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Rarefied phenomena can occur when a gas flows through a microchannel. However, most available
convective solutions were obtained under the local thermal equilibrium condition. In this study, gaseous
slip flow in a circular microtube filled with a porous medium is analytically investigated under the local
thermal non-equilibrium condition. The first-order velocity slip and temperature jump conditions at the
tube wall are invoked in order to account for the rarefaction effects. Rigorous analytical solutions are
obtained for the velocity and temperature distributions as well as the average Nusselt number. Theo-
retical predictions are then compared to those of existing limiting cases in the literature. Results indicate
that the degree of rarefaction, represented by the Knudsen number ranging from 10�3 to 10�1, has a
significant effect on the velocity, temperature, pressure drop and heat transport within the microtube for
various combinations of pertinent parameters such as the porosity, effective thermal conductivity ratio,
Biot number and porous media shape factor.

© 2015 Elsevier Masson SAS. All rights reserved.
1. Introduction

Due to the miniaturization of electronics and advances in micro-
fabrication, the research on gas transport phenomena at micro
scale is receiving growing attention. And investigators have found
new applications such as smaller flow passages and fins employed
in compact heat exchangers and electronics cooling in the
emerging field of micro-scale heat transfer. The gas flow in a
microchannel is associated with the so-called rarefaction effect,
which is measured by the Knudsen number (Kn) defined as the
ratio of the molecular mean free path (l) to the appropriate char-
acteristic dimension of the flow domain. Typical applications in
microfluidic systems may involve characteristic dimensions in the
range of 10e200 mm [1]. According to the degree of rarefaction
effect, there are four models including the continuum regime
(Kn � 10�3), slip-flow regime (10�3 < Kn � 10�1), transition regime
(10�1 < Kn � 10) and free molecular regime (Kn > 10). In the slip-
flow regime, the deviation from the continuum behavior is very
slight, corresponding to Knudsen numbers in the range of 10�3 to
10�1 [2e4]. Therefore, the standard NaviereStokes and energy
served.
equations can still be employed with the proper boundary condi-
tions accounting for velocity-slip and temperature-jump at the
walls [1,4].

The slip-flow and heat transfer in various-shaped micro-
channels have been investigated in the past decades. However,
forced convective heat transfer within porous microchannels has
not been studied extensively subject to the rarefied condition [5].
One of the earliest contributions on forced convectionwith the slip-
flow in a porous parallel-plate microchannel or circular microtube
was investigated analytically by Nield and Kuznetsov [6]. According
to their findings, the velocity slip results in heat transfer
enhancement and temperature jump leads to a reduction in heat
transfer. Subsequently, Kuznetsov and Nield [7] extended their
work to the case of thermally developing forced convection. Had-
dad et al. [8] numerically studied the laminar forced convection of
gaseous slip flow in a porous circular microtube. Hooman [9] dealt
with the slip flow in a porous rectangular microchannel. Closed
form solutions for fully developed velocity and temperature dis-
tributions were obtained using a Fourier series approach. Sho-
kouhmand et al. [10] carried out numerical simulation of
DarcyeBrinkmaneForchheimer flow model and forced convection
in a circular micro- and nanotube filled with a porous medium by
invoking the velocity slip and temperature jump conditions. They
found that the variations of Knudsen number exhibit considerable
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Nomenclature

asf interfacial area per unit volume of the porous medium
(m�1)

Bi Biot number, hsfasfR2/ks,eff
cp specific heat of the fluid (J kg�1 �C�1)
Da Darcy number
f Fanning friction factor
hsf interstitial heat transfer coefficient (W m�2 �C�1)
kf thermal conductivity of the fluid (W m�1 �C�1)
kf,eff effective thermal conductivity of the fluid

(W m�1 �C�1)
ks thermal conductivity of the solid (W m�1 �C�1)
ks,eff effective thermal conductivity of the solid

(W m�1 �C�1)
K permeability (m2)
Kn Knudsen number
M ratio of the actual to effective viscosity of the fluid, meff/

mf
Nu average Nusselt number at the wall for LTNE model
Nu1 average Nusselt number at the wall for LTE model
p pressure (Pa)
P dimensionless pressure gradient
Pr Prandtl number of the fluid
qw imposed heat flux on the wall (W/m2)
r radial coordinate
R radius of the microtube (m)
Re Reynolds number
T temperature (�C)
u fluid velocity (m/s)

bu dimensionless velocity
z axial coordinate

Greek symbols
g specific heat transfer ratio
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið1þ kÞ=kp

