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The phenomenon of rarefaction in a micro-annulus filled with a porous medium is analyzed in the
slip-flow regime. A local thermal non-equilibrium (LTNE) model is utilized to represent the energy trans-
port within the porous medium. Exact solutions are derived for both the fluid and solid temperature dis-
tributions within the annulus. Two distinct cases of the thermal boundary conditions are considered,
namely a constant heat flux at the outer wall and adiabatic inner wall (Case I) and vice versa (Case II).
By eliminating the temperature difference between the fluid and solid phases, the local thermal equilib-
rium (LTE) model is theoretically proved to be a special case of the LTNE counterpart. Analytical predic-
tions indicate that although the rarefaction leads to a reduction in the heat transfer, the effects of other
thermophysical parameters such as the Biot number, the effective thermal conductivity ratio, the porous
media shape factor and the annulus aspect ratio also play an important role. The results suggest that the
configuration of Case II is superior to that of Case I from the heat transfer point of view.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Advances in MEMS and micro-fluidic devices have generated an
increasing demand for understanding characteristics of fluid flow
and heat transfer in microchannels. Rarefied phenomena usually
occur when the fluid flows through a microchannel, which is the
key feature compared to that at the macroscale. In such a situation,
the fluid no longer reaches the velocity or the temperature of the
wall surface and therefore a slip condition for the velocity and a
jump condition for the temperature should be utilized [1]. The
Knudsen number (Kn), defined as the ratio of the molecular mean
free path to the appropriate characteristic length in the order of
micrometers, is a measure of the degree of rarefaction [1–5].
According to the values of Kn, the gas flow regimes can be classified
as: (i) continuum regime (Kn 6 10�3), (ii) slip-flow regime
(10�3 < Kn 6 10�1), (iii) transition regime (10�1 < Kn 6 10) and,
(iv) free molecular regime (Kn > 10).

Convective heat transfer in porous media is encountered in a
wide variety of industrial applications such as geothermal engi-
neering, heat pipes, electronic cooling and solar energy collection.
There are two primary models for representing heat transfer in a
porous medium: LTE and LTNE. The LTNE model has gained
increased attention in recent years since the assumption of local
thermal equilibrium breaks down and the temperature difference
between fluid and solid phases within a porous medium is signif-
icant [6–8]. The slip-flow and heat transfer in various-shaped
microchannels filled with porous media have been studied.
However, most of the investigations were confined to the LTE
model and only a few were contributed to the LTNE counterpart.
Haddad et al. [9] numerically investigated the developing hydrody-
namic and thermal behaviors of free convection gas flow in a ver-
tical open-ended parallel-plate microchannel filled with porous
media. In a subsequent work, Haddad et al. [4] numerically per-
formed the analysis of gaseous slip flow in porous parallel-plate
and circular microchannels in which hydrodynamically fully devel-
oped and thermally developing forced convection were assumed.
Most recently, Buonomo et al. [5] analytically investigated the gas-
eous slip flow in a porous parallel-plate microchannel. The exact
solutions for the fluid and solid temperatures were derived under
LTNE and constant heat flux conditions and the entropy generation
analysis was also conducted.

The main objective of this study is to analyze forced convection
flow in a micro-annulus filled with a porous medium by investigat-
ing the heat transfer characteristics with rarefaction effects. The
slip-flow regime is considered, which corresponds to Knudsen
numbers ranging from 10�3 to 10�1. Two typical cases studied by
Hashemi et al. [4], namely outer wall at constant heat flux (Case
I) and inner wall at constant heat flux (Case II), are investigated.
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Nomenclature

asf interfacial area per unit volume of the porous medium
(m�1)

Bi Biot number, hsf asf H
2=ks;eff

cp specific heat of the fluid (J kg�1 K�1)
Da Darcy number, K=H2

f Fanning friction factor, 8P=ðDa ReÞ
hsf interstitial heat transfer coefficient (W m�2 K�1)
H gap between two concentric cylinders (m), Ro � Ri
kf thermal conductivity of the fluid (W m�1 K�1)
kf ;eff effective thermal conductivity of the fluid (W m�1 K�1),

kf ;eff ¼ ekf
ks thermal conductivity of the solid (W m�1 K�1)
ks;eff effective thermal conductivity of the solid (W m�1 K�1),

ks;eff ¼ ð1� eÞks

K permeability (m2)
Kn Knudsen number, k=H
Nu average Nusselt number at the wall for LTNE model,

