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A three-dimensional multilayer model of mechanical response for analyzing the effect of pressure on

arterial failure is presented in this work. The multilayer arterial wall is considered to be composed of
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five different layers. The three-dimensional effects are incorporated within the five-concentric

axisymmetric layers while incorporating the nonlinear elastic characteristics under combined exten-

sion and inflation. Constitutive equations for fiber-reinforced material are employed for three of the

major layers, i.e., intima, media and adventitia and an isotropic material model is employed for the

other two layers, i.e., endothelium and internal elastic lamina. Our own developed three-dimensional

five-layer model has been utilized to model propagated rupture area of the arterial wall. Required

parameters for each layer are obtained by using a nonlinear least square method fitted to in vivo non-

invasive experimental data of human artery and the effects of pressure on arterial failure are examined.

The solutions from our computational model are compared with previous studies and good agreements

are observed. Local stresses and strain distributions across the deformed arterial wall are illustrated

and consequently the rupture area is predicted by varying luminal pressure in the physiological range

and beyond. The effects of pressure on the arterial failure have been interpreted based on this

comprehensive three-dimensional five-layer arterial wall model. This is the first study which employs

two constitutive equations and incorporates a five-layer arterial wall model in three-dimensions based

on in vivo non-invasive experimental data for a human artery.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A cardiovascular system encompasses a pump (heart), a deliv-
ery network (arteries) and a return network (veins) to return the
blood back to the pump to complete the cycle. The pressure
resulting from the blood flow acts on the endothelium cells of an
artery. The endothelium cells respond to stress and strain by
inflation or contraction and extension. In this work, we analyze
conditions under which arterial failure could occur. As such, the
initiation and propagation of rupture area is predicted and an
assessment of rupture area is qualitatively established. Mechanical
properties of stress and strain of the arterial wall have received
more attention in recent years. Several constitutive models have
been proposed (Holzapfel et al., 2000; Delfino et al., 1997; Fung,
1990, 1997, 1993). Monolayer homogenous arterial wall is the
simplest model to represent an artery. However, it is well known
that the arterial wall is a non-homogeneous material. A better
approach is to model heterogeneity of the arterial wall by
considering it as a multi-layer structure while incorporating its
architecture and its different layers, namely endothelium, intima,
internal elastic lamina, media and adventitia. The pressure acting
ll rights reserved.
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on the inside surface of arterial wall is caused by the lumen. While
there are several definitions of stress and strain (Fung, 1969, 1994,
2001), in the present study, the Cauchy stress and the Green–
Lagrange strain are used to refer to the force acting on the
deformed area and the ratio of inflation and extension.

A biological tissue can be subjected to chemical changes,
which can be effectively represented by changes in the stress
and strain. By monitoring stress and strain during a cyclic load
experiment, the response of an artery can be assessed during the
loading and unloading processes (Holzapfel et al., 2004b). As such,
stress and strain behavior of an arterial wall incorporating elastic
deformation under a pressure load is investigated in this work. A
three-dimensional five-layer model is established for studying the
effect of pressure on the arterial failure. In particular, various
pressure levels are studied and the rupture area is consequently
predicted.
2. Analysis

2.1. Structure of an arterial wall

Typical histological and anatomical structure of an arterial
wall is shown in Ai and Vafai (2006). The arterial wall is composed
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Nomenclature

A structure tensor of fiber direction
a acceleration vector
ao fiber direction vector
b the left Cauchy Green tensor
C the right Cauchy Green tensor
c stress-like parameter of isotropic term
DBP diastolic blood pressure
E the Green-Lagrange strain tensor
F the deformation gradient tensor
f the body force tensor of blood
G the body force tensor of arterial wall
H thickness of arterial layer
I identity tensor
I principal invariant
k1 stress-like parameter of anisotropic term
k2 dimensionless parameter of anisotropic term
L overall longitudinal length in reference configuration
MBP mean blood pressure
MSE mean square error
N number of experimental data points
P Lagrange multiplier
p luminal pressure
R radial position in reference configuration
r radial position in deformed configuration
rp the Pearson product moment correlation coefficient
S the second Piola–Kirchhoff stress tensor
SBP systolic blood pressure
T period of cardiac time
t time
Uo reference bulk inflow velocity
u velocity component
v velocity vector
X the position vector in reference configuration
x the position vector in deformed configuration
Z longitudinal position in reference configuration
z longitudinal position in deformed configuration

