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a b s t r a c t

Heat transfer plays an important role in the handling and processing of non-Newtonian
nanofluids. In this paper, the fully developed flowof an incompressible, thermodynamically
compatible non-Newtonian third-grade nanofluid in coaxial cylinders is studied. Two
illustrative models of variable viscosity, namely (i) Reynolds’ model and (ii) Vogel’s model,
are considered. Analytic solutions of velocity, temperature, and nanoparticle concentration
are first developed by the homotopy analysismethod (HAM), and then the role of pertinent
parameters is illustrated graphically. Convergence of the obtained series solutions has been
discussed explicitly and the recurrence formulae for finding the coefficients are also given
in each case.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In the last two decades, the study of non-Newtonian fluids [1–7] has gained great importance, and this is mainly due to
their huge range of applications. Recent advances in nanotechnology have led to the development of a new innovative class
of heat transfer called nanofluids created by dispersing nanoparticles (10–50 nm) in traditional heat transfer fluids [8].
Non-Newtonian nanofluids are widely encountered in many industrial and technology applications, such as melts of
polymers, biological solutions, paints, tars, asphalts, and glues, but a careful review of the literature reveals that non-
Newtonian nanofluids have so far received very little attention. Nanofluids appear to have the potential to significantly
increase heat transfer rates in a variety of areas such as industrial cooling applications, nuclear reactors, transportation
industry (an automobiles, trucks, and airplanes), micro-electromechanical systems, electronics and instrumentation, and
biomedical applications (nano-drug delivery, cancer therapeutics, cryopreservation). Nanofluids have been found to possess
enhanced thermophysical properties such as thermal conductivity, thermal diffusivity, viscosity, and convective heat
transfer coefficients compared to those of base fluids like oil or water. The materials which are commonly used as
nanoparticles include chemically stable metals (e.g., gold, copper), metal oxides (e.g., alumina, silica, zirconia, titania), oxide
ceramics (e.g., Al2O3, CuO), metal carbides (e.g., SiC), metal nitrides (e.g., AlN, SiN), carbon in various forms (e.g., diamond,
graphite, carbon nanotubes) and functionalized nanoparticles. Some relevant studies on the topic can be found in [9–11].

The study of the behavior of themotion of non-Newtoniannanofluids is complicated anddifficult because of the nonlinear
relationship between the stress and the rate of strain, and this is due to the fact that most phenomena in the real world are
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essentially nonlinear and are usually described by nonlinear equations. It is very easy to solve a linear problem but finding
solutions of nonlinear problems is still very difficult. In particular, getting an exact analytic solution of a given nonlinear
problem is often more difficult compared to getting a numerical solution, despite the availability of high-performance
supercomputers. However, results obtained by numerical methods give discontinuous points of a curve when plotted;
besides that, obtaining the complete necessary understanding of a nonlinear problem is also difficult. If a nonlinear problem
contains a singularity or has multiple solutions then this also adds to the numerical difficulties. Though numerical and
analytic methods for solving nonlinear problems have limitations, at the same time they have their own advantages too.
Therefore, we cannot neglect either of the two approaches but usually it is pleasing to solve a nonlinear problem analytically.
Moreover, porous media are used to transport and store energy in many industrial applications, such as heat pipes, solid
matrix heat exchangers, electronic cooling, and chemical reactors. An important characteristic for the combination of the
fluid and the porousmedium is the tortuosity, which represents the hindrance to flow diffusion imposed by local boundaries
or local viscosity [12,13].

Motivated by these facts, the present work has been undertaken in order to analyze the fully developed flow of an
incompressible, third-grade nanofluid in coaxial cylinders. Two illustrative models of variable viscosity, namely Reynolds’
model and Vogel’s model, are considered. Porous media are also taken into account. Since it is not easy to get an exact
analytical solution of a nonlinear problem, we may go for analytic series solutions. To derive the solutions of nonlinear
coupled equations, we have used one of the most modern methods, the homotopy analysis method (HAM) [14–18], which
is particularly suitable for strongly nonlinear problems. Besides, unlike other analytic techniques [19–22], the HAMprovides
us with a simple way to ensure the convergence of series solutions of a nonlinear problem and does not require any small
parameter. Convergence of the obtained series solutions are first properly discussed and then analytic solutions of the
velocity profile, temperature profile, and mass concentration are developed by the HAM.

