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Abstract: The unsteady and incompressible flow of non-Newtonian fluid through composite stenosis is investigated in the present
study. The micropolar fluid is treated as a blood flow model. Mild stenosis andslip velocity are also taken into account. The governing
equations are given in cylindrical coordinates system. Analytic solutions of velocity and volumetric flow flux are developed interms of
modified Bessel functions. The expressions for the impedance (flow resistance)λ , the wall shear stress distribution in the stenotic region
Tw and the shearing stress at the stenosis throatTs are also given. Impact of involved pertinent parameters is sketched and examined by
the resistance of impedance and shear stress. The stream lines are alsomade for different sundry parameters.
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1 Introduction

In the last three decades, the study of non-Newtonian
fluids [1–7] has gained great importance and this is
mainly due to their huge range of applications, such as
blood flow, paints, melts of polymers, biological solutions
and glues but a careful review of the literature reveals that
non-Newtonian micropolar fluid has yet received very
little attention. The study of blood flow of non-Newtonian
fluids in a stenosed artery is very important because of the
fact that number of cardiovascular diseases in the blood
vessels such as hearts attacks and strokes are the leading
cause of death worldwide. Even though the considerable
inventions for the diagnosis and treatment of these
disorders have been made, but still this subject needs
more care and attention to avoid these diseases. Few
investigators have highlighted different aspects of blood
flow analysis in arteries.

Recently, Mekheimer and El Kot [8] have studied the
mathematical modeling of unsteady flow of such fluids
through an anisotropically tapered elastic arteries with
time variant overlapping stenosis. They [8] analytically

solved their mathematically model for mild stenosis case.
Riahi et al [9] have examined the problem of blood flow
in an artery in the presence of an overlapping stenosis. A
mathematical study on three layered oscillatory blood
flow through stenosed arteries have been investigated by
Tripathi [10]. In a number has papers, Mekheimer and El
kot [11–14] have discussed the different aspects of blood
flow analysis in stenosed arteries. Very recently, Mishra et
al [15] have studied the blood flow through a composite
stenosis in an artery with permeable wall. Some relevant
studies on the topic can be seen from the list of
references [16, 17] and a number of references on the
topic can be found therein.

Moreover, getting an exact analytic solution of a given
coupled partial differential equation is often more difficult
as compared to getting a numerical solution. However,
results obtained by numerical methods give discontinuous
points of a curve when plotted. Though numerical and
analytic methods for solving coupled partial differential
equations have limitations, at the same time they have
their own advantages too. Therefore, we cannot neglect
either of the two approaches but usually it is pleasing to
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solve a coupled partial differential equations
analytically [18–24].

Motivated by these facts, the present work has been
undertaken in order to get an exact solution of fully
developed flow of an incompressible blood flow of
micropolar fluid through a composite stenosis in an artery
with permeable wall. Physical problem is first modelled
and then simplified by using the nondimensional
variables. The analytical solution of the simplified
equations are found and the results for the resistance
impedance, wall shear stress axial velocity, pressure
gradient and stream functions are discussed through
graphs for various physical parameters of the problem.
After the introduction in Section 1, the outlines of this
paper are as follows. Section 2 contains mathematical
formulation. In Section 3 exact solutions of the problems
are presented. Discussion and results are given in Sections
4. Finally Section 6 summaries the concluding remarks.

2 Mathematical formulation of problem

Consider an incompressible micropolar fluid is flowing
through a composite stenosis in a circular artery with
permeable walls. We are considering cylindrical
coordinates(r,θ ,z) in such a way thatz−axis is taken
along the axis of the artery where asr, θ are the radial
and circumferential directions respectively ( see Fig. 1).
Let r = 0 is considered as the axis of the symmetry of the
tube. The geometry of the stenosis is assumed to be
manifested in the arterial segment is described as

R(z)/R0 = 1−
2δ

R0 L0
(z−d) ; d ≤ z ≤ d +L0/2, (1)

= 1−
2δ
R0

(

1+cos
2π
L0

(z−d −L0/2)

)

; d +L0/2≤ z ≤ d +L0, (2)

= 1; otherwise, (3)

whereR ≈ R(z) andR0 are the radius of the artery with
and without stenosis, is respectively,L0 is the length of
the stenosis and d indicates its location,δ is the
maximum projection(maximum height) of the stenosis at
z = d +L0/2. Consider the blood as micropolar fluid, the
equations for the flow model are described as

∂v
∂ r

+
v
r
+

∂u
∂ z

= 0 (4)

ρ
(

∂u
∂ t +u ∂u

∂ z + v ∂u
∂ r

)

=− ∂ p
∂ z +(µ + k)×

(

∂ 2u
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1
r

∂u
∂ r +

∂ 2u
∂ z2

)

+ k
r

∂ (r G)
∂ r ,

(5)

ρ
(
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r

∂v
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(6)

ρ j
(
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)

=−2kG− k
(

∂u
∂ r −

∂v
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)

+ γ
(

∂
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(

1
r

∂ (rG)
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)

+ ∂ 2G
∂ z2

)

.