Greek symbols

b angle of collagen fibers

d parameter for fluctuation of pulsatile flow
z fold value of mean
Y angular position in reference configuration
y angular position in deformed configuration
l stretch ratio
m dynamic viscosity of blood
x fold value of amplitude
r density of arterial wall
r the Cauchy stress tensor
F opening angle
c the strain energy function
O the deformed configuration
Oo the reference configuration

Superscript

� deviator component
n normalized value

Subscript

adv adventitia
end endothelium
i inside
iel internal elastic lamina
int intima
j arterial layer
med media
o outside
v equivalent
vol volumetric component
z longitudinal direction

Other symbol

AO the average height above the abscissa
AJ the height of the oscillation in terms of cosine
BJ the height of the oscillation in terms of sine
= gradient operator
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of five layers. From the lumen side outward, the five layers of
arterial wall are: endothelium, intima, internal elastic lamina (IEL),
media and adventitia. The innermost layer, endothelium, is a
single layer of endothelial cells lining the interior surface of the
artery which are in direct contact with the lumen and could be
elongated in the same direction as the blood flow (Yang and Vafai,
2006). Intima, the innermost major layer, consists of both con-
nective tissue and smooth muscle. Intima grows with age or
disease and consequently might become more significant in
predicting the mechanical behavior of an arterial wall. The internal
elastic lamina separates the intima from the media. The media, the
thickest layer, consists of alternating layers of smooth muscle cells
and elastic connective tissue which gives the media high strength
and ability to resist the load. The media layer is surrounded by
loose connective tissue, the adventitia. The adventitia is the
outermost layer of the arterial wall, which is composed of fibrous
tissue containing elastic fibers, lymphatic and occasional nutrient
vessels. At high pressure levels, the adventitia behaves like a stiff
tube to prevent the artery from rupture.
2.2. Stress and strain characteristics

Lets consider the body of an arterial wall in the reference
configuration Oo. A material particle point in the cylindrical
coordinate system is represented as X(R, Y, Z). After the arterial
wall is deformed, the material point X(R, Y, Z) transforms to a
new position designated as x(r, y, z). The transformation can be
described by

F ¼
@x

@X
ð1Þ

The deformation gradients can be used to describe the distance
between two neighboring points in these two configurations and
the Green–Lagrange strain tensor E can be introduced as

E¼
1

2
ðC�IÞ ð2Þ
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where the Green–Lagrange strain tensor E is given in terms of the
right Cauchy Green tensor C, which is

C ¼ FT F ð3Þ

where I denotes the identity tensor.
The internal force within the deformed body per unit area can

be represented as stress. To describe the hyperelastic stress
response of an arterial wall, appropriate strain energy function
c is chosen to describe its physical behavior. The force in the
reference configuration Oo to its area, known as the second Piola–
Kirchhoff stress tensor S, could be determined by forming the first
derivative of strain energy function c with respect to the Green–
Lagrange strain tensor E as

S ¼
@c
@E

ð4Þ

The Piola–Kirchhoff stress tensor can be transformed onto the
Cauchy stress tensor via the following relationship

r¼ J�1FSFT
ð5Þ

where J denotes the Jacobian determinant of the deformation
gradient tensor which must satisfy the conservation of mass.

The Cauchy stress tensor r could be expressed as the sum of
two other stress tensors: volumetric stress tensor rvol which
tends to change the volume of the stressed body and the stress
deviator tensor r which tends to distort the stressed body, i.e.,

r¼ rvolþr ð6Þ

The equation of motion of a continuum derived by applying
Newton’s law can be expressed as

@r
@x
þG¼ ra ð7Þ

where G denotes the body force within the arterial wall and
a denotes its acceleration.