3 porosity
h dimensionless radial coordinate, r/R
q dimensionless temperature, ks,eff(T � Tw)/qwR
k ratio of the effective thermal conductivity of the fluid

to that of the solid, kf,eff/ks,eff
l molecular mean free path (m)
m dynamic viscosity (Pa s)
r density of the fluid (kg/m3)
st thermal accommodation coefficient
sv tangential momentum accommodation coefficient
4t temperature jump coefficient, [(2 � st)/st][2g/(g þ 1)]

Kn/Pr
4v velocity slip coefficient, [(2 � sv)/sv]Kn
u porous media shape factor, 1=

ffiffiffiffiffiffiffiffiffiffiffi
MDa

p

Subscripts/superscripts
e entrance
eff effective
f fluid phase
m mean value
s solid phase
w tube wall subject to a constant heat flux
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effects on heat transfer and temperature distribution across the
cross section of the tube. Hashemi et al. [11] analytically investi-
gated forced convective heat transfer in a porous microannulus for
two distinct thermal boundary conditions, and found that the
Nusselt number decreases as the Knudsen number or annulus
aspect ratio increases. Other contributions to the slip flow in porous
media were made by Haddad and co-workers [12], Hooman [13]
and Chauhan and Kumar [14]. All the above contributions were
based on the local thermal equilibrium (LTE) model, which ignores
the temperature difference between the fluid and solid phases.

When the heat exchange between the two phases is not suffi-
ciently strong, the LTE assumption breaks down [15]. In such situ-
ations, the local thermal non-equilibrium (LTNE) model should be
utilized for analyzing the rarefaction effects on the velocity and
temperature distributions. Haddad et al. [16] numerically investi-
gated the hydrodynamically fully developed and thermally devel-
oping forced convection of the gaseous slip flow in a porous
parallel-plate microchannel or circular microtube with constant
wall temperature. In their simulations, it is found that the heat
transfer decreases with an increase in the Knudsen number or
Forchheimer number and increases with an increase in the P�eclet
number or Darcy number. Most recently, Buonomo et al. [5]
analytically studied the rarefied gaseous slip flow in a porous
parallel-plate microchannel. The exact solutions for the fluid and
solid temperatures were derived under LTNE and constant heat flux
conditions. Different trends were reported with respect to
tangential momentum accommodation coefficient.

To the authors' knowledge, no attempt has been analytically or
numerically made for evaluating the behavior of gaseous flow in
porous circular microtubes under the LTNE condition. In the current
study, the rarefaction effect (10�3 < Kn � 10�1) is therefore
analytically treated with respect to the first-order slip/jump con-
ditions. Exact solutions for the velocity, fluid and solid temperature
distributions and the average Nusselt number are derived. The ef-
fects of various thermophysical properties on the heat transfer
within the porous circular microtube are also studied.

2. Mathematical model and analysis

2.1. Governing equations

A schematic view of a circular microtube filled with a porous
medium and the cylindrical coordinate system (r, z) is depicted in
Fig. 1. The radius is R and a constant heat flux qw is uniformly
imposed on the impermeable tube wall. The flow direction of the
rarefied gas is along the z-axis. The following assumptions are
invoked in the present study:

� The flow is steady and incompressible and Brinkman-extended
Darcy model is considered.

� Natural convection, dispersion and radiative heat transfer are
negligible.

� Axial heat conduction is assumed to be negligible.
� The flow is hydrodynamically and thermally fully developed
with temperature independent properties.

Under the foregoing assumptions the Brinkmanmomentum and
energy equations using the local thermal non-equilibrium condi-
tion in cylindrical coordinates are expressed as [17,18].