2. Formulation of the problem

Let us consider a steady, incompressible, third-grade nanofluid in coaxial cylinders. The stress in a third-grade fluid is
given by

T = −pI + µA1 + α1A2 + α2A2
1 + β1A3 + β2(A1A2 + A2A1) + β3(trA2

1)A1, (1)

where µ is the coefficient of viscosity, and α1, α2, β1, β2, β3 are the material moduli; all are functions of temperature
in general. In the above representation, −pI is the spherical stress due to the constraint of incompressibility, and the
kinematical tensors A1,A2 and A3 are defined by

A1 = (gradV) + (gradV)t , (2)

An =
DAn−1

Dt
+ An−1 (gradV) + (gradV)t An−1, n = 2, 3, (3)

where V = [0, 0, v(r)] denotes the velocity field, grad is the gradient operator, and D/Dt is the material time derivative,
which is defined by

D (·)

Dt
=

∂ (·)

∂t
+ [grad (·)]V, (4)

where ∂/∂t is the partial derivative with respect to time. A detailed thermodynamic analysis of the model, represented by
Eq. (1), is given in [23], where it is shown that, if all the motions of the fluid are to be compatible with thermodynamics in
the sense that these motions satisfy the Clausius–Duhem inequality, and if it is assumed that the specific Helmholtz free
energy is a minimum when the fluid is locally at rest, then

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤

24µβ3, β1 = β2 = 0, β3 ≥ 0. (5)

In our analysis, we assume that the fluid is thermodynamically compatible, and therefore Eq. (1) reduces to

T = −p1I + µA1 + α1A2 + α2A2
1 + β3(trA2

1)A1. (6)

It is noted that this constitutive relation not only predicts the normal stress differences, but also can predict the ‘‘shear-
thickening’’ phenomenon (since β3 > 0), which is the increase in viscosity with increasing shear rate. That is, we can
rewrite Eq. (6) as

T = −p1I +

µ + β3(trA2

1)

A1 + α1A2 + α2A2

1, (7)

and then the quantity in the brackets can be thought of as an effective shear-dependent viscosity; that is, µ + β3(trA2
1).

Obviously a viscous fluid is governed by continuity and Navier–Stokes equations, which, when the fluid is incompressible,
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take the form of the following four field equations, embodying the conservation of total mass, momentum, thermal energy,
and nanoparticles, respectively,

ρf


∂V
∂t

+ V.∇V


= div T −
µϕ

k


1 + λr

∂

∂t


V +


φρp + (1 − φ) ρf [1 − βT (θ − θw)]


g, (8)

(ρc)f


∂θ

∂t
+ V.∇θ


= k∇2θ + (ρc)p


Db∇φ.∇θ +

DT

θw

∇θ.∇θ


, (9)

∂φ

∂t
+ V.∇φ


= Db∇

2φ +
DT

θw

∇
2θ, (10)

along with the boundary conditions

v (R1) = v0, v (R2) = 0; θ (R1) = θw, θ (R2) = 0; φ (R1) = φw, φ (R2) = 0, (11)

where θ is the temperature, φ is the nanoparticle volume fraction, ρf is the density of the base fluid, ρp is the density of the
nanoparticles, g is the gravitational vector, βT is the volumetric solutal expansion coefficient of the nanofluid, and R1 and
R2 are the radii of the inner and outer cylinders respectively. The Brownian diffusion coefficient and the thermophoretic
diffusion coefficient are respectively denoted by Db and DT . Moreover, λr , ϕ, and k are the retardation time, porosity, and
permeability of the porous medium (for detailed analysis see [24]).

Let us introduce the following non-dimensional parameters:

v =
v

V0
, r =

r
R
, µ =

µ

µ0
, θ =

θ − θw

θm − θw

, φ =
φ − φw

φm − φw

(12)

where v0, µ0, θw , θm, and φm denote the reference velocity, reference viscosity, pipe temperature, fluid temperature, and
mass concentration, respectively. Substituting Eq. (6) in the balance of linear momentum and using the non-dimensional
quantities given in Eq. (12), the dimensionless forms of the governing equations ((8) to (11)), after dropping bars for
simplicity, lead to the following non-dimensional coupled equations:

dµ
dr

du
dr

+
µ

r
du
dr

+ µ
d2u
dr2

+
Λ

r


du
dr

3

+ 3Λ

du
dr

2 d2u
dr2

= P


µ + Λ


dv
dr

2


v + c − Grθ − Brφ, (13)