The conservation of mass is expressed by

@r
@t
þ
@rm
@x
¼ 0 ð8Þ

Where r denotes density of the arterial wall and v denotes its
velocity vector.

The deformation of the arterial wall is related to the luminal
pressure which in turn is due to the applied load by blood flow
within the arterial lumen. The blood which can be represented as
Newtonian fluid is described by the Navier–Stokes equation

r @n
@t
þrmrm ¼�rpþmr2mþf ð9Þ

where r denotes the density of blood, m, the velocity vector, p, the
luminal pressure, m, dynamic viscosity of blood and f denotes the
body force. Hence, the stress and strain distributions in an arterial
wall can be computed and used for predicting an arterial rupture.

2.3. Computational model

The schematic illustration of the arterial geometry and bound-
ary conditions under consideration is shown in Fig. 1a. The
arterial geometry is represented by five concentric axisymmetric
nonlinear elastic layers. The luminal radius, R was taken as
3.1 mm along with the longitudinal length L of 124 mm (Yang
and Vafai, 2006). The thickness of each arterial wall layer is
presented in Fig. 1a (Yang and Vafai, 2006, 2008; Ai and Vafai,
2006). It is assumed that the pressure is uniform in the circum-
ferential direction. The pressure on the outer arterial wall is
assumed to be uniform with magnitude of 4 kPa. The five layers
of the arterial wall are sequential, i.e., the outside radius of an
individual wall layer is the same as the inside radius of its
outward neighboring layer.
2.4. Mathematical formulation

There are six regions in the present mechanical model, i.e.
lumen and five arterial layers of endothelium, intima, internal
elastic lamina, media and adventitia. In what follows, the math-
ematical formulation for each layer is presented.

2.4.1. Lumen

The pressure profile from experimental data (N¼5852) for a
human carotid artery obtained by UEIL [Ultrasound and Elasticity
Imaging Laboratory (UEIL) at the Biomedical Engineering and
Radiology department of Columbia University, NY, US] is shown
in Fig. 1b. Blood flow is pulsatile and characterized by a parabolic
velocity profile at the inlet of the arterial lumen. Considering an
axisymmetric flow and neglecting the gravitational effect, the
Navier–Stokes equations can be presented as

@p

@r
¼ 0,

@p

@y
¼ 0, r @uz

@t
þuz

@uz

@z
¼�

@p

@z
þm @

2uz

@r2
þm @

2uz

@z2
ð10Þ

The time dependent outlet pressure, poutlet(t) along a cardiac
cycle could be obtained by curve fitting utilizing a Fourier
approximation with mean squares error fit of a sinusoidal func-
tion (Chapra and Canale, 2010) with the experimental data for the
pressure. So, the pressure within a cardiac cycle and its variation
along the longitudinal direction, p(z,t), can be expressed as

pðz,tÞ ¼
2mUo

R2
1þdsin

2pt

T

� �� �� �
ðzoutlet�zÞþBAo

þx
X30

J ¼ 1

AJcos J
2pt

T

� �
þBJsin J

2pt

T

� �
ð11Þ

where m¼0.0037 g=mm s, Uo is the reference bulk inflow velocity,
Uo¼169 mm=s, d is the pulsatile flow parameter, d¼1, T is cardiac
period,T¼0.8 s, parameters z and x are equal to unity, parameter
AO is 12011 Pa and AJ and BJ are given in Table 1.

2.4.2. Arterial layers

The geometry and boundary conditions are shown in Fig. 1a.
Kinematics of the artery in cylindrical coordinate system can be
described as (Ai and Vafai, 2006; Yang and Vafai, 2008)

r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
�R2

i

klz
þr2

i

s
, ð12Þ

y¼ kYþZ
F
L

, ð13Þ

z¼ lzZ ð14Þ

where k¼ 2p=2p�a, lz is the stretch ratio in longitudinal direc-
tion (Delfino et al., 1997), F and L are the opening angle and
overall length of artery in the reference configuration and sub-
script i in Eq. (12) refers to the inner part of the artery. An artery
deformed under extension and inflation and without residual
strain is considered in this study.

