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Consecutive Variable
Cross-Sectional Domains:
Applications in Biological Media
and Thermal Management
Temperature prescription and control is important within biological media and in bioheat
transport applications such as in hyperthermia cancer treatment in which the unhealthy
tissue/organ is subject to an imposed heat flux. Thermal transport investigation and
optimization is also important in designing heat management devices and small-scale
porous-filled-channels utilized in electronic and biomedical applications. In this work,
biological media or the stated heat management devices with a nonuniform geometry are
modeled analytically as a combination of convergent, uniform and/or divergent configu-
rations. The biological media is represented as blood saturated porous tissue matrix
while incorporating cells and interstices. Two primary models, namely, adiabatic and
constant temperature boundary conditions, are employed and the local thermal nonequi-
librium and an imposed heat flux are fully accounted for in the presented analytical
expressions. Fluid and solid temperature distributions and Nusselt number correlations
are derived analytically for variable cross-sectional domain represented by convergent,
divergent, and uniform or any combination thereof of these geometries while also incor-
porating internal heat generation in fluid and/or solid. Our results indicate that the
geometrical variations have a substantial impact on the temperature field within the
domain and on the surface with an imposed heat flux. It is illustrated that, the tempera-
ture distribution within a region of interest can be controlled by a proper design of the
multisectional domain as well as proper selection of the porous matrix. These compre-
hensive analytical solutions are presented for the first time, to the best of the authors’
knowledge in literature.
�DOI: 10.1115/1.4002303�

Keywords: bioheat, nonuniform geometry, electronic and biomedical applications, vari-
able area domain, porous media
Introduction
Analyses of temperature distribution and heat transfer through

mall-scale channels subject to an imposed heat flux are key is-
ues in a variety of applications such as biomedical devices �1–5�,
ooling of electronic devices and heat pipe technology �6–13�.
he channels can be filled with porous inserts, which have been
hown to be highly effective in heat transfer enhancement and
hermal management �14–19� by providing an extensive surface
rea between solid and fluid phases.

Temperature control and prescription is crucial in bioheat trans-
ort applications such as in hyperthermia cancer treatment, where
he unhealthy tissue/organ is subject to an imposed heat flux dur-
ng the course of the treatment. The biological media can be mod-
led as blood saturated porous tissue matrix consisting of inter-
tices and cells. Mahjoob and Vafai �20,21� investigated transport
hrough biological media for uniform single and multilayer tissue

atrix structures. They had investigated several important param-
ters affecting transport through the biological media such as vol-
me fraction of the vascular space, organ/tissue depth, imposed
yperthermia heat flux, metabolic heat generation, and body core
emperature. Aspects related to modeling in porous media incor-
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ublished online September 27, 2010. Assoc. Editor: Peter Vadasz.
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porated in this work are given in Refs. �22–30�. Nield and Kuz-
netsov �31� performed an investigation related to forced convec-
tion in a channel filled with a porous medium with counterflow.

The geometrical configuration of the channels is also of impor-
tance when designing these heat management devices. The tem-
perature distribution on the surface of the devices connected to the
channels can be controlled and optimized utilizing proper uniform
and nonuniform �convergent or divergent� geometries or a combi-
nation thereof. Mahjoob and Vafai �8� developed an analytical
solution for a convergent single channel while incorporating the
local thermal nonequilibrium condition. The effects of several per-
tinent parameters on the temperature distribution and heat transfer
coefficient such as inclination angle, interfacial fluid-solid heat
exchange, ratio of fluid to solid effective thermal conductivities,
and imposed heat flux were investigated �8�.

In the present work, the effect of a geometrically nonuniform
domain is studied by modeling it analytically as a sequential series
of convergent, divergent and/or uniform configurations. For the
first time, to the best of the authors’ knowledge,fluid and solid
temperature distributions and the heat transfer coefficient are de-
rived for variable cross-sectional media such as convergent, diver-
gent, and uniform channels filled with a porous medium or any
combination thereof of these geometries while incorporating the
possibility of existence of internal heat generation in fluid or solid
or both phases as well as the local thermal nonequilibrium condi-

tion.
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Modeling and Formulation