α


d2θ
dr2

+
1
r
dθ
dr


+ Nb

dθ
dr

dφ
dr

+ α1Nt


dθ
dr

2

= 0, (14)

Nb


d2θ
dr2

+
1
r
dθ
dr


+ Nt


d2φ
dr2

+
1
r
dφ
dr


= 0, (15)

subject to boundary conditions

v(1) = 1, v(2) = 0; θ(1) = 1, θ(2) = 0; φ(1) = 1, φ(2) = 0. (16)

The following dimensionless quantities are also obtained:

Λ =
2β3v

2
0

µ0R2
, c =

∂ p̂
∂z R

2

v0µ0
, P =

ϕ

kR2
2
,

Nb = Db (φm − φw) , Nt =
DT (θm − θw)

θw

,

Gr =
(θm − θw) ρfwR2 (1 − φw) g

µ0u0
, Br =


ρp − ρw


R2 (φm − φw) g
µ0u0


. (17)

Here, Λ, P , c , Gr , Br , Nt , and Nb are the third-grade parameter, porosity parameter, pressure gradient, thermophoresis
diffusion constant, Brownian diffusion constant, thermophoresis parameter, and Brownian motion parameter, respectively.

3. Solution of the problem

In this section, the HAM solutions will be determined for the velocity, temperature, and nanoparticle concentration by
using Reynolds’ model and Vogel’s model of viscosity.

Case I: Reynolds’ model
Here, the viscosity is taken in the form

µ = e−B θ , (18)
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which, after using the Maclaurin’s series, can be written as

µ = 1 − θB + O(θ2). (19)
For the HAM solution we select

v0(r) =
(128 − r7)

127
, θ0(r) =

(128 − r7)
127

, φ0 =
(128 − r7)

127
(20)

as the initial approximation of v, , θ , and φ, respectively, which satisfy the following linear operator and corresponding
boundary conditions:

L =
d2

dr2
, (21)

such that
L[C1 + C2 ln r] = 0, (22)

where C1 and C2 are arbitrary constants.
From Eqs. (14) to (16), we also define the following nonlinear operators:

Nv[v
∗(r, p), θ∗(r, p), φ∗(r, p)] =

−B
dθ∗

dr
dv∗

dr
+

(1 − θ∗B)
r

dv∗

dr
+

Λ

r


dv∗

dr

3

+

1 − θ∗B

 d2v∗

dr2
+ 3Λ


dv∗

dr

2 d2v∗

dr2
+ Grθ

∗

+ Brφ
∗
− c − P


1 − θ∗B


+ Λ


dv∗

dr

2


v∗


, (23)

Nθ [v
∗(r, p), θ∗(r, p), φ∗(r, p)] = α


d2θ∗

dr2
+

1
r
dθ∗

dr


+ Nb

dθ∗

dr
dφ∗

dr
+ α1Nt


dθ∗

dr

2

, (24)

Nφ[v∗(r, p), θ∗(r, p), φ∗(r, p)] = Nb


d2θ∗

dr2
+

1
r
dθ∗

dr


+ Nt


d2φ∗

dr2
+

1
r
dφ∗

dr


, (25)

and then construct the homotopy

Hv[v
∗(r, p)] = (1 − p)L[v∗(r, p) − v0(r)] − ph̄Nv[v

∗(r, p), θ∗(r, p), φ∗ (r, p)], (26)

Hθ [θ
∗(r, p)] = (1 − p)L[θ∗(r, p) − v0(r)] − ph̄Nθ [v

∗(r, p), θ∗(r, p), φ∗ (r, p)], (27)

Hφ[v∗(r, p)] = (1 − p)L[φ∗(r, p) − v0(r)] − ph̄Nφ[v∗(r, p), θ∗(r, p), φ∗ (r, p)], (28)
where the embedding parameter p ∈ [0, 1], and h̄ is a non-zero auxiliary parameter. SettingHv[v

∗(r, p)] = Hθ [θ
∗(r, p)] =

Hφ[φ∗(r, p)] = 0, the zeroth-order deformation equations are given by the following relations:

(1 − p)L[v∗(r, p) − v0(r)] = p}Nv[v
∗(r, p), θ∗(r, p), φ∗(r, p)], (29)