Brinkman momentum



Fig. 1. Schematic diagram of a circular microtube filled with a porous medium.
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meff

 
d2u
dr2

þ 1
r
du
dr

!
� mf

K
u� dp

dz
¼ 0 (1)

Fluid phase energy

kf ;eff
1
r

v

vr

�
r
vTf
vr

�
þ hsfasf

�
Ts � Tf

�
¼ rcpu

vTf
vz

(2)

Solid phase energy

ks;eff
1
r

v

vr

�
r
vTs
vr

�
� hsfasf

�
Ts � Tf

�
¼ 0 (3)

where

meff ¼
mf
3
; kf ;eff ¼ 3kf ; ks;eff ¼ ð1� 3Þks (4)

here u is the fluid velocity, meff an effective viscosity, mf the dynamic
viscosity of the fluid, K the permeability of the porous medium, p
the applied pressure and Tf, Ts, kf,eff, ks,eff, 3, r and cp the fluid and
solid temperatures, the effective thermal conductivities, porosity,
the density and specific heat of the fluid respectively. The coupling
between the two energy equations is achieved using the fluidesolid
interfacial term which represents the heat transfer between the
two phases via the heat transfer coefficient hfs and the specific
surface area afs.

To consider the effects of flow rarefactions at the tube wall, the
first-order velocity slip boundary condition is prescribed by
Refs. [10,19]

uf ;w � uw ¼ �avl

�
vu
vr

�
r¼R

; av ¼ 2� sv

sv
(5)

where uf,w denotes the fluid velocity immediately adjacent to the
tube wall, uw the wall velocity, av the momentum slip factor and sv
the tangential momentum accommodation coefficient. It should be
noted that uw ¼ 0 for the stationary wall. The axisymmetry at the
center, r ¼ 0, for the fluid velocity is given by

du
dr

����
r¼0

¼ 0 (6)

Similarly, the gas temperature at the tube wall differs from the
wall temperature in proportion to the local normal temperature
gradient. The corresponding temperature-jump boundary condi-
tion reads [10,19]
Tf ;w � Tw ¼ �atl
vTf
vr

����
r¼R

; at ¼ 2� st

st

2g
gþ 1

1
Pr

(7)

where Tf,w denotes the fluid temperature immediately adjacent
to the tube wall, Tw the wall temperature which is not known a
priori and must be obtained as part of the solution, at the tem-
perature jump factor, st thermal accommodation coefficient, g
the specific heat ratio and Pr the Prandtl number. From the
physical point of view, the values of sv and st vary from unity
(complete accommodation, diffuse reflection) to zero (specular
reflection) [20]. Generally, sv and st, which are both dependent
on the surface finish, the fluid temperature and pressure, need to
be determined experimentally. Among most investigations sv
and st are assumed to be equal to 1. However, experimental
measurements illustrated that both values are less than unity
[4]. Therefore, as suggested by Bahrami et al. [4] and Cai et al.
[21], both sv and st are assumed to be 0.85 in the present study
unless otherwise stated. Thermal creep and viscous dissipation
have been neglected in Eqs. (5) and (7) as explained by Kennard
[19].

The imposed heat flux qw can be divided between the fluid
and solid phases depending on their effective conductivities and
corresponding temperature gradients at the tube wall. That is
[18,22]

qw ¼ kf ;eff
vTf
vr

����
r¼R

þ ks;eff
vTs
vr

����
r¼R

(8)

As addressed by Lee and Vafai [23], the temperatures of the fluid
and solid phases at the wall will be the same when a tube with
finite thickness wall and high thermal conductivity is attached to a
porous medium. Consequently,

Tf
���
r¼R

¼ Tsjr¼R (9)

The axisymmetry at the center, r ¼ 0, leads to the thermal
boundary condition as follows

vTf
vr

����
r¼0

¼ vTs
vr

����
r¼0

¼ 0 (10)

2.2. Hydrodynamic analysis

After employing the following dimensionless variables

h ¼ r
R
; u

^ ¼ mu
R2ð�dp=dzÞ; M ¼ meff

m
; Da ¼ K

R2
(11)



K. Wang et al. / International Journal of Thermal Sciences 97 (2015) 152e162 155
the Brinkman momentum Eq. (1) can be written in a dimensionless
form

M

 
d2u

^

dh2
þ 1

h

du
^

dh

!
� u

^

Da
þ 1 ¼ 0 (12)

whereM denotes the ratio of the actual to effective viscosity of the
fluid and Da the Darcy number.