2.1 Problem Description. In this work, variable cross-
ectional media are represented by channels with nonuniform
convergent or divergent� and uniform geometries filled with a
orous medium subject to forced convection and a uniform heat
ux. These domains can represent either a biological media or
mall-scale heat management devices, where the temperature dis-
ribution and heat transfer aspects are analyzed within them. Spe-
ial consideration is given at the intersection of two consecutive
ections to ensure proper accounting of the interface boundary
onditions. The schematic diagrams of the type of geometries that
ere analyzed in this work are presented in Figs. 1�a�–1�c�. The

nalytical solutions that are obtained in this work can be used for
ny combination of these geometries such as those shown in Figs.
�d� and 1�e�. In principal, various variable area media such as
iological tissue can be modeled with convergent and/or divergent
odular sections such as those shown in Figs. 1�d� and 1�e�.
One side of each modular component is subject to a constant

eat flux and the other side is subject to either an adiabatic or a
onstant temperature condition while accounting for internal heat
eneration from the solid or fluid phases �or both� within the
ariable cross-sectional domain. It should be noted that the results
resented for the adiabatic boundary are also applicable for a sym-
etric domain in which the heat flux is imposed from both sides

f the module. In Fig. 1, H refers to the thickness at the entrance
f each section of the module while that of the first section of a
ulticomponent module is referred to by H1. The angle between

he inclined wall and the longitudinal direction is �. Parameter x0
s the longitudinal coordinate of the starting point of each section
n a multicomponent channel or that of a single-section channel.
low is considered to be thermally and hydraulically fully devel-
ped within an isotropic and homogeneous porous medium. Ra-
iation and natural convection are neglected while assuming con-
tant properties.

2.2 Governing Equations. The governing energy equations
or fluid and solid phases, incorporating local thermal nonequilib-

Fig. 1 Schematic diagram of a chan
to a constant heat flux on one side
temperature wall on the other side „a
nel, „b… uniform channel, „c… diverge
domain made of convergent-uniform
cross-sectional domain made of dive
ium condition and fluid and solid internal heat generations are as
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follows �20–30�.
Fluid phase

kf ,eff�y
2�Tf� f + hsfasf��Ts�s − �Tf� f� + �q̇f = ��cp�u� f ��Tf� f

�x
�1�

Solid phase

ks,eff�y
2�Ts�s − hsfasf��Ts�s − �Tf� f� + �1 − ��q̇s = 0 �2�

where

kf ,eff = �kf + kf ,dis �3�

ks,eff = �1 − ��ks �4�

and parameters kf ,eff, ks,eff, kf, ks, kf ,dis, �, �, and cp are the fluid
and solid effective and regular thermal conductivities, fluid dis-
persion thermal conductivity, porosity, fluid density, and specific
heat capacity, respectively. �Tf� f, �Ts�s, �u� f, q̇f, and q̇s represent
the intrinsic phase average fluid and solid temperatures, intrinsic
fluid phase average velocity, and internal heat generation within
the fluid and solid phases, respectively. The fluid-solid interfacial
heat transfer coefficient is represented by hsf and the specific sur-
face area by asf.

2.3 Normalization. The governing Eqs. �1� and �2� are nor-
malized by using the following nondimensional variables.

� =
y

H � �x − x0�tan �
� =

ks,eff��T� − Tw�
qwH

� =
kf ,eff

ks,eff

� =
�H � �x − x0�tan ��2

H2 	 =
�1 − ��Hq̇

qw
Bi =

hsfasfH
2

ks,eff

�5�

Note that the sign � in this work refers to whether the modular
section is a divergent channel �+� or a convergent one �−�. For a
multisectional domain, H is the thickness of each section’s en-
trance. In Eq. �5�, parameters � and � represent the nondimen-

filled with a porous medium subject
d either an adiabatic or a constant
e upper wall…: „a… convergent chan-
hannel, „d… variable cross-sectional
ivergent sections, and „e… variable
ent-uniform-convergent sections
nel
an
t th

nt c
-d
sional transverse coordinate and nondimensional temperature, re-
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pectively. Parameter � represents the ratio of fluid to solid
ffective thermal conductivities and the parameter � is the upper
all shape factor. The parameter 	 is the nondimensional internal
eat generation. The parameter Bi is an equivalent Biot number
ndicating the ratio of the conduction resistance within the solid

atrix to the thermal resistance corresponding to the internal con-
ective heat exchange between the solid matrix and the fluid
hase �29�. For brevity, the intrinsic volume averaging sign �� �� is
ropped in the following sections.