�2=½ð1þ jÞhf ;b�
p pressure (Pa)
P dimensionless pressure
Pr Prandtl number of the fluid
qw imposed heat flux on the wall (W m�2)
r radial coordinate
Ri inner radius of the annulus (m)
Ro outer radius of the annulus (m)
Re Reynolds number, qumð2HÞ=leff
T temperature (K)
u fluid velocity (m s�1)

û dimensionless velocity
z axial coordinate

Greek symbols
a velocity slip coefficient, ½ð2� rvÞ=rv�Kn
b temperature jump coefficient, ½ð2� rtÞ=rt�½2c=ðcþ 1Þ�

Kn=Pr
c specific heat transfer ratio
d =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ jÞBi=j

p
e porosity
g dimensionless radial coordinate, r=H
h dimensionless temperature, ks;eff ðT � TwÞ=qwH
j ratio of the effective thermal conductivity of the fluid to

that of the solid, kf ;eff=ks;eff
k molecular mean free path (m)
l dynamic viscosity of the fluid (Pa s)
q density of the fluid (kg m�3)
rt thermal accommodation coefficient
rv tangential momentum accommodation coefficient
x porous media shape factor,

ffiffiffiffiffiffiffiffiffiffiffi
e=Da

p
Subscripts/superscripts
e entrance
eff effective
f fluid phase
m mean value
s solid phase
w annulus wall subject to a constant heat flux

Fig. 1. Schematic diagram of a micro-annulus filled with a porous medium for (a)
Case I: outer wall at constant heat flux and (b) Case II: inner wall at constant heat
flux.
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In the present work, however, the temperature difference between
the fluid and solid phases (LTNE model) is introduced.
Furthermore, the LTE model is shown to be a special case of the
LTNE model. Finally, the effects of pertinent parameters such as
the Biot number, the effective thermal conductivity ratio, the por-
ous media shape factor, the annulus aspect ratio together with the
Knudsen number are discussed.

2. Formulation

2.1. Governing equations

The problem under consideration is forced convective flow
between two concentric micro cylinders (micro-annulus) filled
with a porous medium, as shown in Fig. 1. The inner and outer radii
of the annulus are Ri and Ro respectively, and the length is L. One
wall is uniformly heated by a constant heat flux qw and the other
one is insulated. The rarefied gas flows along the z-axis. In the anal-
ysis, it is assumed that the flow is steady, incompressible and both
hydraulically and thermally fully developed. All the thermophysi-
cal properties of the solid and fluid phases are temperature inde-
pendent. Natural convection, dispersion, radiative and axial heat
conduction are negligible. The momentum and energy equations
using the local thermal non-equilibrium condition in cylindrical
coordinates are expressed as

Momentum equation

leff
d2u

dr2 þ
1
r

du
dr

 !
� l

K
u� dp

dz
¼ 0 ð1Þ

Fluid phase energy equation

kf ;eff
1
r
@

@r
r
@T f

@r

� �
þ hsf asf ðTs � T f Þ ¼ qcpu

@T f

@z
ð2Þ
Solid phase energy equation

ks;eff
1
r
@

@r
r
@Ts

@r

� �
� hsf asfðTs � T fÞ ¼ 0 ð3Þ
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where u is the fluid velocity, l is the dynamic viscosity of the fluid,
kf and ks are the thermal conductivities of the fluid and the solid
matrix, kf;eff and ks;eff are the effective thermal conductivities and
kf;eff ¼ ekf , ks;eff ¼ ð1� eÞks, leff ¼ l=e is effective viscosity, K is the
permeability of the porous medium, p is the applied pressure and
T f , Ts, e, q and cp are the fluid and solid temperatures, the porosity,
the density and specific heat of the fluid respectively. The coupling
between the two energy equations is achieved using the fluid–solid
interfacial term which represents the heat transfer between the two
phases via the heat transfer coefficient hsf and the specific surface
area asf .