(1 − p)L[θ∗(r, p) − θ0(r)] = p}Nθ [θ
∗(r, p), θ∗(r, p), φ∗(r, p)], (30)

(1 − p)L[φ∗(r, p) − φ0(r)] = p}Nφ[φ∗(r, p), θ∗(r, p), φ∗(r, p)], (31)

v∗(1, p) = 1, θ∗(1, p) = 1, φ∗(1, p) = 1, v∗(2, p) = 0, θ∗(2, p) = 0, φ∗(2, p) = 0. (32)
The mth-order deformation problems of above equations are

L [vm − χmvm−1] = }R1m(r), (33)

L [θm − χmθm−1] = }R2m(r) (34)

L [φm − χmφm−1] = }R3m(r), (35)

vm(1) = 1, vm(2) = 0, θm(1) = 1, θm(2) = 0, φm(1) = 1, φm (2) = 0, (36)
where

R1m(r) =

d2vm−1

dr2
+

1
r
dvm−1

dr
− B

m−1
k=0

dvm−1−k

dr
dθk
dr

− B
m−1
k=0

dvm−1−k

dr
θk − B

m−1
k=0

d2vm−1−k

dr2
θk

+
Λ

r

m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
dvl

dr
+ 3Λ

m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
d2vl

dr2

− Pvm−1 + BP
m−1
k=0

vm−1−kθk − PΛ

m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
vl

− c(1 − χm) + Grθm−1 + Brφm−1


, (37)
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R2m(r) = α


d2θm−1

dr2
+

1
r
dθm−1

dr


+ Nb

m−1
k=0

dθm−1−i

dr
dφi

dr
+ α1Nt

m−1
k=0

dθm−1−i

dr
dθi
dr

, (38)

R3m(r) = Nb


d2θm−1

dr2
+

1
r
dθm−1

dr


+ Nt


d2φm−1

dr2
+

1
r
dφm−1

dr


(39)

are recurrence formulae, in which

χm =


0, m ≤ 1,
1, m > 1. (40)

Case II: Vogel’s model

µ = µ0e


A
B+θ

−θ0


, (41)

or Eq. (41) can be approximated [25] as

µ =
c
S


1 −

θA
B2


where S = µoe


A
B −θ0


. (42)

For HAM solution here we select the initial guess and linear operator given in Eqs. (20) and (21), respectively. With the same
procedure as given in case I, the zeroth-order andmth-order deformation equations are respectively given by the following
relations:

(1 − p)L[v∗(r, p) − v0(r)] = p}Nv[v
∗(r, p), θ∗(r, p), φ∗(r, p)], (43)

(1 − p)L[θ∗(r, p) − θ0(r)] = p}Nθ [θ
∗(r, p), θ∗(r, p), φ∗(r, p)], (44)

(1 − p)L[φ∗(r, p) − φ0(r)] = p}Nφ[φ∗(r, p), θ∗(r, p), φ∗(r, p)], (45)

v∗(1, p) = 1, θ∗(1, p) = 1, φ∗(1, p) = 1, v∗(2, p) = 0, θ∗(2, p) = 0, φ∗(2, p) = 0 (46)

and

L [vm − χmvm−1] = }R4m(r), (47)

L [θm − χmθm−1] = }R5m(r), (48)

L [φm − χmφm−1] = }R6m(r), (49)

vm(1) = 1, vm(2) = 0, θm(1) = 1, θm(2) = 0, φm(1) = 1, φm (2) = 0, (50)

where

Nv[v
∗(r, p), θ∗(r, p), φ∗(r, p)] =

−
cA
SB2

dθ∗

dr
dv∗

dr
+

c
rS


1 −

θ∗A
B2


dv∗

dr

+
c
S


1 −

θ∗A
B2


d2v∗

dr2
+

Λ

r


dv∗

dr

3

+ 3Λ

dv∗

dr

2 d2v∗

dr2
− c + Grθ

∗

+ Brφ
∗
− P


1 −

θ∗A
B2


+ Λ


dv∗

dr

2


v∗


, (51)

Nθ [v
∗(r, p), θ∗(r, p), φ∗(r, p)] = α


d2θ∗

dr2
+

1
r
dθ∗

dr


+ Nb

dθ∗

dr
dφ∗

dr
+ α1Nt


dθ∗

dr

2

, (52)