2.4 Normalized Governing Equations and Boundary
onditions. Utilizing Eq. �5� and after some modifications, the
overning Eqs. �1� and �2� are presented as

�
�4� f

��4 − �1 + ��Bi�� �2� f

��2 � = − �1 + 
�Bi�3/2 �6�

�
�4�s

��4 − �1 + ��Bi�� �2�s

��2 � = − �1 + 
�Bi�3/2 �7�

here 
 is zero for the adiabatic boundary condition �model I�.
or the constant temperature boundary condition �model II�, 
 is
epresented by


 =
1

qw
	�kf ,eff

�Tf

�y
+ ks,eff

�Ts

�y
�	

y=H��x−x0�tan���
�8�

The imposed constant heat flux �qw� is distributed between the
uid and solid phases based on the physical values of their effec-

ive thermal conductivities and temperature gradients
8,20,21,28–30�. Boundary conditions are normalized using Eq.
5� and additional boundary conditions are obtained by evaluating
he second or third order derivatives of � f and �s at the bound-
ries. This results in

� f
�=0 = �s
�=0 = 0 �9�

	 �2� f

��2 	
�=0

=
�1 + 
��1/2 + �	s

�
�10�

	 �2�s

��2 	
�=0

= − �	s �11�

2.4.1 Model I: Adiabatic Boundary Condition.

	 �� f

��
	

�=1

= 	 ��s

��
	

�=1

= 0 �12�

	 �3� f

��3 	
�=1

= 	 �3�s

��3 	
�=1

= 0 �13�

2.4.2 Model II: Constant Temperature Boundary Condition.

� f
�=1 = �s
�=1 = �c �14�

	 �2� f

��2 	
�=1

=
�1 + 
��1/2 + �	s

�
�15�

	 �2�s

��2 	
�=1

= − �	s �16�

here

�c =
ks,eff�Tc − Tw�

qwH
�17�

2.5 Fluid, Solid, and Wall Temperature Distributions. The
uid and solid phase temperature distributions are derived by
olving the presented governing equations and utilizing the given

eumann and Dirichlet boundary conditions. After a lengthy

ournal of Heat Transfer
analysis, the temperature distributions for the fluid and the solid
phases are derived for the adiabatic �model I� and constant tem-
perature �model II� boundary conditions, which are applied at the
upper wall of the channel.

2.5.1 Model I: Adiabatic Boundary Condition.

� f =
�1/2

1 + �
����

2
− 1� −

1 + �1 + ���1/2	s

�1 + ��Bi�
�1 −

e�� + e��2−��

1 + e2� ��
�18�

�s =
�1/2

1 + �
����

2
− 1� +

��1 + �1 + ���1/2	s�
�1 + ��Bi�

�1 −
e�� + e��2−��

1 + e2� ��
�19�

where

� = 
Bi��1 + ��/� �20�
As such, the temperature difference between the solid and the

fluid phases and the wall surface temperature, which is subject to
an imposed heat flux, can be written as

�� = �s − � f =
1 + �1 + ���1/2	s

�1 + ���1/2Bi
�1 −

e�� + e��2−��

1 + e2� � �21�

Tw =
qw

kf ,eff + ks,eff
�H � �x − x0�tan���

3

+
ks,effqw + �1 − ��q̇s�kf ,eff + ks,eff��H � �x − x0�tan����

hsfasf�1 + ���H � �x − x0�tan����qw


�1 −
1

�

e2� − 1

e2� + 1
��

+
qw + ��q̇f + �1 − ��q̇s��H � 0.5�x − x0�tan����

�cpuiH
�x − x0� + Ti

�22�

2.5.2 Model II: Constant Temperature Boundary Condition.
The governing equations �6� and �7� are solved while utilizing the
boundary conditions for a constant temperature upper wall. This
results in the fluid and solid temperature profiles, which can be
rewritten using Eq. �8� so that the presented solution will be in-
dependent of the term 
. As such the term 
 and the fluid and
solid temperature distributions are derived as