(7)

Fig. 1: Flow geometry of a composite stenosis in an artery with
permeable wall.

Introducing the following nondimensional variables

x′ = x
b , r = r

d0
, u′= u

u0
, v = bv

u0δ , h′ = h
d0
, p′ =

d2
0 p

u0bµ , j′ = j
d2

0
, G′ = d0G

u0
.

Making use of above nondimensional quantities and for
the case of mild stenosis, we arrive at

∂ p
∂ z

=
1

1−N

(

∂ 2u
∂ r2 +

1
r

∂u
∂ r

+
N
r

∂
∂ r

(rG)

)

, (8)

2G =−
∂u
∂ r

+
2−N

m2

∂
∂ r

(

1
r

∂
∂ r

(rG)

)

, (9)

where

N =
k

µ + k
, m2 =

d2
0k(2µ + k)

γ(µ + k)
. (10)

The boundary conditions are

∂u
∂ r

= 0 atr = 0, (11)

u = uB and
∂u
∂ r

=
α

√
Dα

(uB −uporous) at r = R(z) , (12)

where uporous = −Da
µ

∂ p
∂ z , uporous is the velocity in the

permeable boundary,Da is the Darcy number andα
(called the slip parameter) is a dimensionless quantity
depending on the material parameters which characterize
the structure of the permeable material with in the
boundary region.

3 Solution of the problem

Equation(8) can be written as

∂
∂ r

(

r
∂u
∂ r

+NrG− (1−N)
r2

2
∂ p
∂ z

)

= 0. (13)

After integrating, we get

∂u
∂ r

= (1−N)

(

r
2

∂ p
∂ z

+
A
r

)

−NG, (14)
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whereA is constant of integration. Invoking Eq.(14) into
Eq.(9), we arrive at

∂ 2G
∂ r2 +

1
r

∂G
∂ r

− (m2+
1
r2 )G =

(1−N)m2

(2−N)

(

r
2

∂ p
∂ z

+
A
r

)

.

(15)
The general solution of above equation is defined as

G = BI1(mr)+CK1(mr)−
1−N
2−N

(

r
2

∂ p
∂ r

+
A
r

)

, (16)

where BI1(mr) and CK1(mr) are modified Bessel
functions of first order of first and second kind
respectively. Substituting Eq.(16) into Eq. (14) and
integrating with the help of boundary conditions, we
obtain

u =
(

1−N
2−N

)

(

−∂ p
∂ z

)(

R2− r2− NR
m

(

I0(mR)−I0(mr)
I1(mR)

))

+uB.

(17)
The slip velocityuB is calculated as

uB =
−
√

Da(1−N)

2α

(

∂ p
∂ z

)(

R−
2α

√
Da

1−N

)

. (18)

The volumetric flow flux,Q is thus calculated as

Q = 2π
∫ R

0
rudr,

or

Q = π(1−N)
4(2−N)

∂ p
∂ z R2

(

2
√

Da(N−1)(N−2)R+4Da(N−1)+(N−1)R2α
(N−1)α

+4N
m2 −

2NI0(mR)
mI1(mR) R

)

.

(19)
Note that whenN → 0, the results of Mishra et al [15] can
be recovered as a special case of our problem

Q =
π(1−N)

4(2−N)

∂ p
∂ z

F (z) , (20)

F (z) = R2

(

2
√
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+4N
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,

(21)

∇p =

∫ L

0

(

−
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)

, (22)
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π (1−N)
Ψ , (23)

where
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d
∫

0

1
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1
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+
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(24)

The expressions for the impedance (flow resistance)λ ,
the wall shear stress distribution in the Stenotic regionTw
and the shearing stress at the stenosis throatTs in their non-
dimensional form can be calculated as

λ = 1− L0
L + η

L

∫ d+L0/2
d

dz
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(
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(25)
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1
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(26)
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(

b3+ 2
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Da(N−2)
αR2

0

(

R0b2+ 2α
√

Dab
N−1

)) , (27)

where

a ≈ a(z) = 1−2δ (z−d)/R0L0, b = 1−δ/R0, c =−δ/2R0,

θ ≈ θ(β ) = b+cosβ , β = π − (2π/L)(z−d−L0/2), η = 1+ 2
√

Da(N−2)
αR2

0

(

R0+
2α

√
Da

N−1

)

.