2.2. Boundary conditions

To solve the momentum equation for the fluid velocity, the
first-order velocity slip boundary condition on both annulus walls
is employed as follows [4,10]

uf ;w � uw ¼ a
@u
@n

ð4Þ

where

a ¼ 2� rv

rv
H Kn ð5Þ

in which uf ;w denotes the fluid velocity immediately adjacent to the
walls, uw is the wall velocity and is zero for the stationary wall in
this study, k is the molecular mean free path, n is the outward nor-
mal vector of the wall surface, rv stands for the tangential momen-
tum accommodation coefficient, H is the gap between two
concentric cylinders such that H ¼ Ro � Ri and Kn ¼ k=H. It should
be noted that Klinkenberg effect has been incorporated by utilizing
the velocity slip coefficient a. It is also worth mentioning that small
Mach number is considered and hence compressibility effects of the
flowing gas becomes negligible.

Similarly, in order to solve the energy equations for the fluid
and solid temperatures, the first-order temperature jump bound-
ary condition for the wall with a constant heat flux is utilized as

T f ;w � Tw ¼ b
@T f

@n
ð6Þ

where

b ¼ 2� rt

rt

2c
cþ 1

H
Pr

Kn ð7Þ

in which T f ;w denotes the fluid temperature immediately adjacent
to the wall, Tw is the wall temperature which is not known a priori
and must be obtained as part of the solution, rt is the thermal
accommodation coefficient, c is the specific heat ratio and Pr is
the Prandtl number. It should be noted that T f;w � Tw ¼ 0 for the
insulated wall due to the insulated boundary condition

@T f

@n
¼ @Ts

@n
¼ 0 ð8Þ
A1 ¼
K0ðxgiÞ � K0ðxgoÞ þ ax½K1ðxgiÞ þ K1ðx

½I0ðxgiÞ � axI1ðxgiÞ�½K0ðxgoÞ þ axK1ðxgoÞ� � ½I0ðxgoÞ þ axI1ðx

A2 ¼
I0ðxgiÞ � I0ðxgoÞ þ ax½I1ðxgiÞ þ I1ðxgo

½I0ðxgiÞ � axI1ðxgiÞ�½K0ðxgoÞ þ axK1ðxgoÞ� � ½I0ðxgoÞ þ axI1ðx
It should also be noted that the accommodation coefficients for
a free fluid may be different from that for a porous medium.
Unfortunately, there are no experimental results in the literature
that can be used in our study. As such the accommodation coeffi-
cient for the porous media is assumed to be the same as that for
the free fluid.

From the physical point of view, the values of rv and rt vary
from unity (complete accommodation, diffuse reflection) to zero
(specular reflection) [11]. Generally, rv and rt, both of which
depend on the surface finish, the fluid temperature and pressure,
need to be determined experimentally. Among most investigations
rv and rt are assumed to be equal to unity. However, experimental
measurements have illustrated that both values are less than 1
[12]. As suggested by Bahrami et al. [12] and Cai et al. [13], both
rv and rt are therefore assumed to be 0.85 in the present study
unless otherwise stated.

In addition, two more boundary conditions at the wall with
constant heat flux are required based on the work of Lee and
Vafai [14] when the heated wall is very thin and has high thermal
conductivity

qw ¼ kf ;eff
@T f

@n
þ ks;eff

@Ts

@n
ð9Þ

T f ¼ Ts ð10Þ
2.3. Hydrodynamic analysis

After employing the following dimensionless variables

g ¼ r
H
; gi ¼

1
1þ w

; go ¼
w

1þ w
; w ¼ Ri

Ro
; P ¼ � K

lu
dp
dz
;

Da ¼ K

H2 ; x ¼
ffiffiffiffiffiffi
e

Da

r
; û ¼ u

um
ð11Þ

the Brinkman momentum Eq. (1) together with the boundary con-
dition given by Eq. (4) can be written in the dimensionless form

d2û
dg2 þ

1
g

dû
dg
�x2ðû� PÞ ¼ 0 ð12Þ

ûjg¼gi
¼ a

@û
@r
jg¼gi

ð13aÞ

ûjg¼go
¼ �a

@û
@r
jg¼go

ð13bÞ

The velocity distribution can be obtained by solving the
modified Bessel Eq. (12) subject to boundary conditions given by
Eqs. (13a) and (13b) resulting in

