ratio, k.

MAY 2011, Vol. 133 / 052602-7
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Two Primary Types of Heat Flux Bifurcations in Po-
ous Media

In what follows, we demonstrate the existence of two types of
eat flux bifurcations in porous media. The first type is the same
s the one discussed by Yang and Vafai �11�. For the second type
f heat flux bifurcation, we start with representation of the total
eat flux at the wall as

qw = − kf ,eff� �Tf

�y


y=H

− ks,eff� �Ts

�y


y=H

�45�

The dimensionless total heat flux at the wall is obtained from

�w =
qw

�T0 − Tw��ks,effhi�
= − k� �� f

��


�=�1

− � ��s

��


�=�1

�46�

The dimensionless total heat flux at the wall for k=0.1, �
0.02, �1=5, and �in=−0.4 is shown in Fig. 9. It is found that the
irection of total heat flux changes along the channel. This leads

Fig. 8 Nusselt number distributions for fluid a
=−0.4
nd solid phases for k=0.1, �=0.02, �1=5, and �in
o a different type of heat flux bifurcation. This bifurcation must

52602-8 / Vol. 133, MAY 2011
Fig. 9 Dimensionless total heat flux at the wall for k=0.1, �

=0.02, �1=5, and �in=−0.4
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e taken into account for various applications, where there is a
eed to maintain a constant temperature boundary condition. As
hown in Fig. 10, the total heat flux bifurcation region changes
ith time, and is dependent on the pertinent parameters k, �, �1,

nd �in. It should be noted that this type of bifurcation phenom-
non only occurs during the transient process. The interface line
etween the regions �w�0 and �w0 represents the location for
w=0, which moves downstream with time. The speed, which the

ifurcation region moves downstream, increases as either k, �, �1,
r �in decreases. When qw=0, the heat exchange between the solid
nd fluid phases through thermal conduction at the wall is ob-
ained from

Q = − k
�Tf = k

�Ts �47�

Fig. 10 An example of the requirement to chan
to the bifurcation effect, to obtain a constant te
o � f ,eff� �y


y=H
� � s,eff� �y


y=H
�

ournal of Heat Transfer
The integrated internal heat exchange between the solid and
fluid phases can be calculated from

Qi = �	
0

H

hi��Ts − Tf�dy� = �hi�H�T0 − Tw���s
a − � f

a�� �48�

The corresponding heat exchange ratio is defined as

� =
Qo

Qi + Qo
�49�

The heat exchange ratio variations as a function of parameters
�1, k, �in, and � for qw=0 are shown in Fig. 11. It is found that the
heat exchange ratio is mostly dependent on �1 and k, whereas �in

the imposed heat flux direction at the wall, due
erature condition
ge
mp
and � have little influence on the heat exchange ratio. The heat
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xchange between solid and fluid phases through the thermal con-
uction at the wall is more prominent for small �1 and large k.
hen �1=1 and k=10, up to 68% of total heat exchange between

olid and fluid phases within the bifurcation region is through
hermal conduction at the wall. It should be noted that the tempo-
al variations of the heat exchange ratio displays two distinct re-
imes. During the initial stage, the heat exchange ratio decreases
harply with time, while for the later stage, the heat exchange
atio remains almost unchanged.

When qw�0, for the region where the first type of heat flux
ifurcation occurs, the heat exchange between the solid and fluid
hases through the thermal conduction at the wall can be repre-
ented as

Qo = min��− kf ,eff� �Tf

�y


y=H
� ,� �50�

��− ks,eff� �Ts

�y


y=H
�� for � �Tf

�y


y=H
� �Ts

�y


y=H

 0

The corresponding heat exchange ratio for qw�0 is also calcu-
ated using Eq. �49�, and shown in Fig. 12. The dashed line in Fig.
2 represents the maxima loci of the heat exchange ratio. Com-
aring Figs. 10�a�, 11�b�, and 12, it is found that this dashed line
s identical to the corresponding curve for k=0.1 shown in Fig.
1�b�, which implies that the heat exchange ratio for qw�0 is
lways smaller than the corresponding one for qw=0.

As an example, the dimensional characteristic time was calcu-
ated for sandstone while the working fluid is air. The following

Fig. 11 Heat exchange ratio variations as a fun
qw=0
hysical data were used: Tin=300 K, Tw=310 K, To=335 K,

52602-10 / Vol. 133, MAY 2011
H=0.05 m, dp=5 mm, and �=0.391; air:� f =1.1614 kg /m3, cf
=1007 J /kg K, kf =0.0263 W /m K, and �=1.846�10−5 kg /
m s; sandstone �13�:�s=2200 kg /m3, cs=710 J /kg K, ks
=1.83 W /m K.

