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1. Introduction

Thermally developing section usually has a larger heat transfer
capacity than the corresponding thermally fully developed section
in a confined channel flow since it is dominated by the thermal
boundary effect. The thermal development problem for a laminar
flow in a tube was investigated by Graetz [1]. In a channel fully
filled with a porous medium, the thermally developing section
can also play a significant role. Two characteristics appear due to
the existence of a porous medium. First, in contrast to the case
without a porous medium, the momentum boundary layer thick-
ness is confined to a region of the order of \/K/¢ and the flow
boundary effect is less important in most cases in the presence of
a porous medium, as pointed out by Vafai and Tien [2]. Second,
the local temperature difference between the solid and fluid
phases can substantially influence the heat transfer process.

There are two primary ways to model the heat transfer process
in porous media: the local thermal equilibrium (LTE) model and
the local thermal non-equilibrium (LTNE) model. In the LTE model
the interphase temperature difference is neglected, while the LTNE
model accounts for the interphase temperature differences. Early
investigations have focused more on the LTE model coupled with
non-Darcian effects. Vafai and Tien [2] analyzed the forced convec-
tion in porous media with the LTE model and discussed the
non-Darcian effects on temperature and Nusselt number. For the
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confined channel flow in porous media, Haji-Sheikh and Vafai [3]
and Haji-Sheikh et al. [4] derived the analytical solutions of ther-
mally developing flows in porous media.

Amiri and Vafai [5] analyzed the dispersion effects, non-Darcian
effects, variable porosity and the LTNE effects for flow through por-
ous media. They presented error maps to establish conditions un-
der which LTE model can be utilized. Jiang et al. [6,7] investigated
the convection heat transfer in channels filled with packed parti-
cles or sintered porous media using the LTNE and LTE models,
and compared their results with experiments [8,9]. They found
good agreement between the LTNE model and the experimental re-
sults while the LTE model did not match with their data. Nield and
Kuznetsov [10] presented a semi-analytical solution of thermally
developing flow in a porous medium using the LTNE model, but
no explicit expression was presented. The first analytical solution
for the thermal developing region in porous media while incorpo-
rating LTNE model condition was derived by Yang and Vafai [11]
for an isothermal wall boundary condition.

In this work, we will visit the work analyzed by Yang and Vafai
[11] under constant heat flux boundary condition. The constant
wall heat flux boundary condition is quite involved when incorpo-
rating the LTNE aspects, as introduced by Alazmi and Vafai [12]
and Ouyang et al. [13].

The analysis for thermally fully developed flow while incorpo-
rating the LTNE conditions with an imposed constant wall heat flux
has been established. Lee and Vafai [14] studied analytically the
thermally fully developed region of a channel with an imposed
constant heat flux condition, based on the LTNE and LTE models.
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Nomenclature

Bi Bi= “Z‘f ;IZ, Biot number

Cp heat capacity [J/kg K]

hgs interfacial heat transfer coefficient [W/m? K]
H half of the height of the channel [m]

Jmn dimensionless parameter defined by Eq. (18)
k thermal conductivity [W/m K]

K permeability [m?]

Nu Nussult number

Pe Pe= % Pectlet number

Qw wall heat flux [W/m?]

T temperature [K]

To inlet fluid temperature [K]

u Darcy velocity [m/s]

bY axial coordinate [m]

y transverse coordinate [m]

Greek symbols

o phase interface area per unit volume [m™]

Vm Ym=(1+1)[(0.5+m)*n* + 7]

A dimensionless temperature difference defined by Eq.
(12)

& volume fraction

n = ¥, dimensionless transverse coordinate
k . P . .
K= ,i’—g effective thermal conductivity ratio of the fluid
»

to solid phases

y) Bi(1 + k)/x, dimensionless parameter

p density [kg/m?]

On On = %(nn)z, dimensionless parameter

0 %, dimensionless temperature

0a dimensionless averaged temperature defined by Eq. (12)

10} dimensionless decay factor for thermally developing
component

£ ¢ = &, dimensionless axial coordinate

Subscripts

AB,C Models A, B and C

c the transition point where the thermally developing
flow transits to the thermally fully developed flow
eff effective

f fluid phase
LTE the LTE model
S solid phase

They found that the Biot number, Bi and the effective thermal con-
ductivity ratio, x are the key parameters for the validity of LTE
model and had presented an error map establishing the validity re-
gion of the LTE model in terms of Bi and k. The phenomenon of
heat flux bifurcation was introduced by Yang and Vafai [11,15-
17]. In the present work, the corresponding theory for the ther-
mally developing flow is analyzed, especially the transition point
where the thermally developing flow transits to the thermally fully
developed flow in a channel filled with a porous medium. In the
present work, analytical solutions are established and the transi-
tion point is predicted.