 =
2�1 + ���c

�1/2 + 1 �23�

� f =
1

1 + �
�����1/2 + �1 + ���c�� − �1/2�

−
�2�1/2 + �1 + ���2�c + �	s��

�1 + ��Bi�
�1 −

e�� + e��1−��

1 + e� ��
�24�

�s =
1

1 + �
�����1/2 + �1 + ���c�� − �1/2�

+
��2�1/2 + �1 + ���2�c + �	s��

�1 + ��Bi�
�1 −

e�� + e��1−��

1 + e� ��

�25�
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�� = �s − � f =
2�1/2 + �1 + ���2�c + �	s�

�1 + ��Bi�
�1 −

e�� + e��1−��

1 + e� �
�26�

here � is defined in Eq. �20�. The wall temperature, which is
ubject to an imposed heat flux, is derived to be

Tw = � + �Tw,x=x0

− ��exp� − �kf ,eff + ks,eff��x − x0�

�cpuiH
2� 1

Bi�1 + ���1 +
2�1 − e�0�
�0�1 + e�0�� +

1

3
��
for � = 0 �27�

Tw − Tf ,m

11006-4 / Vol. 133, JANUARY 2011
Tw = exp�−� �1d�x − x0���� �exp�� �1d�x − x0���

 �2d�x − x0� + �3� for � � 0 �28�

where

� =
H

k + k
�qw + 0.5H��q̇f + �1 − ��q̇s�� + Tc �29�
f ,eff s,eff
�1 =

�kf ,eff + ks,eff�
�cpuiH�H � �x − x0�tan����

−
�2 tan����H � �x − x0�tan����

Bi�2�1 + ��H2 �1 +
2�1 − e��
��1 + e��� −

�2�0 tan���
�H�4�1 + e��2 �2�e� − e2� + 1�

1

Bi��1 + ���1 +
2�1 − e��
��1 + e��� +

1

3

�30�

�2 = �1Tc +
1

1

Bi��1 + ���1 +
2�1 − e��
��1 + e��� +

1

3�
qw + 0.5��q̇f + �1 − ��q̇s� 
 �H � �x − x0�tan����

�cpuiH
−

�tan���qwH2

ks,eff�1 + ��2Bi�H � �x − x0�tan����2�1 +
2�1 − e��
��1 + e���−

�qw�0 tan���
�kf ,eff + ks,eff�Bi�2�1 + e��2 
 � 2H

�1 + ���H � �x − x0�tan����
+ 	s�


�2�e� − e2� + 1� +
�qw tan���

12�kf ,eff + ks,eff�

� �31�

3 can be evaluated utilizing the following boundary condition:

Tw
x=x0
= Tw,x=x0

�32�

or a single module domain or for the first component of a multicomponent domain, Tw,x=x0
can be evaluated from the following

quation. This value also indicates the wall temperature at the channel’s entrance �Tw,e�.

Tw,x=x0
= Tw,e =

2ks,eff

qwH
Tc +

2

1 + �
+ 	s

Bi�1 + �� �1 +
2�1 − e�0�
�0�1 + e�0�� +

ks,eff

qwH
�Ti −

Tc

3
� +

1

6�1 + ��

2ks,eff

3qwH
� 3

Bi�1 + ���1 +
2�1 − e�0�
�0�1 + e�0�� + 1� �33�
nd

�0 = 
Bi�1 + ��/� �34�

or other sections of a multicomponent domain, Tw,x=x0
is ex-

racted from the immediate last component of the module under
onsideration. This process is described in more detail later on.

2.6 Heat Transfer Correlations. The wall heat transfer coef-
cient is obtained from

hw =
qw �35�
The Nusselt number at the channel wall subject to a constant
heat flux can be represented as

Nuw =
hwDh

kf ,eff
=

− 2

�� f ,m
�36�

2.6.1 Model I: Adiabatic Boundary Condition.

Nuw =
2�1 + ��

��1/2�1
+

1 + �1 + ���1/2	s�1 −
1 e2� − 1

2� �� �37�
3 �1 + ��Bi� � e + 1

Transactions of the ASME
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2.6.2 Model II: Constant Temperature Boundary Condition.