û ¼ ½A1I0ðxgÞ þ A2K0ðxgÞ þ 1�P ð14Þ

where If and Kf are the fth order modified Bessel functions of the
first and second kind respectively and A1, A2 are integral constants
which are expressed as
goÞ�
goÞ�½K0ðxgiÞ þ axK1ðxgiÞ�

ð15Þ

Þ�
goÞ�½K0ðxgiÞ þ axK1ðxgiÞ�

ð16Þ
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and P can be determined through the continuum equation
1
A

R
A ûdA ¼ 1 as

P�1 ¼ 1þ 2
xð1þ wÞ fA1½I0ðxgoÞ � wI1ðxgiÞ� � A2½K0ðxgoÞ

� wK1ðxgiÞ�g ð17Þ

Substituting Eqs. (15)–(17) into Eq. (14) and rearranging the
related terms will lead to a similar expression for dimensionless
velocity obtained by Hashemi et al. [3].

Having obtained the velocity field, we can proceed with the
calculation of the Fanning friction factor as

f ¼
2H dp

dz
1
2 qu2

m

¼ 8P
Da Re

¼ 8P
ex2 Re

ð18Þ

where um is the dimensional mean velocity and Re is the Reynolds
number, which are respectively defined by

um ¼
2

R2
o � R2

i

Z Ro

Ri

urdr; Re ¼ qumð2HÞ
leff

ð19Þ
2.4. Heat transfer analysis

2.4.1. Case I: outer wall at constant heat flux
Adding the two energy Eqs. (2) and (3), integrating the resultant

equation with respect to r over the entire annular cross section and
considering boundary conditions given by Eqs. (8) and (9) yield the
following relationship

qcpum
@T f

@z
¼ 2qw

Hð1þ wÞ ð20Þ

in which @T f ;b=@z ¼ @T f=@z ¼ @Ts=@z ¼ @Tw=@z ¼ const for the ther-
mally and fully developed convection. Using the following dimen-
sionless variables

j ¼ kf ;eff

ks;eff
; Bi ¼ hsf asf H

2

ks;eff
; hf ¼

ks;effðT f � TwÞ
qwH

; hs ¼
ks;effðTs � TwÞ

qwH

ð21Þ

where j is the ratio of the effective fluid thermal conductivity to
that of the solid, Bi is the Biot number representing the ratio of
the conduction resistance within the solid matrix to the thermal
resistance associated with the internal convective heat exchange
between the solid and fluid phases. Eqs. (2), (3), (6), (8) and (10)
can be rewritten in the dimensionless form as

j
1
g
@

@g
g
@hf

@g

� �
þ Biðhs � hfÞ ¼

2
1þ w

û ð22Þ

1
g
@

@g
g
@hs

@g

� �
� Biðhs � hf Þ ¼ 0 ð23Þ

hf jg¼go
¼ �b

@hf

@g
jg¼go

ð24Þ

@hf

@g
jg¼gi

¼ @hs

@g
jg¼gi

¼ 0 ð25Þ

hf jg¼go
¼ hsjg¼go

ð26Þ

The two dimensionless energy Eqs. (22) and (23) are added, and
û is substituted from Eq. (14) to yield the following Euler-Cauchy
equation for a new variable jhf þ hs

1
g
@

@g
g
@

@g

� �
ðjhf þ hsÞ ¼

2
1þ w

ðA1I0ðxgÞ þ A2I0ðxgÞ þ 1ÞP ð27Þ
The solution of Eq. (27) can be presented as

jhf þ hs ¼ B1I0ðxgÞ þ B2K0ðxgÞ þ B3g2 þ B4 logðgÞ þ B5 ð28Þ

or as

hs ¼ B1I0ðxgÞ þ B2K0ðxgÞ þ B3g2 þ B4 logðgÞ þ B5 � jhf ð29Þ

where B1, B2 and B3 are general constants which are expressed as

B1 ¼
2

1þ w
1
x2

A1

P
ð30Þ

B2 ¼
2

1þ w
1
x2

A2

P
ð31Þ

B3 ¼
1

1þ w
1

2P
ð32Þ

while B4 and B5 are integral constants which need to be determined
later.