2. Modeling and formulation

Convective transport through a channel filled with a porous
medium is considered, as shown in Fig. 1. Only the upper half of
the channel is considered due to the symmetry. A fluid at Ty, flows
through the channel and each wall of the channel receives a con-
stant heat flux q,,. Thus, the thermal boundary layers develop along
the axial coordinate until x reaches the transition point x = x.. The
portion of channel with x < x, i.e., the thermally developing section
is the focus of the current study. The value of x. represents the
thermal entry length. The following assumptions are adopted in
the present study:

(1) The flow is steady and incompressible and can be repre-
sented by the Darcy flow model.

(2) Axial conduction is neglected in the governing equations.

(3) Natural convection and radiative heat transfer are negligible.

(3) Properties such as porosity, specific heat, density and ther-
mal conductivity are assumed to be constant.

Based on these assumptions, the following energy equations are
obtained from Amiri and Vafai [5] employing the LTNE model:

aT 2T,
PrCorti 5 = Kpop 5 + ahg (Ts = Tf)
92
0= ks,ejf% + ahg (Ty — T)

where Ty and T; denote the fluid and solid temperatures, ksey and
ks the effective fluid and solid conductivities, and u the Darcy
velocity.

For the boundary conditions at the heated wall with constant
heat flux, the following three models are considered, which are
introduced by Amiri and Vafai [18]. These models are based on dif-
ferent assumptions.

Model A: The wall temperature of each phase at the wall is con-
sidered to be equal to each other.

B Ty oTs _
Tp =T, —kf,effa—y - ks‘effa—y =q,aty=0 2)
Model B: Each phase is considered to receive the same imposed
heat flux at the wall.

oT, oT.
’kf-EIfaiyf = *ks‘effafys =quaty=0 (3)

Model C: The intrinsic averaged wall heat fluxes of the two
phases are considered to be equal.

kf eff an ks eff 8Ts
— L= e ty=0 4
e 0y 1-¢ 0y Qw 2 Y “)
The other boundary conditions at the central line and inlet can
be presented as:

oMy _ofs =
{ 5 =0 aty=H (5)

ay
Tf:TfO atx=0

2.1. Normalization

The following non-dimensional variables have been introduced:

(T = Tro)ks e
q.H

Bi:ahsfl‘lz7 K:kf;eff7
ks.eff ks‘ejf (6)
CprUH
X Pe — PsCor

Y X
T=H T PR’ ke o

0=

)
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Fig. 1. Schematic diagram for a thermally developing flow through a channel filled with a porous medium and the corresponding coordinate system.

The governing equations and boundary conditions, Egs. (1)-(5), can
then be written as:

K=K ‘;;’zf +Bi(0; — 07) )
0 =24 + Bi(0; - 65)
Model A:
_ o0 00s B
0 = 0s Kaﬂ 97’1_1 atn =0 (8)
Model B:
o6y 90,
Kan 8;17] atn =0 (9)
Model C:
80f . a0s _ _
n =&, 811_1 e atn=0 (10)
Other boundary conditions:
Ny 9o _
TJ—W—O atn =1 (1)
0 =0 até=0

3. Analysis

The following linear transformation is utilized to recast the
dimensionless temperatures

Oq = 0511%;(% Hf =0a - 1+h
A=0,—0" | 0s =00+
where 6, denotes the dimensionless local averaged temperature
weighed by effective conductivities, and A the dimensionless local

temperature difference. These two variables are also important for
the subsequent analysis.