Nuw =
2

�� �2�1/2 + �1 + ���2�c + �	s��
�1 + ��2Bi�

�1 +
2�1 − e��
��1 + e��� +

�1/2

6�1 + ��
−

�c

3
�

�38�
2.7 Simplified Solution Based on Local Thermal Equilib-
ium Assumption. The energy equation for the one equation
odel �utilizing the assumption of local thermal equilibrium be-

ween fluid and solid phases� can be obtained by adding Eqs. �1�
nd �2� with the following boundary conditions:

�
�=0 = 0 �39�

nd

	 ��

��
	

�=1

= 0 for model I: adiabatic boundary condition

�40�

�
�=1 = �c

for model II: constant temperature boundary condition

�41�

here �c is defined in Eq. �17�.
Based on the simplified governing equations and boundary con-

itions, the following relationships are obtained for the wall tem-
erature, the temperature distribution and the Nusselt number for
odels I and II.

2.7.1 Model I: Adiabatic Boundary Condition.

� =
�1/2

1 + �
��

2
− 1�� �42�

Tw =
qw�H � �x − x0�tan����

3�kf ,eff + ks,eff�

+
qw + ��q̇f + �1 − ��q̇s��H � 0.5�x − x0�tan����

�cpuiH
�x − x0� + Ti

�43�

Nuw,TE =
6�1 + ��

�
�
�44�

2.7.2 Model II: Constant Wall Temperature Boundary
ondition.

� =
�

1 + �
���1/2 + �1 + ���c�� − �1/2� �45�

Tw = � + �Tw,x=x0
− ��exp�− 3�kf ,eff + ks,eff�

�cpuiH
2 �x − x0�� for � = 0

�46�

Tw = Tc

+ � 1

4�kf ,eff + ks,eff�
�

3

�cpuiH tan����qw�H � �x − x0�tan����

�1 �
3�kf ,eff + ks,eff�
�cpuiH tan����

+
3��q̇f + �1 − ��q̇s� 
 �H � �x − x0�tan����2

2�cpuiH tan����3�kf ,eff + ks,eff�
� 2�
�cpuiH tan���

ournal of Heat Transfer
+ ���H � �x − x0�tan���
H

���−3�kf ,eff+ks,eff�/��cpuiH tan�����

for � � 0 �47�

Nuw,TE =
− 12�1 + ��

��2�1 + ���c − �1/2�
�48�

where � is defined in Eq. �29� and

�� =
3

2
��

− 3qwH

2��cpuiH tan��� � 3�kf ,eff + ks,eff��

�
− H2��q̇f + �1 − ��q̇s�

2�cpuiH tan��� � 3�kf ,eff + ks,eff�
+ Ti + Tc� �49�

For a single-section module or for the first component of a mul-
ticomponent domain, Tw,x=x0

can be evaluated from the following
equation:

Tw,x=x0
= Tw,e =

1

2
�3Ti − Tc +

qwH

2ks,eff�1 + ��� �50�

For the subsequent sections of a multicomponent domain, Tw,x=x0
is extracted from the immediate last component of the domain
under consideration. This process is described in more detail be-
low.

2.8 Special Considerations for Multicomponent Domains.
The presented equations for the temperature distributions and the
Nusselt number are valid for every section of a multicomponent
domain. However, special attention should be given in designating
the boundary condition at the entrance of each section after the
very first module. The boundary condition, at the interface be-
tween two sections should link the data between the two consecu-
tive modules. For instance, the entrance velocity should be ad-
justed based on the continuity equation. As such, it can be
evaluated based on the entrance heights of the consecutive sec-
tions as well as the flow velocity at the entrance of the module
under consideration. Note that interface height is an important
parameter for the value of Biot number for the module under
consideration.

Other important parameters are the wall temperature and mean
flow temperature at the entrance of a given section. The wall
temperature at the entrance �Tw,x=x0

� can be taken to be the same
as the wall temperature at the end of the section immediately
preceding it. Then, the mean flow temperature at the entrance of
the section can be evaluated from the expressions given below for
models I and II.