Nφ[v∗(r, p), θ∗(r, p), φ∗(r, p)] = Nb


d2θ∗

dr2
+

1
r
dθ∗

dr


+ Nt


d2φ∗

dr2
+

1
r
dφ∗

dr


, (53)
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R4m(r) =

c
S
d2vm−1

dr2
+

c
rS

dvm−1

dr
−

cA
SB2

m−1
k=0

dvm−1−k

dr
dθk
dr

−
cA
rSB2

m−1
k=0

dvm−1−k

dr
θk −

cA
B2

m−1
k=0

d2vm−1−k

dr2
θk

+
Λ

r

m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
dvl

dr
− P

c
S
vm−1

+ 3Λ
m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
d2vl

dr2
+

PAc
B2S

m−1
k=0

vm−1−kθk + Grθm−1 + Brφm−1

− PΛ

m−1
k=0

k
l=0


dvm−1−k

dr


dvm−k−l

dr
vl − c(1 − χm)



, (54)

R5m(r) = α


d2θm−1

dr2
+

1
r
dθm−1

dr


+ Nb

m−1
k=0

dθm−1−i

dr
dφi

dr
+ α1Nt

m−1
k=0

dθm−1−i

dr
dθi
dr

, (55)

R6m(r) = Nb


d2θm−1

dr2
+

1
r
dθm−1

dr


+ Nt


d2φm−1

dr2
+

1
r
dφm−1

dr


. (56)

In both cases, for p = 0 and p = 1, we have

v∗ (r; 0) = v0(r), θ∗ (r; 0) = θ0(y), φ∗ (r; 0) = φ0(r)
v∗ (r; 1) = v(r), θ∗ (r; 1) = θ(r) φ∗ (r; 1) = φ (r)


. (57)

When p increases from 0 to 1 then in view of Eq. (57), themth-order solutions in terms of Taylor’s series can be written as

v∗ (r, p) = v0(r) +

∞
m=1

vm(r)pm

θ∗ (r, p) = θ0(r) +

∞
m=1

θm(r)pm

φ∗ (r, p) = φ0(r) +

∞
m=1

φm(r)pm


, (58)

where

vm(r) =
1
m!

∂mv∗ (r, p)
∂pm


p=0

, θm (r) =
1
m!

∂mθ∗ (r, p)
∂pm


p=0

φm (r) =
1
m!

∂mφ∗ (r, p)
∂pm


p=0

. (59)

The convergence of Eq. (58) depends upon h̄; therefore, we choose h̄ in such a way that it should be convergent at p = 1. In
view of Eq. (57), finally we have

v(r) = v0(r) +

∞
m=1

vm(r), θ(r) = θ0 (r) +

∞
m=1

θm(r), φ(r) = φ0(r) +

∞
m=1

φm(r). (60)

4. Convergence of the solution

It is noticed that the explicit, analytical expressions (29)–(36), and (43)–(50) contain the auxiliary parameter h̄. As
pointed out by Liao [26], the convergence region and rate of approximations given by the HAM are strongly dependent
upon h̄. Figs. 1–3 portray the h̄-curves to find the range of h̄ for Reynolds’ model for velocity, temperature, and nanoparticle
concentration, respectively. The range for admissible values of h̄ for velocity is −0.3 ≤ } ≤ −0.1, for temperature is
−1.9 ≤ } ≤ −0.1 and for nanoparticle concentration profile is −2 ≤ } ≤ −0.5. Figs. 4–6 represent the h̄-curves
for Vogel’s model. The admissible ranges for the velocity profile, temperature profile, and nanoparticle concentration are
−0.1 ≤ } ≤ −0.01, −1.9 ≤ h̄ ≤ −0.5, and −1.9 ≤ h̄ ≤ −0.1, respectively.
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Fig. 1. }-curve for the velocity profile for Reynolds’ model at 15th order approximation.

Fig. 2. }-curve for the temperature profile for Reynolds’ model at 15th order approximation.

Fig. 3. }-curve for the nanoparticle concentration profile for Reynolds’ model at 15th order approximation.
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Fig. 4. }-curve for the velocity profile for Vogel’s model at 15th order approximation.

Fig. 5. }-curve for the temperature profile for Vogel’s model at 15th order approximation.

Fig. 6. }-curve for the nanoparticle concentration profile for Vogel’s model at 15th order approximation.
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Fig. 7. Influence of c on velocity for Reynolds’ model when Λ = 0.1 and P = Nt = Nb = 1.