(12)

3.1. Analytical solution for Model A

The analytical solution for Model A has to incorporate the fact
that the temperature variables are coupled with the boundary con-
dition given by Eq. (8). Applying the transformation given by Eq.
(12), the governing equations given in Eq. (7) can be represented as

1 9A _ &A B"H»KA 90q (13)
1+Kk 9 — on? 1 K +7§

while the boundary conditions given by Egs. (8) and (11) become

—(1+K)%:1, A=0 aty=0
Gu—94—0 aty =1 (14)
0g=A=0 at¢=0
A series distribution utilized for 6, and A as given below
0g = 11 “”“ ) 4 Za(,,, ) cos (n7n)
(15)

)sin((0.5 + m)my)

A= ZaAm

Integrating Eq. (13) with respect to # after multiplying it by cos
(nmn) or sin ((0.5 + m)ny) results

o 2]+K+Z]m0d‘1fim’ n=0
%zz%fanagﬁzj‘m,ndjgm, n=1,2.3,... (16)
m=0
Lam = Yl + ijm_n T m=0,1,2,...
n=0
where
anlzx(nn)z, Yo = (1+0)[(05+m?n+ 2],
— /Bi(1 + K)/x 17)
) V2 [y sin((0.5+m)m)dp =25 —, n=0
Ima = {2[0 sin((0.5+m)mn) cos(nmy)dn =2 G224, n=1,23,...
(18)

and j,, is a special set with the following orthogonality
characteristic

{o

07

m=k >

ZJankn = {0 me£k’ n;)jmnjm,k =

Defining the infinite vectors:

n=k

n#k (19)
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[@o0 axo ] V2
Gy aa 2
a0 = | %2(. ao=| %2 | b=1IE] 2
L@on aam | 2
(20)
[ v2/2 [ sin(0.57)
cos(mn) sin(1.57n)
fo(n) = | COS2mn) | fu(n) = sin(2.57y) m=n=01,2,...
L cos(nmn) | sin((0.5 + m)mn)
as well as defining the infinite matrices:
Joo Joa t Jom w 0 -~ 0
Jro Jun o dia 0 w 0
I= | Dw)= m=n=012,... (1)
Jmo Jmi  mn 0 0 - w
where ] is an orthogonal matrix due to Eq. (19)
T _ T
Ir=JJj=1 (22)

while D(w,,) denotes the diagonal matrix of an infinite series w;,.
As such Eq. (16) can be simplified to

{‘?g:bD(an)aoJrJT‘?g

: . (23)
= -D(n)as +JE

Eq. (23) cannot be solved directly because D(a},) is a singular matrix.
This problem can be solved by using the Laplace transformation
with respect to ¢:

{ D(s + 0n)L{a,} =2+ 5] L{as) (24)

D(s + ) L{aa} = sJL{ap}

Thus, after solving Eq. (24), the exact solution can be expressed as

0 = 317(;5)"‘1)(’1) (25)
a +K
A =a,(¢)-fa(n)

where

(26)

(27)

However, it is very difficult to obtain the exact expressions for U,’
and U,'. Therefore, no explicit exact solution for this problem can
be found here.

3.2. Approximate solution for Model A

We obtain an approximate solution by dropping a few higher
ordered components in Eqgs. (26) and (27). That is

— S+ 0n 7; . . T7L . . T
U() = D( S ) S+'y0 UO.H]UO.H] S+'y1 Ul.n]Ul,n}
[ jé,o JodJoq O 0]
st+o s Joglo 13.1 0
~ n _
—mD(T) s 0 00
0 0 0 0 (28)
[ j%,o Jigjir 0 - 0]
s Jia ]?_1
- 0 0 0
S+
0 0 0 -0
= % _; : . T_; . . T
UA = D( S ) s+ 0o Um.O]Um.O] s+ 0, Um.]][’m,]]
[ jé,o Jogho O 0]
s+ s Jogl1o ].io 0o --- 0
—— D<T> ST o. 0 0 0 0
0 0 0 0 (29)
[ 13.1 JoJin O - 0]
s Jo1a ]'?_,1 0
- 0 0 0
S+ 04
. O 0 0 - 0]
(¢ = £ {U(;1 s%}
(30)

aQ~L! {Usi (;—30 limo] + 575 Um,l})}

where [w,] denotes the column vector of an infinite series w,. This
leads to

. 2 2
¢ (=n*-1/3 oo JrJLo

Oa =+ 2(1+xK) KYo K,

Fully developed component
=Dy exp(-waoé) — Dz exp(—wm )
—[D3 exp(—wao&) + D4 exXp(—wa1 £)] cos(mn)
~Yons2 ey €XP(—0n&) cos(nn)

Developing component

1 cosh(4(1 —1n))
Bi(1+x)|  cosh(2)

Fully developed component

A=

—[Ds exp(—wao&) + Dg exXp(—wa1 &) + D7 exp(—04¢)] sin(0.57n)
—[Ds exp(—wao&) + Do €xp(—war &)] sin(1.5717)