For endothelium and internal elastic lamina, the strain energy
function of neo-Hookean has been used to determine the non-
linear response. The strain energy function for an incompressible
neo-Hookean material is

cj ¼
cj

2
ðI1�3Þ ð15Þ

where cj40 is the stress-like parameter, I1 is the first principal
invariant of C and subscript j refers to the endothelium and
internal elastic lamina (IEL). For intima, media and adventitia,
utilizing an artery structure composted of fibers and non-collagen
matrix of material and fiber reinforced strain energy function
suggested by Holzapfel et al. (2000) is suitable to relate stress and



Table 1
Parameters AJ and BJ in units of Pascal.

AJ BJ

A1 �307.802 A11 �8.0677 A21 �14.8198 B1 2472.354 B11 6.7722 B21 �0.7861

A2 �1152.17 A12 44.5415 A22 �35.7354 B2 899.1454 B12 �21.8575 B22 4.3848

A3 �904.308 A13 22.2471 A23 �5.9142 B3 141.6018 B13 40.6469 B23 �19.529

A4 �472.175 A14 �30.1193 A24 4.3074 B4 �162.328 B14 �5.9916 B24 �17.2017

A5 �376.189 A15 18.2471 A25 �1.4468 B5 �319.284 B15 �3.3656 B25 �20.3007

A6 �12.2606 A16 21.6265 A26 22.4666 B6 �490.187 B16 33.2005 B26 �15.6279

A7 196.7156 A17 9.0006 A27 14.0872 B7 �193.917 B17 11.1883 B27 6.0502

A8 93.4258 A18 7.895 A28 8.5244 B8 �52.9216 B18 21.7935 B28 �2.0939

A9 76.1842 A19 �14.0034 A29 8.0986 B9 �44.6953 B19 37.0081 B29 �0.6531

A10 70.6487 A20 �20.9844 A30 6.8244 B10 58.292 B20 7.7842 B30 9.3357

Fig. 1. (a) Schematic illustration of an artery and the imposed boundary conditions, (b) the pressure profile along a cardiac cycle for a human carotid artery (male, time

step¼0.140014 ms, N¼5852 points, cardiac cycle time¼time stepn(N�1)¼0.8192 s, heart rate¼73.240 bpm, Khamdaeng et al., 2012a) and (c) the diameter profile along

a cardiac cycle for a human carotid artery (time step¼1/505 ms, N¼404 points, cardiac cycle time¼time stepn(N�1)¼0.7980 s, heart rate¼75.186 bpm, Khamdaeng

et al., 2012b).
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strain. This fiber reinforced strain energy function takes into
account the architecture of the arterial wall and also requires a
relatively small number of parameters (Khakpour and Vafai,
2008; Holzapfel et al., 2004b, 2005b). The strain energy function
which will incorporate the isotropic and anisotropic parts can be
written as

cj ¼
cj

2
ðI1�3Þþ

k1j

2k2j

X
i ¼ 4,6

exp½k2jðI ij�1Þ��1
� �

ð16Þ



Table 2
The ultimate tensile stress and associated ultimate stretch for intima, media, and

adventitia

Layer Direction Ultimate tensile

stress (kPa)

Ultimate

stretch

Adventitia Circumferential direction 1031.6 1.44

Longitudinal direction 951.8 1.353

Media Circumferential direction 202 1.27

Longitudinal direction 188.8 1.536

Intima Circumferential direction 488.6 1.331

Longitudinal direction 943.7 1.255
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where cj40, k1j40 are stress-like parameters and k2j40 is a
dimensionless parameter, subscript j refers to intima, media and
adventitia layers and subscript i refers to the index number of
invariants. In Eq. (16), I1 is the first principal invariant of C . The
definitions of the invariants associated with the anisotropic
deformation of arterial wall are given below