2.8.1 Model I: Adiabatic Boundary Condition.

Ti =
qwH

ks,eff
� f ,m
x=x0

+ Tw,x=x0
�51�
For local thermal nonequilibrium condition �general form�

JANUARY 2011, Vol. 133 / 011006-5
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Ti =
− qwH

ks,eff�1 + ���1

3
+

1 + �1 + ��	s

�1 + ��Bi
�1 −

1

�0

e2�0 − 1

e2�0 + 1
�� + Tw,x=x0

�52�

nd for local thermal equilibrium assumption Ti can be obtained
rom

Ti =
− qwH

3ks,eff�1 + ��
+ Tw,x=x0

�53�

2.8.2 Model II: Constant Temperature Boundary Condition.
or local thermal nonequilibrium assumption �general form�

i =
2

3
� 3

Bi�1 + ���1 +
2�1 − e�0�
�0�1 + e�0�� + 1�Tw,x=x0

−
qwH

6ks,eff�1 + ��

+
Tc

3
−

2ks,eff�1 + ��Tc + qwH�2 + �1 + ��	s�
Biks,eff�1 + ��2 �1 +

2�1 − e�0�
�0�1 + e�0��

�54�

or local thermal equilibrium assumption Ti can be obtained from

Ti =
1

3
�2Tw,x=x0

+ Tc −
qwH

2ks,eff�1 + ��� �55�

In Eqs. �51�–�55�, Ti should be evaluated based on the values
rom the downstream component and Tw,x=x0

is evaluated based on
he wall temperature value at the exit of the upstream component
f a multicomponent domain. The channel may compose of sev-
ral components with different attributes �such as porosity, porous
atrix thermal conductivity, specific surface area, and fluid-solid

nterstitial heat transfer coefficient�. However, in the case of a
arge difference in the physical properties of the components �not
he geometry of components�, some modifications may be re-
uired to achieve an exact matching at the interface due to the
iscontinuity of the properties.

Result and Discussions
The derived analytical solutions are first compared against per-

inent available analytical solutions as well as some numerical
imulations. Lee and Vafai �29� and Marafie and Vafai �30� inves-
igated forced convection through a channel with an imposed con-
tant heat flux boundary condition. As such, fluid and solid tem-
erature profiles obtained from the present work at zero
nclination angle with no internal heat generation are compared
ith the analytical solutions given by Lee and Vafai �29� and the

nalytical and numerical results from Marafie and Vafai �30�.
hese comparisons, which are shown in Fig. 2, display an excel-

ent agreement between the results. The small deviation in nu-
erical results from the analytical ones is due to the usage of a

lightly different Darcy number in the numerical investigations
30�.

The comprehensive nature of the derived analytical solutions
nables one to investigate various multicomponent consecutive,
onvergent, divergent, or uniform channels. This requires proper
ccounting of the interface boundaries between the adjacent com-
onents of a multicomponent channel. The fluid and solid tem-
erature distributions at different axial locations of some typical
ulticomponent domains are presented in Figs. 3–5. The inclined

ngles, entrance thickness of the channel, imposed heat flux, po-
ous matrix properties, flow rate, and fluid properties are similar in
hese figures. The lower wall of the multicomponent channel is
ubject to a constant heat flux and the upper wall is subjected to
ither an adiabatic boundary condition �Figs. 3 and 4� or a con-
tant temperature boundary �Fig. 5�. The temperature quantities in
hese figures, are normalized by the mean flow temperature at the
ntrance of the channel �Te� and the entrance thickness of the
hannel �H1�.

In Fig. 3, a consecutive multicomponent domain is investigated

onsisting of a convergent �with 5 deg inclination angle�, uniform

11006-6 / Vol. 133, JANUARY 2011
and divergent �with 5 deg inclination angle� sections, respectively.
As can be seen in Fig. 3, there is an excellent agreement at the
interfaces of the components �X=5, X=10�, between the results
obtained from the analytical solution for the upstream and down-
stream solutions. Comparing Figs. 3�a� and 3�b� indicate that an
increase in specific surface area �asf� or fluid-solid interstitial heat
transfer coefficient �hsf� decreases the temperature difference be-
tween solid and fluid phases.