After substituting Eqs. (29) and (14) into Eq. (22) and rearrang-
ing the related terms, one can obtain the following modified Bessel
equation in terms of the dimensionless fluid temperature only

j
1
g
@

@g
g
@hf

@g

� �
� d2hf ¼

1
j

B1ðx2�BiÞI0ðxgÞþB2ðx2�BiÞK0ðxgÞ
�B3Big2�B4Bi logðgÞþ ð4B3�B5BiÞ

" #

ð33Þ

To this end, the dimensionless energy Eqs. (22) and (23) are
decoupled. Subsequently, the closed form solution of Eq. (33)
subject to boundary conditions given by Eqs. (24)–(26) yields
the dimensionless temperature distribution of the fluid
phase as

hf ¼ C1I0ðdgÞ þ C2K0ðdgÞ þ C3I0ðxgÞ þ C4K0ðxgÞ þ C5g2

þ C6 logðgÞ þ C7 ð34Þ

where C3, C4 and C5 are general constants which are obtained as

C3 ¼
1

x2 � d2

1
j
ðx2 � BiÞB1 ð35Þ

C4 ¼
1

x2 � d2

1
j
ðx2 � BiÞB2 ð36Þ

C5 ¼
B3

4ð1þ jÞ ð37Þ

C6 ¼
B4

1þ j
ð38Þ

C7 ¼
1

1þ j
½B5 �

4B3

jd2� ð39Þ

It should be noted that C6 and C7 are functions of B4 and B5

respectively. Hence, B4, B5, C1 and C2 are the final integral constants
which can be determined by introducing the boundary conditions
given by Eqs. (24)–(26) as

B4 ¼ �gi½B1xI1ðxgiÞ � B2xK1ðxgiÞ þ 2B3gi� ð40Þ

B5 ¼
D3E2 � B4D2E3 � D2E5

D2E4

þ ðD1E2 � D2E1ÞðD3F2 � B4D2F3 � D2F4Þ
D2E4ðD1F2 � D2F1Þ

ð41Þ

C1 ¼
D3F2 � B4D2F3 � D2F4

D1F2 � D2F1
ð42Þ

C2 ¼
D3F1 � B4D1F3 � D1F4

D1F2 � D2F1
ð43Þ
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where

D1 ¼ ð1þ jÞI0ðxgoÞ ð44Þ

D2 ¼ ð1þ jÞK0ðxgoÞ ð45Þ

D3 ¼ ½ð1þ jÞC3 � B1�I0ðxgoÞ þ ½ð1þ jÞC4 � B2�K0ðxgoÞ

� 4B3

jd2 ð46Þ

E1 ¼ I0ðdgoÞ þ bdI1ðdgoÞ ð47Þ

E2 ¼ K0ðdgoÞ � bdK1ðdgoÞ ð48Þ

E3 ¼
1

1þ j
logðgiÞ þ

b
gi

� �
ð49Þ

E4 ¼
1

1þ j
ð50Þ

E5 ¼ C3½I0ðxgoÞ þ bxI1ðxgoÞ� þ C4½K0ðxgoÞ � bxK1ðxgoÞ�

þ C5ðgo � 2bÞgo �
4B3

jð1þ jÞd2 ð51Þ

F1 ¼ dI1ðdgiÞ ð52Þ

F2 ¼ �dK1ðdgiÞ ð53Þ

F3 ¼
1

ð1þ jÞgi
ð54Þ

F4 ¼ C3xI1ðxgiÞ � C4xK1ðxgiÞ þ 2C5gi ð55Þ
2.4.2. Case II: inner wall at constant heat flux
Adding the two energy Eqs. (2) and (3), integrating the resultant

equation with respect to r over the entire annular cross section and
considering boundary conditions given by Eqs. (8) and (9) lead to

qcpum
@T f

@z
¼ 2wqw

Hð1þ wÞ ð56Þ

Thus, the energy Eq. (22) becomes

j
1
g
@

@g
g
@hf

@g

� �
þ Biðhs � hf Þ ¼

2w
1þ w

û ð57Þ

and the boundary conditions given by Eqs. (24)–(26) change to

hf jg¼gi
¼ b

@hf

@g
jg¼gi

ð58Þ
LTNE
1ψ →}

Fig. 2. Validation procedure.
@hf

@g
jg¼go

¼ @hs

@g
jg¼go

¼ 0 ð59Þ

hf jg¼gi
¼ hsjg¼gi

ð60Þ

Using the solution procedure as done for Case I, the dimension-
less temperature distributions for the fluid and solid phases can be
obtained by solving the two energy Eqs. (57) and (23) subject to
the boundary conditions given by Eqs. (58)–(60). The analytical
solutions have the same form given by Eqs. (34) and (29).
However, the involved constants B1, B2, B3, D1, D2, D3, E1, E2, E3,
E5, F1, F2, F3 and F4 should be respectively replaced by