Fig. 8. Influence of c on velocity for Vogel’s model when Λ = 0.1 and P = Nt = Nb = 1.

5. Results and discussion

To see the effects of the emerging parameters for Reynolds’ model and Vogel’s model on the velocity, temperature, and
nanoparticle concentration Figs. 7–22 have been provided. The effects of pressure gradient c , third-grade parameter Λ, and
porosity parameter P on the velocity are shown in Figs. 7–12. Figs. 13–22 show the effects of the thermophoresis parameter
Nt and Brownian diffusion coefficient Nb on the velocity, temperature, and nanoparticle concentration profiles.

In Figs. 7 and 12, it is found that the velocity decreases by an increase in pressure gradient c , third-grade parameterΛ, and
porosity parameter P . Figs. 13–24 show the influence of the thermophoresis parameter and Brownian diffusion coefficient
on the velocity, temperature, and nanoparticle concentration. These figures show that the velocity, temperature, and
nanoparticle concentration decrease by increasing the thermophoresis parameter when the Brownian diffusion coefficient
is fixed and behave in an opposite manner when one varies the Brownian diffusion coefficient keeping the thermophoresis
parameter fixed. This is accordance with the fact that for a thermal boundary the effects of the thermophoresis parameter
and the Brownian diffusion coefficient are different.

6. Concluding remarks

In this paper, we have considered Reynolds’ model and Vogel’s model of viscosity for a third-grade nanofluid in a coaxial
cylinder. The governing equations are coupled and nonlinear. The solutions for both models have been calculated using the
homotopy analysis method. These solutions are valid not only for small but also for large values of all emerging parameters.



R. Ellahi et al. / Mathematical and Computer Modelling 55 (2012) 1876–1891 1885

Fig. 9. Influence of Λ on velocity for Reynolds’ model when c = −4 and P = Nt = Nb = 1.

Fig. 10. Influence of Λ on velocity for Vogel’s model when c = −4 and P = Nt = Nb = 1.

Fig. 11. Influence of P on velocity for Reynolds’ model when c = −4, Λ = 0.1, and P = Nt = Nb = 1.
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Fig. 12. Influence of P on velocity for Vogel’s model when c = −4, Λ = 0.1, and P = Nt = Nb = 1.

Fig. 13. Influence of Nt on velocity for Reynolds’ model when c = −4, Λ = 0.1, and Nb = P = 1.

Fig. 14. Influence of Nt on velocity for Vogel’s model when c = −4, Λ = 0.1, and Nb = P = 1.
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Fig. 15. Influence of Nb on velocity for Reynolds’ model when c = −4, Λ = 0.1, and Nt = P = 1.

Fig. 16. Influence of Nt on velocity for Vogel’s model when c = −4, Λ = 0.1, and Nb = P = 1.

Fig. 17. Influence of Nt on temperature for Reynolds’ model when Nb = 1.



1888 R. Ellahi et al. / Mathematical and Computer Modelling 55 (2012) 1876–1891

Fig. 18. Influence of Nt on temperature for Vogel’s model when Nb = 1.

Fig. 19. Influence of Nb on temperature for Reynolds’ model when Nt = 1.

Fig. 20. Influence of Nt on temperature for Vogel’s model when Nt = 1.
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Fig. 21. Influence of Nt on nanoparticle concentration for Reynolds’ model when Nb = 1.

Fig. 22. Influence of Nt on nanoparticle concentration for Vogel’s model when Nb = 1.

Fig. 23. Influence of Nb on nanoparticle concentration for Reynolds’ model when Nt = 1.
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Fig. 24. Influence of Nb on nanoparticle concentration for Vogel’s model when Nt = 1.

Porosity is also taken into account. The solutions valid for non-Newtonian parameters can be derived as special cases of the
present analysis; for instance, when Gr = Br = 0, then one recovers the case presented in [27] for the constant viscosity
model. The analytical results of [28] for Reynolds’ model and Vogel’s model can be obtained by taking P = Gr = Br = 0.
It may be remarked that the problem for this particular model was not solved earlier even by any traditional perturbation
technique. To the best of our knowledge, no such analysis is available in the literaturewhich can simultaneously describe the
heat transfer and porosity effects on variable viscosity for a non-Newtonian nanofluid. The results presented in this paper
will now be available for experimental verification to give confidence for the well-posedness of this nonlinear boundary
value problem.
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