I4j ¼ C : A1j, I6j ¼ C : A2j ð17Þ

The collagen fibers normally do not support a compressive
stress. Thus, in case of I4r1 and I6r1 the response is similar to
the response of a rubber like material as described by Neo-
Hookean functions. The tensor A1j and A2j characterizing the
structure are given by

A1j ¼ ao1j � ao1j,A2j ¼ ao2j � ao2j ð18Þ

Components of the direction vector ao1j and ao2j in cylindrical
coordinate system are

ao1j ¼

0

cosbj

sinbj

2
64

3
75, ao2j ¼

0

cosbj

-sinbj

2
64

3
75 ð19Þ

where bj is the angle between the collagen fibers and circumfer-
ential direction. Three different values of 5 %

o
, 7 %

o
and 49 %

o
(Holzapfel

et al., 2002) are applied for the three major layers of intima,
media and adventitia, respectively.

Hence, the stress in Eulerian description could be determined
by the expression given below.

sj ¼ cjdevbþ
X

i ¼ 4,6

2cijdevðaij � aijÞ ð20Þ

where devb ¼ b�1=3½b : I�I, devðaij � aijÞ ¼ ðaij � aijÞ�1=3½ðaij�

aijÞ : I�I, aij ¼ F aoij denotes the Eulerian counter part of aoij and

c ij ¼ @caniso=@I ij denotes a response function i.e. c4j ¼ k1ðI4j�1Þ

ðexpðk2ðI4j�1Þ2ÞÞ and c6j ¼ k1ðI6j�1Þðexpðk2ðI6j�1Þ2ÞÞ. Additionally,

it should be noted that F ¼ ðJ1=3IÞF , C ¼ F
T
F and b ¼ F F

T
. When

incompressibility of an arterial wall is considered we obtain, F ¼ F ,

C ¼ C and b¼ b. There are only three parameters to be considered for
each layer c, k1 and k2.

2.5. Determination of constitutive parameters

The diameter profile from experimental data (N¼404) at
carotid artery of human supported by UEIL (Ultrasound and
Elasticity Imaging Laboratory (UEIL), Biomedical Engineering
and Radiology, Columbia University, NY, US) are shown in
Fig. 1c. To obtain the diameter the ultrasound probe is placed
on the skin at the carotid position. The minima and maxima of the
pressure and diameter waveforms are aligned and matched over
the cardiac cycle. The viscosity effect is hence ignored. Arterial
wall is considered as an incompressible material and horizontal
so the gravity effect could be ignored, thus

@r
@x
¼ 0 ð21Þ

Luminal pressure could be determined by

pi ¼

Z ro

ri

ðsyy�srrÞ
dr

r
þpo ð22Þ

where syy ¼ Pþsyy, srr ¼ Pþsrr and P is the Lagrange multiplier
used to enforce the incompressibility constraint.

Moving boundary has to be incorporated when analyzing the
five-layer model. The moving boundary is normalized. Numerical
integration with a three-point Gaussian quadrature which has an
accuracy of the order of five is employed to discretize Eq. (22).
Nonlinear least square method is used to estimate the relevant
parameters by minimizing the mean square error MSEpar of
luminal pressures (Objective function) given by

MSEpar ¼
1

N

XN

i ¼ 1

pi,mod el�pi,exp eriment

� �2
ð23Þ

The Pearson product moment correlation coefficient rp through
the data points in pi,mod el and pi,exp eriment is used to assess the
strength of the fit. The equation for the Pearson product moment
correlation coefficient is

rp ¼

PN
i ¼ 1

�
pi,mod el�pi,mod el

��
pi,exp eriment�pi,exp eriment

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i ¼ 1

�
pi,mod el�pi,mod el

�2 PN
i ¼ 1

�
pi,exp eriment�pi,exp eriment

�2
s ð24Þ

where N is the number of data points and i is the index for the
summation over the whole data points.