The dimensionless velocity slip and axisymmetric boundary
conditions can be presented as

u
^ð1Þ ¼ �4v

du
^

dh

�����
h¼1

; 4v ¼ avKn (13)

du
^

dh

�����
h¼0

¼ 0 (14)

inwhich the Knudsen number is based on the hydraulic diameter as
Kn ¼ l/R. As a result, Eq. (12) can be solved for the dimensionless
velocity u

^
subject to boundary conditions given by Eqs. (13) and

(14) as

u
^ ¼ Da

�
1� I0ðuhÞ

4vuI1ðuÞ þ I0ðuÞ
	

(15)

where Iz is the zth order modified Bessel function of the first kind
and u ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=MDa
p

the porous media shape factor.
Introducing the dimensionless mean velocity u

^
m defined by

u
^
m ¼ 2

Z1
0

u
^
h dh (16)

and then a further dimensionless form of bu is calculated as

bu ¼ u
^

u
^
m

¼ u½jI0ðuÞ � I0ðuhÞ�
juI0ðuÞ � 2I1ðuÞ

(17)

where

j ¼ 1þ 4vuI1ðuÞ
I0ðuÞ

(18)

Having obtained the velocity field, we can proceed with the
calculation of the Fanning friction factor as

f ¼ 2R dp
dz

1
2 ru

2
m

¼ 8P
DaRe

(19)

where um is the mean velocity, Re the Reynolds number and P the
dimensionless pressure gradient, which are respectively defined by

um ¼ 2
R2

ZR
0

ur dr; Re ¼ rumð2RÞ
meff

; P ¼ � K
mum

dP
dz

(20)

In a similar way as done by Lu et al. [24], the expression of P can
be further given as

P ¼ juI0ðuÞ
juI0ðuÞ � 2I1ðuÞ

(21)

Consequently, the dimensionless pressure drop, represented by
fRe, reads
fRe ¼ 8 ju3I0ðuÞ (22)

3juI0ðuÞ � 2I1ðuÞ

2.3. Heat transfer analysis

In this section, we shall seek exact solutions for forced convec-
tive heat transfer in a circular microtube filled with a porous me-
dium under the local thermal non-equilibrium condition.

Adding the two energy equations (2) and (3), integrating with
respect to r over the entire cross-sectional area and considering
boundary conditions given by Eqs. (8) and (10) produce

rcpum
vTf ;b
vz

¼ 2qw
R

(23)

in which vTf,b/vz ¼ vTf/vz ¼ vTs/vz ¼ vTw/vz ¼ const due to the
assumption of fully developed flow.

Using the following dimensionless variables

k ¼ kf ;eff
ks;eff

; Bi ¼ hsfasfR
2

ks;eff
; qf ¼

ks;eff
�
Tf � Tw

�
qwR

; qs

¼ ks;eff ðTs � TwÞ
qwR

(24)

where k is the ratio of the effective thermal conductivity of the fluid
to that of the solid. Eqs. (2), (3), (7), (9) and (10) can be rewritten in
the dimensionless form

k
1
h

v

vh

�
h
vqf
vh

�
þ Bi

�
qs � qf

�
¼ 2bu (25)

1
h

v

vh

�
h
vqs
vh

�
� Bi

�
qs � qf

�
¼ 0 (26)

qf

���
h¼1

¼ �4t
vqf
vh

����
h¼1

; 4t ¼ atKn (27)

qf

���
h¼1

¼ qsjh¼1 (28)

vqf
vh

����
h¼0

¼ vqs
vh

����
h¼0

¼ 0 (29)

The two dimensionless energy Eqs. (25) and (26) are added, andbu is substituted from Eq. (17) to yield the following EulereCauchy
equation

1
h

v

vh

�
h
v

vh

��
kqf þ qs

�
¼ 2u½jI0ðuÞ � I0ðuhÞ�

juI0ðuÞ � 2I1ðuÞ
(30)

The solution to Eq. (30) has the form of

qs ¼ C1I0ðuhÞ þ C2h
2 þ C3 � kqf (31)

where C1, C2 and C3 are constants but C3 needs to be determined
later.