— ey I exp(—,8) sin((0.5 + m)my)

Developing component

31

where

wpo = (B~ VB —4AC) /24, wm = (B+ VB —4AC) /24 (32)
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A= (1 —ﬁ,o —ﬁ.l)”/o + (1 _jg,l _jc2),0>y1 + (1 —j?,o _j<210>61
B= (1 *ﬁ,o)gﬁ/o + (1 *jg,o) 01Y1 + V1%

C=01YeM
(33)
and
= 0'17)03’1 R
Pr= CUA] Wpo) [ (61/0+o_17’1 + %) — }
— 61?03’1 o
b= wAl @a0) { o8 61V0+61/1 /0/1)+E1}
D3 = (2’))0’)/1 E )
wAl Wao) \ Wao
Dy = ( Von )
A(wa1 — Wao) W1
De — 1+K \/—]0 00171 2j101Y1 — WaoE4
° wAl CUAO Mao 3 01 — Wao

De — 1+kK _ \/_10,00'1))1
6 KA(COA] — (UA()) a1

o1(1+ K)<—2jo.1V1 + 54)
KA(Ul — COA())(O'] — wA])

1+K \/2].11061“/0
Dg = - ES
KA(Wp1 — Wap) W40

_ V2j1,4017 +E5>

1+x
KA(Wa1 — Wao) Wa1

VE - 2jo10171 — OmEs
g1 — Wao

Dy =

(34)

Ev=a1+9[(1-721) + V2| + [ (1-581) + VZioglo]
By = 70[2(1 = 120) + VZiraia | + 91 [2(1 = 330) + V2o |
Es = VZigo[01 (1= o) + 71| + V2ol o0
Es = 2jo, [01(1=430) + 71| + Zioai 11001
Es = V2jio[o1 (1= 110) +70] + V27 a0
(35)

When removing more high ordered components as shown in Egs.
(28)-(30), some detailed information near the entrance will get lost.
Hence, the approximate solution predicts less accurately near the
entrance, but it still can predict accurate results in the thermally
developing region.

The corresponding exact solution for thermally fully developed
flow is given by Yang and Vafai [15]:

(1-n*-1/3 1 _ tanh(})
Oaed = 5 + 2079 T BiteR? [] p ]
¢ QP13 | N~ap
=t =Zum T2, (36)
m=0
_ cosh(i(1-n))
Aeq = Bi (1+l\ [1 ~ " cosh(%) ]

The fully developed component of Eq. (31) is quite close to the exact
expressions given by Eq. (36) but misses few terms in the fully
developed component part of the expression for 0.

3.3. Exact solution for Models B and C

Egs. (9) and (10) for Models B and C can be expressed as

00;

—K— B, ———ﬁs atn =0 (37)

where fr= s =1 for Model B, and = ¢ and ;= 1 — ¢ for Model C. As
such the solutions for Models B and C can be obtained simulta-
neously based on Eq. (37). Again, with the transformation given
by Eq. (12), the governing equations and the boundary conditions
given by Egs. (11) and (37) become

Wa _ 14K + L A
ES K ();72 1+r< ES
0= 1+1c dzﬂa Bi 1+;cA (38)
dn2 2+ T 155
-1 +K)%= B, Ky =K~ atn=0
Mg __ —
o W =0 atn=1 (39)
_ A _ Bscosh (VBi(1-n) r_
Utilizing a series representation for 0, and A as
00 = Coo(& chn ) cos(nmn)
(40)
=cao(d) + ZCA" ) cos(nmn)

The governing equations given by Eq. (38) can be integrated with
respect to # after multiplying it by cos (nnn)

deyo _ BstPBr 1 depp .

@ =% Trwea =0

OzﬁsziCAo, n=0

degn _ 2(5s +/3f) 14K de

d_(‘f: K (nTC) C9”+1+)c d("’ n=123,...