2.6. Arterial rupture

If the pressure is high and the artery has an inappropriate
deformation, the rupture of the arterial wall could occur. There are
a number of researchers who have studied the ultimate tensile
stress and associated stretch in a normal human artery (Holzapfel,
2001; Zohdi et al., 2004; Franceschini et al., 2006; Sommer et al.,
2008; Mohan and Melvin, 1982, 1983). In the past decade ultimate
values of separated layers has been studied (Sommer et al., 2008;
Holzapfel et al., 2005a,b, 2004a; Holzapfel, 2009; Zhao et al., 2008;
Sommer, 2010). The ultimate tensile stress and associated ultimate
stretch (Holzapfel et al., 2004b) shown in Table 2 in circumferential
and longitudinal directions for intima, media and adventitia are
used as criteria for assessing the rupture of the arterial wall in the
present study.

The equivalent tensile stress sv and strain Ev could be computed
from the Cauchy stress tensor and the Green–Lagrange strain tensor
as

sv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
r : r�

ðtrrÞ2

3

 !vuut ð25Þ

Ev ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
E : E�

ðtrEÞ2

3

 !vuut ð26Þ

The ultimate tensile stress and the associated ultimate stretch
in Table 2 are determined for critical equivalent tensile stress
svj,cri and strain Evj,cri. Two strategies are investigated to identify
the rupture area of the arterial wall. The first strategy is based on
strain values. The area of arterial wall where the local equivalent
strain exceeds the critical values is defined to be a rupture area.
The second strategy is based on the tensile stress. The area of the
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arterial wall where the local equivalent tensile stress and the
associated local equivalent strain exceed the critical values is
defined to be the rupture area. Estimation of the rupture risk is
referred to as the local equivalent of stress and strain approach.
The percentage of the rupture risk of the arterial wall Prisk is
defined as

Prisk ¼ 100sn

j En

j ð27Þ

where sn

j and En

j are normalized values which can be presented as

sn

j sn

j if
sv

svj,cri
o1,sn

j ¼
sv

svj,cri
; if

sv

svj,cri
Z1,sn

j ¼ 1

				



,

�
ð28Þ

En

j En

j if
Ev

Evj,cri
o1,En

j ¼
Ev

Evj,cri
; if

Ev

Evj,cri
Z1,En

j ¼ 1

				

�

ð29Þ

Due to lack of data for endothelium and internal elastic lamina
(IEL) layers, critical values for intima are applied for these two
layers.
Fig. 2. Comparison of luminal pressure versus inside and outside radii for a one layer

(d) Case 1D.
3. Results and discussion

3.1. Comparison with previous studies

This is the first study which employs two constitutive equa-
tions and incorporates a five-layer arterial wall model in three-
dimensions based on in vivo non-invasive experimental data for a
human artery. Our computational model is compared to a number
of prior studies for one and two-layer material models by using
their constitutive equations and material parameter sets in our
in-house computational program. We have compared our com-
prehensive model with the pertinent results in the literature in
Figs. 2 and 3. This constitutes a detailed set of nine comparisons
which are highlighted in Table 3. The source of comparison,
constitutive equations and utilized parameters for these compar-
isons are given in Table 3.

Fig. 2 displays four comparisons for the one-layer model
computed by our computational program representing the
luminal pressure versus inner and outer radii with prior works
artery with prior works listed in Table 3 (a) Case 1A, (b) Case 1B, (c) Case 1C and



Fig. 3. Comparison of luminal pressure versus inside and outside radii and the principal Cauchy stresses across arterial wall for a two-layer artery with prior works listed

in Table 3 (a) Case 2A, (b) Case 2B, (c) Case 2C, (d) Case 2D and (e) Case 2E.
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Table 3
List of comparisons with our computational model, specifying the number of layers, source of comparison and the constitutive equation

Fig. Case Number

of layers

Source of comparison Constitutive equation Utilized parameters

2a 1A 1 Holzapfel et al. (2000) Delfino et al. (1997) Artery; a¼44.2 kPa and b¼16.7