B01 ¼
2w

1þ w
1
x2

A1

P
ð61Þ

B02 ¼
2w

1þ w
1
x2

A2

P
ð62Þ

B03 ¼
w

1þ w
1

2P
ð63Þ

D01 ¼ ð1þ jÞI0ðxgiÞ ð64Þ

D02 ¼ ð1þ jÞK0ðxgiÞ ð65Þ

D03 ¼ ½ð1þ jÞC3 � B01�I0ðxgiÞ þ ½ð1þ jÞC4 � B02�K0ðxgiÞ

� 4B03
jd2 ð66Þ

E01 ¼ I0ðdgiÞ þ bdI1ðdgiÞ ð67Þ

E02 ¼ K0ðdgiÞ � bdK1ðdgiÞ ð68Þ

E03 ¼
1

1þ j
logðgoÞ þ

b
go

� �
ð69Þ

E05 ¼ C3½I0ðxgiÞ þ bxI1ðxgiÞ� þ C4½K0ðxgiÞ � bxK1ðxgiÞ�

þ C5ðgi � 2bÞgi �
4B03

jð1þ jÞd2 ð70Þ

F 01 ¼ dI1ðdgoÞ ð71Þ

F 02 ¼ �dK1ðdgoÞ ð72Þ

F 03 ¼
1

ð1þ jÞgo
ð73Þ

F 04 ¼ C3xI1ðxgoÞ � C4xK1ðxgoÞ þ 2C5go ð74Þ
2.5. One equation model

As expected, taking the limit of Bi!1, the solution of the LTNE
model may reduce to that of the LTE counterpart [5]. However, an
alternative approach is employed for the solution of the LTE (one
equation) model [7,8]. After adding Eqs. (22) and (23) for Case I
or adding Eqs. (57) and (23) for Case II and assuming that the fluid
and solid temperatures being equal, hf ¼ hs ¼ h, the single energy
equation and corresponding boundary conditions can be written as

ð1þ jÞ1
g
@

@g
g
@h
@g

� �
¼ 2

1þ w
û ð75Þ

hjg¼go
¼ �b

@h
@g
jg¼go

ð76Þ
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@h
@g
jg¼gi

¼ 0 ð77Þ

for Case I and

ð1þ jÞ1
g
@

@g
g
@h
@g

� �
¼ 2w

1þ w
û ð78Þ

hjg¼gi
¼ b

@h
@g
jg¼gi

ð79Þ

@h
@g
jg¼go

¼ 0 ð80Þ

for Case II.
The dimensionless temperature distributions for both Cases I

and II are found to be

h ¼ G1 þ G2 logðgÞ þ 2KP
ð1þ jÞð1þ wÞx2 ½A1I0ðxgÞ

þ A2K0ðxgÞ þ 1
4
x2g2� ð81Þ

where K ¼ 1 for Case I and K ¼ w for Case II and the constants G1, G2

are given by

G1 ¼ �
P

ð1þ jÞð1þ wÞx 2A1I1ðxgiÞ � 2A2K1ðxgiÞ þxgi½ �gi ð82Þ

G2 ¼ �G1½logðgoÞ þ b
go
�

� P
2ð1þjÞð1þwÞx f4A1½I0ðxgoÞ þ bI1ðxgoÞ� þ 4A2½K0ðxgoÞ � bK1ðxgoÞ�
þx2ðgo þ 2bÞgog

ð83Þ

for Case I and G1, G2 should be replaced by G01, G02 for Case II:

G01 ¼ �
Pw

ð1þ jÞð1þ wÞx ½2A1I1ðxgoÞ � 2A2K1ðxgoÞ þxgo�go

ð84Þ

G02 ¼ �G01 logðgiÞ � b
gi

h i
� Pw

2ð1þjÞð1þwÞx2 f4A1½I0ðxgiÞ � bI1ðxgiÞ� þ 4A2½K0ðxgiÞ þ bK1ðxgiÞ�
þx2ðgi � 2bÞgig

ð85Þ

2.6. Heat transfer performance

The Nusselt number based on the fluid temperature can be used
for characterizing the heat transfer results. The wall heat transfer
coefficient for the local thermal non-equilibrium model is obtained
from

hw ¼
qw

Tw � T f;b
ð86Þ

From the analytical solutions for the velocity and temperature
distributions, the average Nusselt number on the wall with the
constant heat flux, being the primary quantity of interest in heat
transfer calculations, is determined based on the overall thermal
equivalent conductivity, keq ¼ kf ;eff þ ks;eff , as

Nu ¼ 2Hhw

keq
¼ � 2Hqw

keqðTw � T f ;bÞ
¼ � 2ks;eff

keqhf ;b
¼ � 2
ð1þ jÞhf ;b

ð87Þ

where hf ;b denotes the dimensionless bulk mean fluid temperature
and is defined by

hf ;b ¼
2

g2
o � g2

i

Z go

gi

ûhfgdg ð88Þ
3. Results and discussion

3.1. Validation

In all the following calculations, c ¼ 1:4 and Pr ¼ 0:707 are
assumed unless otherwise noted. The heat transfer performance,
represented by the Nussult number, is evaluated with the dimen-
sionless parameters in the analytical solution. To confirm the valid-
ity of the proposed exact solution, three limiting cases: the LTE
pipe (Bi!1 and w! 0) [2], the LTE annulus (Bi!1) [4] and
the LTNE parallel-plate channel (w! 1) [5] are provided in Fig. 2.
As shown in Fig. 3, the present analytical solutions, in the respec-
tive limiting cases, agree very well with the results given in these
cited three references.

3.2. Parametric analysis

Fig. 4 shows the variation of f Re and the velocity slip uslip with
the porosity e, the porous media shape factor x or the annulus
aspect ratio w together with the Knudsen number Kn. As seen from
Fig. 4, f Re decreases with an increase in Kn. This is because an
increase in Knudsen number would lead to an enhancement in
Re due to an increase in the flow velocity and a reduction in f
due to the gas rarefaction at the wall. For x < 1, the wall friction
(Brinkman shear stress term) predominates in the competition
with the Darcy viscous drag while for x > 20, the impacts of both
Re and f on their product would be close to each other which
makes it independent of the Knudsen number. Furthermore, a
decrease in e or an increase in x leads to an enhancement in
f Re while the value of w has little effect on f Re. A decrease in
the porosity or an increase in the porous media shape factor would
result in an increase in the volume fraction of solid matrix, which
enhances the flow resistance and in turn increases the wall friction.
The dimensionless velocity slip ûslip for Cases I and II should be the
same due to their independence of the thermal boundary condi-
tions. It is observed that the velocity slip at the outer wall is greater
than that at the inner wall.

Fig. 5 shows the variation of the dimensionless temperature
jump hjump with the Biot number Bi, the effective thermal conduc-
tivity ratio j, the porous media shape factor x and the aspect ratio
w together with the Knudsen number Kn. An increase in Kn or x
leads to an increase in the temperature jump Tjump which is propor-
tional to the negative value of hjump. However, the parameters Bi, j
and w exhibit opposite effects. It is seen that the temperature jump
at the heated wall for Case I is greater than that for Case II.

Fig. 6 displays the effect of the Biot number Bi on the Nusselt
number Nu for j=10�4, 10�2, 1 and 102. As expected, an increase
in Bi leads to an enhancement in the Nusselt number. Increasing
Bi translates to an increase in the interstitial heat transfer which
mainly occurs at the walls. The asymptotic values can be found
in Fig. 6 for larger values of Bi. As mentioned before, the LTNE
model would converge to the LTE counterpart as Bi!1. It is also
seen that the LTE values is larger than the LTNE ones because the
former usually overestimate the heat transfer rate [5]. It can also
be seen that the values of Nu become independent of Bi for larger
values of j, as shown in Fig. 6(d). Under the same thermophysical
parameters, the values of Nu evaluated from Case II are greater
than that obtained for Case I, which means that the inner wall at
a constant heat flux is more helpful for the heat transfer enhance-
ment as compared to the outer wall at a constant heat flux.