0=2p 1k — ”"(nn) co,nf{(nrc) +Bl1%]cm,, n=1,273,...
(41)

Thus, after solving Eq. (41), the coefficients for Eq. (40) are obtained
as

C‘*O*ﬁf+ﬂsv+B11+K n=0
o=k, n=0 “2)
Con = d(),nexp( W8 or C, nf) ,m , n=1,2.3,...
_ KBs—B, _
Can = *dA.,n eXP(*wB or C, n§) + K[(nn)ZJrsz]’ n= 172737 s
where
(nm)? [(nn)2 + ),2}
@B or C, n =T 2 5 (43)
(nm)” + Bi
2 B
d(),n _ (ﬁf + /s) _ 2:35/(;1 + K) (44)
Kan (nm)” 4 Bi
Kfs — 2
don—— o P 2B (45)
K[(nm)” + 7] (nm)” +Bi

The exact solutions for Models B and C can be expressed as

Bf + ﬁs ﬂf + ﬁs 2 ﬁ

0 = ¢ 1-n)?-1/3 s

A T L L AV R s prar v

Fully developed component
=Y don €XP(—=g or c, n&) COS(NTTH)
Developing component
Br + B, Kfs — B cosh (A(1 — 1 o .

A= T S S AP nrc o) cos ()

Fully developed component Developing component

(46)

The fully developed component in Eq. (46) is the same as the corre-
sponding exact solution for thermally fully developed flow given by
Yang and Vafai [15].
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3.4. Exact solution for the LTE model

The governing equation for the LTE model can be obtained by
assuming that the temperatures of the fluid and solid phases are
the same in Eq. (7). That is

90 >0

9z = <+ 5 (47)

K (91’[2

The boundary conditions for the LTE model is represented by
—(k+1)G=1atn=0
5=0 atn=1 (48)
0=0 até=0
The exact solution can be obtained as

_ 2 — 00
1= Ty PS4

Fully developed component Developing component

Within all these analytical results, it should be noted that there are
two aspects that are consistent with all of the solutions when
Bi — oo: First, the 0,'s based on LTNE model for Models A, B and C
in Eqs. (31) and (46) approach the 0 based on LTE model in Eq.
(49). Second, the A’s in Egs. (31) and (46) approach 0. Thus, all these
analytical solutions for the LTNE model are consistent with the
solution for the LTE model.

4. Validation and comparisons
4.1. Nussuelt number results

The local Nusselt number for Model A is defined as
q.,(4H) 4

B ke ofr Tr+ks o T
kf,eff< Feff TftKsefr Ts

Nu(¢)

(50)

-

il dey) aly-0 = ¢
y=

kf.eff +ks.eff

As expected and seen in Fig. 2, Nu decreases along with the axial
coordinate at first and then approaches a constant value. The tran-
sition point is ¢ = ¢. where the flow can be recognized as thermally
fully developed.

Fig. 2 shows the local Nusselt number comparisons between the
approximate solution and the numerical solution for Model A. The
approximate solution diverges slightly from the numerical solution
for lower values of x and Bi. The approximate solution agrees very
well with the numerical solution in the range of xk and Bi given by
Kk >0.01 and Bi > 0.1.

For Models B and C, the local Nusselt number is defined as

_ A+ p)
K(}a‘qzo - é(ﬁf + ﬁs)

Fig. 3 displays the Nusselt number distributions for Models B and C
for ¢ = 0.8 based on the obtained exact solution and the numerical
solution. As it can be seen there is perfect agreement between the
two solutions. In contrast to Model A, the Nusselt number distribu-
tion curves for Models B and C become substantially flatter as Bi de-
creases. For example, for Model B with x=0.1 and Bi=0.1, the
Nusselt number at the inlet is not much different from that in the
fully developed region, as seen in Fig. 3. This demonstrates that
the thermally developing effects have a negligible influence on
the local Nussult number for Models B and C for lower values of
the Biot number.

The primary reason for this effect is that Models B and C utilize
a constant heat flux on the solid phase boundary. It should be
noted that for Models B and C the heat received by the solid phase
has to transfer to the fluid phase by the internal convection in

Nu(¢) (51)

(a) 50
—— Approximate results
404 o Numerical results
for Model A
304

Nu

204

0.1 1
¢

(b)

—— Approximate results
o Numerical results
for Model A

100 - o —0—0—o0—0—0—

Nu

Bi=0.1

¢

Fig. 2. Local Nusselt number distributions for Model A for: (a) k =1, (b) k = 0.1.

porous media [15-17]. As shown in Fig. 4(a), for lower values of
the Biot number such as Bi = 0.1, 6, is much higher than 6y at every
point in the channel for Model B. As a result, 0; is not influenced by
the thermal boundary effects of the fluid phase. Thus, the local
Nusselt number does not show the thermally developing effects
for such a case. Fig. 4(b) shows another case with Bi = 10 for Model
B where 0; is of the same order of magnitude as 6. Thus, the ther-
mally developing effects are significant. However, for Model A even
for low values of Bi, the imposed condition of ;= 0; ensures that 0,
and 60f have the same order of magnitude near the heated wall,
where the thermal boundary effects can be important, as shown
in Fig. 4(c). Therefore, the local Nusselt number will always display
the thermal developing effects for Model A.