C1 ¼ �2
u½juI0ðuÞ � 2I1ðuÞ�

(32)

C2 ¼ 1
2

juI0ðuÞ
juI0ðuÞ � 2I1ðuÞ

(33)
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Substituting Eqs. (31) and (17) into Eq. (25) results in the following
modified Bessel equation

k
1
h

v

vh

�
h
vqf
vh

�
� d2qf ¼

1
k

h
C1
�
u2 � Bi

�
I0ðuhÞ � BiC2h

2

þ ð4C2 � BiC3Þ
i

(34)

where d ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bið1þ kÞ=kp

. To this end, the dimensionless energy
equations (25) and (26) are decoupled. Subsequently, the closed
form solution of Eq. (34) subject to boundary conditions (27) and
(28) yields the dimensionless temperature distribution of the
fluid phase as

qf ¼ D1I0ðdhÞ þ D2I0ðuhÞ þ D3h
2 þ D4 þ

C3
1þ k

(35)

where

C3 ¼ I0ðuÞC1ð1þ kÞ4tdf½I0ðuÞ þ 4tuI1ðuÞ�D2 þ ð1þ 24tÞD3

þ D4g
I1ðdÞ
I0ðdÞ

�
�
1þ 4td

I1ðdÞ
I0ðdÞ

	
fI0ðuÞC1 þ C2

þ ð1þ kÞ4t½uI1ðuÞD2 þ 2D3�g
(36)

D1 ¼ �C1 þ C2 � ð1þ kÞðD3 þ D4Þ þ ½C1 � ð1þ kÞD2�I0ðuÞ
ð1þ kÞI0ðdÞ

(37)

D2 ¼ C1
k

u2 � Bi

u2 � d2
(38)

D3 ¼ C2
1þ k

(39)

D4 ¼ 4
d2

�
D3 �

Bi
4k

� C2
k

�
(40)

The tube wall heat transfer coefficient for the local thermal non-
equilibrium model is obtained from

hw ¼ qw
Tw � Tf ;b

(41)

From the analytical solutions for the velocity and temperature
distributions, the average Nusselt number on the tube wall is
determined based on the overall thermal equivalent conductivity,
keq ¼ kf,eff þ ks,eff, as

Nu ¼ 2Rhw
keq

¼ � 2Rqw

keq
�
Tw � Tf ;b

� ¼ �2ks;eff
keqqf ;b

¼ � 2
ð1þ kÞqf ;b

(42)

Using Eqs. (17) and (35), the dimensionless bulk mean fluid
temperature qf,b can be obtained by averaging over the cross section
of the tube
qf ;b¼2
Z1
0

buqfhdh
¼D1g1

2
d2�u2

½uI0ðuÞI1ðdÞ�dI0ðdÞI1ðuÞ�þD2g1
h
I20ðuÞ� I21ðuÞ

i
þD3g1

2
u2

��
uþ4

u

�
I1ðuÞ�2I0ðuÞ

	
þ
��

D4þ
C3
1þk

�
g1

þD2g2

	
2
u
I1ðuÞþD1g2

2
d
I1ðdÞþ

1
2

�
D3þ2

�
D4þ

C3
1þk

�	
g2

(43)

where

g1 ¼ �u

juI0ðuÞ � 2I1ðuÞ
(44)

g2 ¼ juI0ðuÞ
juI0ðuÞ � 2I1ðuÞ

(45)

It should be noted that the dimensionless bulk mean tempera-
ture qf,b given by Eq. (43) is constant along the length of the tube.
Using Eq. (24), qf,b can be rewritten in another form as follows

qf ;b ¼
ks;eff

�
Tf ;b � Tw

�
qwR

(46)

The temperature difference between the wall and the bulk fluid
can be written as

Tw � Tf ;b ¼ �qwR
ks;eff

qf ;b (47)

where Tf,b is the bulk mean temperature that is defined by

Tf ;b ¼ 2
R2um

ZR
0

uTf r dr (48)

As highlighted by Mahjoob and Vafai [25], although the fluid
temperature Tf in the fully developed region is a function of both
transverse and longitudinal coordinates, the dimensionless fluid
temperature qf is a function of the transverse coordinate only and
the dimensionless bulk mean temperature Tf,b is a function of the
longitudinal coordinate only. Integrating both sides of Eq. (23) with
respect to z and rearranging the resultant integration lead to

Tf ;b ¼ 2qw
Rrcpum

zþ Te (49)

Using the continuum equation, one can readily obtain the
relationship um ¼ ue/ 3. Thus, Eq. (49) can be rewritten as