Fig. 7 depicts the impact of the effective thermal conductivity
ratio j on the Nusselt number Nu for Bi = 10�2, 1, 102 and 104. As
can be seen, an increase in j yields an enhancement in the
Nusselt number. The asymptotic values of Nu appear when
j > 102 regardless of the magnitude of the Biot number.



Fig. 3. Comparison of the present results of Nusselt number with those of available three limiting cases.
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Physically, a larger value of j implies a higher contribution of
forced convection currents at the walls. As illustrated in Fig. 7(d),
the Nusselt number dependence on j is diminished for higher val-
ues of Bi since the behavior of the LTNE model approaches that of
the LTE model. Again, the heat transfer performance for Case II is
better than that for Case I.

Fig. 8 displays the effect of the porous media shape factor x on
the Nusselt number Nu for j = 10�4, 10�2, 1 and 102. For a given
value of Kn, the Nusselt number is not affected much when
x < 1 while the Nusselt number changes slightly when x > 1. As
was mentioned before, the rarefaction decreases the heat transfer,
i.e. increasing Kn leads to a reduction in Nu. Meanwhile, Case II
results in a larger Nusselt number than Case I.

Fig. 9 illustrates the variation of the Nusselt number Nu with
the annulus aspect ratio w for x = 10�2, 1, 10 and 102. As shown
in Fig. 9, the Nusselt number for Case I increases slightly with
increasing aspect ratio while for Case II it drops down sharply with
an increase in the aspect ratio. The larger the aspect ratio, the clo-
ser the values of Nu for Cases I and II. As expected, the Nu value for
Case I would be equal to that for Case II when the aspect ratio
approaches 1. It is known that taking the limit of w! 1, both
Cases I and II reduce to the parallel-plate channel subject to a con-
stant heat flux at one surface and an insulated boundary at the
other.

As seen from the aforementioned parametric study, an increase
in the Knudsen number results in a reduction in the Nusselt num-
ber. Since both velocity slip and temperature jump conditions
involve the Knudsen number, it will be interesting to find out if
either one or both could weaken the heat transport in the porous
media. Fig. 10 displays the effect of the temperature jump on the
Nusselt number for x = 10�2, 1, 10 and 102. When the temperature
jump condition is not taken into account, only the velocity slip con-
dition (a–0, b ¼ 0) is considered and vice versa. It can be seen that
the velocity slip enhances the Nusselt number whereas the tem-
perature jump has an opposite effect. Similar results were also
reported by Tunc and Bayazitoglu [15] for microtubes. Also, previ-
ously published analytical works on slip-flow convection [16,17]
can be noted in here. As compared to the velocity slip, the temper-
ature jump dominates the heat transfer process, which leads to a
reduction in the heat transfer. The results obtained under both
the velocity slip and temperature jump conditions are also plotted
in this figure. It should be noted that the results on the ordinate
axis correspond to the no-slip regime solutions.

4. Conclusions

A theoretical investigation of the heat transfer characteristics
for the forced convective gaseous flow through a micro-annulus
filled with a porous material is presented in this work. The
Brinkman momentum equation is employed to describe the fluid
flow within the porous medium and the two-energy equation
model is utilized due to the inherent coupling of the fluid and solid
phases. To this end, exact solutions are obtained for both the fluid
and solid temperature distributions under the LTNE condition.
Utilizing the presented exact solutions, the Nusselt number is
obtained as a function of five pertinent parameters including the
Biot number Bi, the effective thermal conductivity ratio j, the
porous media shape factor x, the annulus aspect ratio w, and the
Knudsen number Kn. Two distinct cases (Cases I and II) are consid-
ered, which are validated by three limiting cases available in the
literature. Our investigation establishes that the rarefaction
reduces the heat transfer within the porous medium, in which
the velocity slip and the temperature jump have opposite effects.
Also, the configuration of Case II is shown to create more heat
transfer enhancement within the porous medium as compared to
that of Case I.
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