2b 1B 1 Holzapfel et al. (2000) Fung’s type Artery; c¼26.95 kPa and b1¼0.9925

b2¼0.4180, b3¼0.0089, b4¼0.0749, b5¼0.029, b6¼0.0193 and b7¼5.000

2c 1C 1 Sokolis (2010) Fung’s type Esophagus; c¼2.0934 kPa, b1¼0.783, b2¼7.385, b4¼0.611

2d 1D 1 von Maltzahn et al. (1984) Fung’s type Artery; c¼2.4657n2 kPa, b1¼0.1499, b2¼1.6409 and b4¼0.0028/2

3a 2A 2 Holzapfel et al. (2000) Holzapfel et al. (2000) Media; c¼3.000 kPa, k1¼2.3632 kPa and k2¼0.8393

Adventitia; c¼0.3000 kPa, k1¼0.5620 kPa and k2¼0.7112

3b 2B 2 Sokolis (2010) Fung’s type Mucosa–submucosa; c¼1974.4 Pa, b1¼3.296, b2¼11.529 and b4¼1.847

Muscle; c¼1012.6 Pa, b1¼0.568, b2¼5.197 and b4¼0.360

3c 2C 2 von Maltzahn et al. (1984) Fung’s type Media; c¼2.4657n2 kPa, b1¼0.1499, b2¼1.6409 and b4¼0.0028/2

Adventitia; c¼9.1140n2 kPa, b1¼0.1939, b2¼1.2601 and b4¼0.7759/2

3d 2D 2 Sokolis (2010) Fung’s type Mucosa–submucosa; c¼2406.1 Pa, b1¼2.220, b2¼10.229 and b4¼1.747

Muscle; c¼1012.6 Pa, b1¼0.568, b2¼5.197 and b4¼0.360

3e 2E 2 Holzapfel et al. (2000) Holzapfel et al. (2000) Media; c¼3.000 kPa, k1¼2.3632 kPa and k2¼0.8393

Adventitia; c¼0.3000 kPa, k1¼0.5620 kPa and k2¼0.7112

Note: Strain energy function of Delfino et al. (1997), c¼ a=b expðb=2ðI1�3ÞÞ�1
� �

, Strain energy function of Fung’s type, c¼ 1=2c½expðQ Þ�1�, Q ¼ b1E
2

YYþb2E
2

ZZþ

b3E
2

RRþ2b4EYYEZZþ2b5EZZ ERRþ2b6ERREYYþb7E
2

YZþb8E
2

RZþb9E
2

RY , Strain energy function of Holzapfel et al. (2000), c¼ 1=2cðI1�3Þþk1=2k2
P

i ¼ 4,6

exp½k2ðIi�1Þ2��1
n o

.

Table 4
Estimated stress related parameters for different arterial layers.

Layer Optimized parameters

c [kPa] k1 [kPa] k2

Endothelium 250.9108 – –

Intima 270.9837 2.1492 1.3012

IEL 250.9108 – –

Media 100.3643 3.5820 5.2049

Adventitia 10.0364 0.0716 0.9759
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(Cases 1A, 1B, 1C and 1D shown in Table 3). Our simulations are
found to be in very good agreement with previous studies. Slight
differences in the results occur due to different solution
methodologies.

Fig. 3 displays five comparisons for the two-layer model computed
by our computational model representing luminal pressure versus
inner and outer radii (Cases 2A, 2B, 2C and 2D) and the principal
Cauchy stresses across arterial wall (Case 2E). Again, very good
agreement with prior works is observed. The computational program
is extended to calculate the stress and strain distributions across
inflated and extended arterial wall incorporating the five-layer three-
dimensional model. The obtained results are analyzed to investigate
circumstances under which the arterial wall will rupture.

3.2. Parameter estimation

The estimated parameters are shown in Table 4 and the
Pearson product moment correlation coefficient rp of 0.97 is
obtained. Using these estimated parameter sets, the strain energy
density contours in circumferential and longitudinal directions
are investigated for each of the arterial layers.