The particle Reynolds number is defined as

Rep =
� fudp

�
�51�

The interstitial heat transfer coefficient is expressed as �2�

on of pertinent parameters �1, k, �in, and � for

Fig. 12 Heat exchange ratio for k=0.1, �=0.02, �1=5, �in=
cti
−0.4, and qwÅ0
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hi =
kf

dp

2 + 1.1 Pr1/3�� fudp

�
0.6� �52�

he interfacial area per unit volume of the porous medium is
alculated as

� =
6�1 − ��

dp
�53�

he effective thermal conductivity of the fluid and solid phases of
orous media are represented by

kf ,eff = �kf �54�

ks,eff = �1 − ��ks �55�

t can be seen from Fig. 13 that increasing Rep can reduce the
imensional characteristic time for both the fluid and solid phases.
owever, the correlation between the dimensional characteristic

ime and Rep is nonlinear.

Conclusions
Transient heat transfer in a packed bed subject to a constant

emperature boundary condition is investigated analytically. A
ransient LTNE model, which incorporates diffusion in both the
olid and fluid phases, is employed to represent heat transport.
xact solutions for transient solid and fluid temperature distribu-

ions, as well as steady solid and fluid temperature distributions,
re derived. Exact solutions of fluid, solid, and total Nusselt num-
er for fully developed region under steady state condition are
lso obtained. The results show a substantial two-dimensional
hermal behavior for the solid and fluid phases, and the LTE

odel is found to be unsuitable to describe the transient heat
ransfer process in porous media. The phenomenon of heat flux
ifurcation for the solid and fluid phases at the wall is found to
ccur over a given axial region at a given time frame. Heat flux
ifurcation is also found to occur along the channel. The bifurca-
ion region moves downstream with time and is dependent on the
ertinent parameters k, �, and �in. The nondimensional axial
ength scale, �, introduced earlier can be used to represent the
ndirect integrated influences of Darcy and particle Reynolds
umbers on the temperature difference between the solid and fluid
hases. Thermal conduction at the wall is found to play an impor-
ant role on the total exchange between the solid and fluid phases
ithin heat flux bifurcation region, especially for small �1 and

arge k. When ��� /�, it is found that the heat transfer can be
escribed using the LTNE model with no convection in the fluid
hase energy equation. A characteristic time is introduced to
valuate the time that it takes for either the solid or fluid to reach
teady state. This characteristic time is found to increase with an

ig. 13 Dimensional characteristic time variations of the solid
nd fluid phases at different Rep for sandstone
ncrease in k, �, �1, or �in.
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Nomenclature
Bi � Bi=hi�H2 /ks,eff, Biot number
c � specific heat �J kg−1 K−1�

dp � particle diameter �m�
hi � interstitial heat transfer coefficient

�W m−2 K−1�
H � half height of the channel �m�
I0 � modified Bessel functions of the first kind of

zero order
I1 � modified Bessel functions of the first kind of

order 1
k � k=kf ,eff /ks,eff, ratio of the fluid effective ther-

mal conductivity to that of the solid, defined
by Eq. �5�

kf � thermal conductivity of the fluid �W m−1 K−1�
kf ,ef f � effective thermal conductivity of the fluid

�W m−1 K−1�
ks � thermal conductivity of the solid �W m−1 K−1�

ks,ef f � effective thermal conductivity of the solid
�W m−1 K−1�

m � Laplace transform parameter
Nu � Nusselt number
qw � Total heat flux at the wall �W m−2�

Q��� � unit step function defined by Eq. �18�
Qi � integrated internal heat exchange between the

solid and fluid phases �W m−2�
Qo � heat exchange between the solid and fluid

phases through thermal conduction at the wall
�W m−2�

Pr � Prandtl number
Rep � particle Reynolds number

sn � sn= �n+0.5�
 /�1
t � time �s�

T � temperature �K�
T0 � initial temperature �K�
u � fluid velocity �m s−1�
U � function of � and �, defined by Eqs. �6� and

�7�
V � function of �, defined by Eqs. �6� and �7�
W � Laplace transformation of U
x � longitudinal coordinate �m�
y � transverse coordinate �m�

Greek Symbols
� � interfacial area per unit volume of the porous

medium �m−1�
� � porosity
� � �=�� fcf / �1−���scs, parameter defined by Eq.

�5�
� � nondimensional transverse coordinate, defined

by Eq. �5�
�1 � �1=H /�ks,eff / �hi��, nondimensional half

height of the channel, defined by Eq. �5�
� � �=xhi� /� fcfu, nondimensional axial length

scale, defined by Eq. �5�
� � �= �T−Tw� / �T0−Tw�, nondimensional tempera-

ture, defined by Eq. �5�
� � dynamic viscosity �kg m−1 s−1�
� � density �kg m−3�
� � heat exchange ratio, defined by Eq. �49�

�w � dimensionless total heat flux at the wall, de-
fined by Eq. �46�

� � �=hi�t / �1−���scs, nondimensional time, de-
fined by Eq. �5�

� f � nondimensional characteristic time for fluid
phase
MAY 2011, Vol. 133 / 052602-11



S

S

R

0

�s � nondimensional characteristic time for solid
phase

ubscripts
d � fully developed
f � fluid phase

in � inlet
NC � without convection term in the fluid phase

s � solid phase, steady state
t � total

w � wall
o � initial

uperscripts
a � transverse average
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