4.2. Predictions of the thermal entry length

The classical definition for thermal entry length is based on the
local Nusselt number. The dimensionless thermal entry length &. is
defined as

Nu(¢) — Nugg _

. .
N 1%, até=¢& (52)

where Nu,q is the Nusselt number for the fully developed section.
That is

Nueg = Nu(¢), at é— oo (53)

Combining the definitions for & and Nu, i. e., Egs. (52), (50) and (51),
and utilizing the presented analytical solutions, an explicit expres-
sion for ¢, can be derived for Models A, B and C, as follows:

For Model A:
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(a) Model B
100 E

Model C
———————— Exact solution

Numerical solution

=
Z
1 T T T
0.01 0.1 1
(b) For Model B For Model C
"""" Exact solution
e o ° Numerical solution
100 4
=
Z

Fig. 3. Local Nusselt number distributions for Model B and Model C with ¢ = 0.8 for:
(a)k=1,(b) k=0.1.

1 (D1 +Ds) exp(—waoéc) + (D2 +Da) €Xp (~0a1ée) + nlp o €XP(—0ndc)

14 e 1 o i
Nu(Ze)—Nugg 30 + % + En

6
~ ﬁfA exp(—waolc)

(54)
And for Models B and C:
1 _ 2on1on EXp(—a)B or ¢, néc)
1+ - ﬁﬁﬁ) + (1
~ 2 fsor XD~ r . 150) (55)

while for the LTE model:
1  Yni1 ey €XP(—0nkc)
= 1

Nugg
1 + Nu(éc)—Nugg

~ %fLTE EXP(*O-I gc) (56)

3(1+k)
It is found that only the largest term dominates the series in Egs.
(54)-(56). As such the approximate form of & can be found from
Egs. (54)-(56) as follows:

K In(61.4f;)

Sl VY 7

mw(1+x) ™ (57)

where y; and f; are the correction functions for the LTNE model pre-

sented below, and the subscript i denotes different models that
were considered before, that is i = A, B, C, or LTE:

g =
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Fig. 4. Dimensionless temperature distributions at different cross sections of the
channel for: (a) Model B for k = 0.1 and Bi = 0.1, (b) Model B for x = 0.1 and Bi = 10,

(c) Model A for k =0.1 and Bi =
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Fig. 5. Dimensionless thermal entry length and its comparison with the numerical
results for: (a) Model A, (b) Model B, (c¢) Model C for ¢ = 0.8.

As shown in Eqgs. (57)-(59), & is a function of Bi, k and the boundary
condition models. It should be noted that if Bi - oo, then y; » 1 and
fi = 1, because Bi — o represents the LTE condition.

The comparisons between the analytical expressions for &, gi-
ven by Eq. (57) and the numerical results are shown in Fig. 5. As
can be seen the analytical and numerical results are in excellent
agreement. It can be seen in Fig. 5(a), for Model A that ¢ increases
as Kk increases or Bi decreases. However, for Models B and C, & is
non-monotonic with Bi, as seen in Fig. 5(b) and (c). The reason
for this behavior has been discussed earlier in Section 4.1.

5. Conclusions

In the present work, analytical solutions for thermally develop-
ing flow in porous media incorporating LTNE condition are derived

for different fundamental models. A highly accurate approximate
solution for Model A, and exact solution for Models B and C are
established. These analytical solutions are in excellent agreement
with the numerical results. For Models B and C, the thermal devel-
oping effects are found to be negligible for lower values of the Biot
numbers.

The dimensionless thermal entry length ¢, is established based
on the analytical solutions and it is found to be a function of the
Biot Number, Bi, the ratio of fluid to solid conductivity, x as well
as a function of models A, B and C. For Model A, & increases as K
increases or Bi decreases. But for Models B and C, . is non-mono-
tonic with Bi.

The present work paves the way for understanding and
designing the thermally developing flows in porous media while
incorporating the LTNE condition.
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