3.3. Effects of pressure on arterial rupture

The pressure load acting on the inner surface of the arterial
wall increases the associated strain continually to the point of
failure. Deformation of the arterial wall could be presented
directly by displaying the strain distribution. As such the strain
distribution can be used to identify the rupture area. This is done
in Fig. 4. The rupture area can be identified using both the stress
and strain distributions such as the results presented in Fig. 5.
From the result shown in Fig. 5 the rupture characteristics can
be qualitatively interpreted. The failure process can be separated
into two regimes, failure initiation and failure propagation. The
existence and extent of the failure initiation and propagation
depends on the pressure or stress which relates to the arterial
geometry or strain by the properties of each arterial layer. It could
be seen that the rupture occurs in the circumferential direction
around the arterial wall and the rupture initiates a tear at the
medial surface of the artery. Moreover, the rupture propagates
from inside the medial surface towards the outer surface.

In order to quantitatively interpret the effect of pressure on
arterial failure, an assessment is made regarding the percentage
for the risk of rupture. The percentage for the risk of rupture is
displayed in Fig. 6. The risk level is divided into five groups. First,
the normal pressure level is when the pressure is lower than
16.0 kPa. In the normal pressure level range it is found that
maximum percentage risk of rupture does not exceed 50%
(Fig. 6a). The second level, pre-high pressure level is when the
pressure is in the range of 16.0–18.7 kPa. At pre-high pressure
level, maximum risk percentage of rupture is much greater but
does not exceed 80% (Fig. 6b). Next, high pressure level is when
the pressure is in the range of 18.7–21.3 kPa. At this level,
maximum risk percentage of rupture is quite high but rupture
is not eminent (Fig. 6c). The rupture initiation and propagation
occurs within the severe pressure level which is between 21.3 and
26.7 kPa (Fig. 6d and e). The rupture initiation occurs at about
24.0 kPa.

This study has explored a comprehensive model based on in vivo
non-invasive experimental data to identify rupture area and estimate
the risk percentage of rupture in normal five-layer arterial wall. The
major advantages of the present model is that it incorporates the
architecture of arterial layers by using two suitable forms of con-
stitutive equations to describe the mechanical attributes. In addition,
the luminal pressure variations resulting from the luminal blood flow
is included in this study.
4. Conclusions

The effects of pressure on arterial failure have been investi-
gated based on a comprehensive three-dimensional five-layer
arterial wall model. The endothelium and internal elastic lamina
are treated as isotropic media and intima, media and adventitia



Fig. 4. Rupture characteristics of an arterial wall based on utilizing strain as a criterion. (a)–(f) illustrates the wall deformation in the r�y plane at luminal pressure of 16.0,

18.7, 21.3, 24.0, 26.7 and 33.3 kPa, respectively. There are five colors to identify different layers, i.e. violet for endothelium, light blue for intima, dark blue for internal

elastic lamina (IEL), green for media and yellow for adventitia. Rupture area is identified with a red color.
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Fig. 5. Rupture characteristics of an arterial wall based on using stress and strain as a criterion. (a)–(f) illustrates the wall deformation in the r�y plane at luminal pressure

of 16.0, 18.7, 21.3, 24.0, 26.7 and 33.3 kPa, respectively. There are five colors to identify different layers, i.e. violet for endothelium, light blue for intima, dark blue for

internal elastic lamina (IEL), green for media and yellow for adventitia. Rupture area is identified with a red color.
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Fig. 6. Percentage risk of rupture of an arterial wall based on using stress and strain as a criterion, (a)–(f) illustrates the risk percentage of rupture in the r�y plane

at luminal pressures of 16.0, 18.7, 21.3, 24.0, 26.7 and 33.3 kPa, respectively.
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are treated as anisotropic media incorporating the active collagen
fibers. Layered arterial wall is modeled using two types of
constitutive equations. Our comprehensive model was found to
be in very good agreement with the results from the prior studies.
The effects of pressure on arterial failure are examined in detail.
The present investigation demonstrates that the pressure is
mainly responsible for the concentric wall movement. The pre-
sent work incorporates the three-dimensional five-layer model
and predicts the propagated rupture area of the arterial wall
coupled with blood flow in the lumen.
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