Figure 4 displays the fluid and solid temperature distributions at
different locations for a divergent-uniform-convergent multisec-
tional channel. The results once again confirm the excellent
matching of fluid and solid temperature distributions at the inter-
face between consecutive components �X=5, X=10�. Comparing
Figs. 3 and 4, one can see the substantial effect of the variable
cross-sectional configurations on the fluid and solid temperature
distributions and the wall temperature distribution. These results
point out the possibility of controlling the wall temperature and
temperature distribution inside each module by a proper design of
multicomponent domain type of porous insert and the inlet flow
attributes.

Figure 5 displays the temperature distributions at different axial
locations of a consecutive multicomponent domain consisting of a
convergent �with 5 deg inclination angle�, uniform and divergent

Fig. 2 Comparison of the present analytical fluid and solid
temperature distributions at zero inclination angle with the ana-
lytical results of Lee and Vafai †29‡ and analytical-numerical
results of Marafie and Vafai †30‡ for �=100, q̇f= q̇s=0: „a… Bi
=0.5 and „b… Bi=10
�with 5 deg inclination angle� modules �Fig. 5�a�� and also one
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omposed of divergent �with 5 deg inclination angle�, uniform and
onvergent �with 5 deg inclination angle� sections �Fig. 5�b��. The
ower wall of the multicomponent channel is subject to a constant
eat flux and the upper wall has a constant temperature condition
nd the results are based on utilizing local thermal equilibrium
ssumption. Once again the results shown in this figure display an
xcellent matching at the interfaces between different neighboring
ections �X=5 and X=10� of the variable cross-sectional domain.
he presented analytical results in this work can be valid for a
ide range of module thicknesses. It should be noted that the
pper wall temperature has an important role on the temperature
istribution within each module. For Fig. 5, the upper wall tem-
erature is considered to be the same as that of the mean tempera-
ure at the channel’s entrance so as to concentrate on the effects of
eometry itself rather than the influence of upper wall temperature
n the domain under consideration. Since the convergent or diver-
ent inclination angle has a substantial effect on the temperature
istribution, a multicomponent channel can be designed to pro-

ig. 3 Fluid and solid temperature distributions at different
xial locations of a variable cross-sectional domain made of
onvergent „�=5 deg…-uniform-divergent „�=5 deg… sections,
ubject to an adiabatic boundary at the upper wall for �=0.01,

˙ f= q̇s=0: „a… Bi=0.5 and „b… Bi=10
ide the required temperature profile or a uniform temperature on

ournal of Heat Transfer
a surface subject to high heat flux such as in electronic cooling
applications. The convergent section can cool the domain and the
surface efficiently while the temperature can be managed by add-
ing uniform or divergent sections afterwards �Fig. 5�a��. As can be
seen in Fig. 5�b�, utilizing a channel with a divergent starting
section can considerably reduce the cooling effects of the working
flow and the upper wall temperature while a uniform channel can
maintain the desired temperature on the surface.

4 Conclusions
A comprehensive analytical investigation of forced convection

through a variable cross-sectional domain is carried out. Results
obtained form this analysis are pertinent in bioheat transport
through variable cross-sectional organ/tissue or in designing ther-
mal management devices as well as in understanding porous me-
dium based heat exchangers. Heat generation within fluid and
solid phases is incorporated in the analysis to represent a more

Fig. 4 Fluid and solid temperature distributions at different
axial locations of a variable cross-sectional domain made of
divergent „�=5 deg…-uniform-convergent „�=5 deg… sections,
subject to an adiabatic boundary at the upper wall for �=0.01,
q̇f= q̇s=0: „a… Bi=0.5 and „b… Bi=10
adoptive solution. The multisectional domain may compose of

JANUARY 2011, Vol. 133 / 011006-7
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ariable configurations �convergent, uniform or divergent� with
ifferent physical properties such as porosity, specific surface
rea, fluid-solid interstitial heat transfer coefficient, and different
orous matrices. To cover more adoptive and practical conditions,
ach domain is subject to an imposed heat flux on one side and
ither a thermally insulated or a constant temperature boundary
ondition on the other side. The results obtained from the present
erived analytical solutions were compared with the available
nalytical and numerical results in literature and were found to be
n a very good agreement. These analytical solutions are presented
or the first time, to the best of the authors’ knowledge in litera-
ure. The temperature profiles were found to match very well at
he interface between consecutive sections of a multicomponent
omain. The results show that the geometrical variations have a
ubstantial impact on the temperature field within the domain and
n the surface with an imposed heat flux. As such, the temperature
istributions within the variable cross-sectional domain or at the
urface with an imposed heat flux can be controlled by a proper
esign of the system as well as proper selection of the porous

ig. 5 Temperature distributions at different axial locations of
variable cross-sectional domain made of „a… convergent „�

5 deg…-uniform-divergent „�=5 deg… sections; „b… divergent
�=5 deg…-uniform-convergent „�=5 deg… sections, subject to

constant temperature at the upper wall, for �=0.01 and q̇f
q̇s=0.
atrix.
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Nomenclature
asf � specific surface area �m−1�
Bi � modified Biot number, hsfasfH

2 /ks,eff
cp � fluid specific heat capacity �J kg−1 K−1�

Dh � hydraulic diameter of the channel, 2H �m�
H � entrance thickness of channel or each section

of a multisection channel �m�
H1 � entrance thickness of the first section of a mul-

tisection channel �m�
hsf � fluid-solid interstitial heat transfer coefficient

�W m−2 K−1�
hw � wall heat transfer coefficient, qw / �Tw−Tf ,m�

�W m−2 K−1�
kf � fluid thermal conductivity �W m−1 K−1�

kf ,dis � fluid dispersion thermal conductivity
�W m−1 K−1�

kf ,eff � effective thermal conductivity of the fluid
phase �W m−1 K−1�

ks � solid thermal conductivity �W m−1 K−1�
ks,eff � effective thermal conductivity of the solid

phase �W m−1 K−1�
Nuw � Nusselt number at the wall

Nuw,TE � Nusselt number at the wall for local thermal
equilibrium model

qw � imposed heat flux at the wall �W m−2�
q̇ � internal heat generation �W m−3�
T � temperature �K�

Te � mean flow temperature at the channel’s en-
trance �K�

Tf ,m � mean flow temperature �K�
Tc � upper wall constant temperature �K�
Ti � mean flow temperature at the entrance of a

single-section channel or at each section of a
multicomponent channel �K�

Tw � temperature of the wall subject to an imposed
heat flux �K�

Tw,e � wall temperature at the entrance of a channel
�K�

Tw,x=x0 � wall temperature at the entrance of a single-
section channel or at each section of a multi-
component channel �K�

u � fluid velocity �m s−1�
ui � fluid velocity at the entrance of a channel or

each section of a multicomponent channel
�m s−1�

x � longitudinal coordinate �m�
x0 � longitudinal coordinate at the entrance of a

channel or each section of a multicomponent
channel �m�

X � nondimensional longitudinal coordinate, x /H1
y � transverse coordinate �m�

Greek Symbols
� � inclination angle
� � porosity
� � nondimensional transverse coordinate,

y / �H� �x−x0�tan ��
� � ratio of the effective fluid thermal conductivity

to that of the solid, kf ,eff /ks,eff
� � parameter, 
Bi��1+�� /�

�0 � parameter, 
Bi�1+�� /�
� � fluid density �kg m−3�

 � parameter used in model II: constant tempera-

ture boundary condition
�� � nondimensional temperature difference be-

tween solid and fluid phases
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� � nondimensional temperature,
ks,eff��T�−Tw� / �qwH�

�c � nondimensional upper wall constant tempera-
ture, ks,eff�Tc−Tw� / �qwH�

� f ,m � nondimensional fluid mean temperature
	 � nondimensional internal heat generation, �1

−��Hq̇ /qw

� � upper wall shape factor, �H� �x−x0�tan ��2 /H2

� � a dimensional parameter �K�
�1 � a dimensional parameter �m−1�
�2 � a dimensional parameter �m−1K�
�3 � a dimensional parameter �K�
�� � a dimensional parameter �K�

ubscripts/Superscripts
f � fluid phase

f ,m � fluid mean
c � constant temperature wall

eff � effective property
s � solid phase

w � wall subject to an imposed heat flux

ymbols
+ � applied in equations for a divergent channel

wherever � sign is utilized
− � applied in equations for a convergent channel

wherever � sign is utilized
� � � intrinsic volume average of a quantity
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