4 Discussion and results

To observe the quantitative effects of the micropolar
parameterm. The coupling numberN, computer codes
are developed for the numerical evaluation of the
analytical results obtain for flow impedanceλ , the wall
shear stressTw, for parameters valuesL = 1,2,3, L0 = 1,
d = 0 and for various values of slip parameterα, darcy
number

√
Da and stenosis heightδ/R0. It is noticed from

Fig. 2 that the flow impedanceλ increases by increasing
the stenosis heightδ/R0, while a decrease in impedance
is observed by increasing the slip parameterα and tube
lengthL by keeping all other parameter fixed. The effects
of m, stenosis heightδ/R0 and Darcy’s number

√
Da on

the impedanceλ are plotted in Fig. 3. It is depicted that
impedance decreases with the increase inm. Moreover,
impedance increases with the increases in stenosis height
δ/R0 and Darcy’s number

√
Da. The effects of tube

lengthL and micro-rotation viscosityN on the impedance
are shown in Fig. 4. It is observed that impedance
decreases with the increase of bothL andN. The effects
of impedance againstm for various values ofN are
sketched in Fig. 5. It is seen that with the increase inN
impedance decreases for all values ofm The wall shear
stressTw against axial distancez for various values ofα
and

√
Da are given in Fig. 6. It is concluded that the wall

shear stress increases with the increase inα and decreases
with the increase in

√
Da. The wall shear stressTw for

different values ofm andN are shown in Fig. 7. It is seen
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Fig. 2: variation of resistance to flowλ with
√

Da.

Fig. 3: variation of resistance to flowλ withα .

that shear stressTw increases by increasingN and
decreasingm. The streams lines for different parameters
are shown in Figs. 8 to 11. It is seen that with the
increases inm, the size of trapping bolus decreases (see
Fig. 8). Fig. 9 shows the streams lines for different values
of N. It is observed that with the increases inN, the size
of trapping bolus slightly decreases. The streams lines for
different values ofα are given in Fig. 10. Here the
trapping bolus increases with the increases inα. The
large Darcy’s number

√
Da, causes to decrease the

trapping bolus (see Fig. 11).

5 Conclusion

A mathematical model for the blood flow of micropolar
fluid through a composite stenosis in an artery with
permeable wall has been studied. The physical problem is
first modelled and then simplified by using the
nondimensional variables. The exact solution of the
governing equations are solved analytically. The results
for the resistance impedance, wall shear stress, axial

Fig. 4: variation of resistance to flowλ withδ/R0.

Fig. 5: variation of resistance to flowλ with m.

Fig. 6: variation ofTw with z for various values ofα and
√

Da.

velocity, pressure gradient and stream functions are
discussed through graphs for various physical parameters
of the problem. To the best of our knowledge, no such
analysis is available in the literature which can describe
the effects of non-Newtonian micropolar fluid in arterial
blood flow through composite stenosis simultaneously.
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Fig. 7: variation ofTw with z for various values of m and N.

a b c

Fig. 8: Stream lines for(a) m = 0.5, (b) m = 1.0, (c) m = 1.4.

a b c

Fig. 9: Stream lines for(a) N = 0.1, (b) N = 0.2, (c) N = 0.3.

a b c

Fig. 10: Stream lines for(a) α = 0.03, (b) α = 0.04, (c) α =
0.05.

a b c

Fig. 11: Stream lines for(a)
√

Da = 0.34, (b)
√

Da = 0.36, (c)√
Da = 0.38.

The results presented in this paper are now available for
further experimental verification to give confidence for
the well-posedness of this boundary value problem. The
following main results are observed.

–The stenosis itself and the tapering effect change the
flow pattern.

–The flow impedanceλ increases by increasing the
stenosis heightδ/R0, while a decrease in impedance
is observed by increasing the slip parameterα and
tube lengthL.

–Impedance decreases with the increase inm.
–With the increase inN impedance decreases for all
values ofm.

–The shear stressTw increases by increasingN and
decreasingm.

–By increasingm, the size of trapping bolus decreases.
–Trapping bolus increases with the increases inα.
–The large Darcy’s number

√
Da, causes to decrease the

trapping bolus.
–When N → 0, the results of Mishra et al [15] are
recovered as a special case of our problem.
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