Tf ;b ¼ 2qw 3

Rrcpue
zþ Te (50)

Substituting Eq. (50) into Eq. (47) results in the wall temperature

Tw ¼ 2qw 3

Rrcpue
z� qwR

ks;eff
qf ;b þ Te (51)
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3. One equation model

Taking the limit of Bi / ∞, the solution of the LTNE model re-
duces to that of the LTE counterpart. Herein, an alternative
approach for the solution of the LTE model, namely one equation
model, is addressed. The single energy equation for one equation
model can be obtained by adding Eqs. (25) and (26), i.e. assuming
that the fluid and solid temperatures are equal: qf ¼ qs ¼ q

ð1þ kÞ1
h

v

vh

�
h
vq

vh

�
¼ 2u½jI0ðuÞ � I0ðuhÞ�

juI0ðuÞ � 2I1ðuÞ
(52)

The corresponding boundary conditions given by Eqs. (27)e(29)
are simplified as

qjh¼1 ¼ �4t
vq

vh

����
h¼1

(53)

vq

vh

����
h¼0

¼ 0 (54)

Therefore, the dimensionless temperature distribution for the
one equation model takes the form of

q ¼ E1I0ðuhÞ þ E2h
2 þ E3 (55)

where

E1 ¼ C1
1þ k

(56)

E2 ¼ C2
1þ k

(57)
NuFD¼Nu1¼
(
4t
2
þ


j2u3�8ð2jþ1Þu�I20ðuÞþ16ð2jþ1ÞI0ðuÞI1ðuÞþ8uI21ðuÞ

8u½juI0ðuÞ�2I1ðuÞ�2
)�1

(63)
E3 ¼ �E1½I0ðuÞ þ 4tuI1ðuÞ� � E2ð1þ 24tÞ (58)
Fig. 2. Comparison of the present analytical dimensionless velocity distribution with
that obtained by Haji-Sheikh and Vafai [17] and the effect of variations in the Knudsen
number.
Following the way done for qf,b in the LTNE model, the dimen-
sionless bulk mean fluid temperature qf,b1 in the LTE model
becomes

qf ;b1 ¼ 2
Z1
0

buqh dh

¼ E1g1
h
I20ðuÞ � I21ðuÞ

i
þ E2g1

2
u2

��
uþ 4

u

�
I1ðuÞ � 2I0ðuÞ

	
þ ½E1g2 þ E3g1�

2
u
I1ðuÞ þ

1
2
ðE2 þ 2E3Þg2

(59)

Similarly, the average Nusselt number on the tubewall, based on
the overall thermal conductivity, keq, is written as

Nu1 ¼ � 2
ð1þ kÞqf ;b1

(60)

Further, substituting Eqs. (32), (33) and (56)e(58) into Eq. (55)
gives rise to the dimensionless temperature

q ¼ 1
1þ k

2qFD
NuFD

(61)

where qFD and NuFD are exactly the same as those obtained by Nield
and Kuznetsov [6] and given by

qFD ¼ g2NuFD

�
1
4

�
h2 � 1

�
þ I0ðuÞ � I0ðuhÞ

ju2I0ðuÞ
	
� 4t

2
NuFD (62)
The wall temperature Tw1, the bulk mean temperature Tf,b1 and
their difference are respectively obtained as
Fig. 3. Comparison of the present analytical dimensionless temperature distribution
with that obtained by Dukhan et al. [26] and the effect of variations in the Knudsen
number.



Table 1
Comparison of the Nusselt number from the present analytical solution with that
obtained by Nield and Kuznetsov [6] (k ¼ 1, Bi ¼ 10, u ¼ 1).

Kn LTNE (Eq. (42)) LTE

Bi ¼ 10 102 104 106 Eq. (60) Nield and Kuznetsov

0.0 2.939 4.194 4.413 4.415 4.415 4.415
0.001 2.932 4.186 4.404 4.407 4.406 4.406
0.002 2.924 4.178 4.396 4.398 4.398 4.398
0.004 2.909 4.159 4.378 4.380 4.380 4.380
0.006 2.894 4.139 4.360 4.362 4.362 4.362
0.008 2.878 4.119 4.341 4.343 4.344 4.344
0.01 2.861 4.099 4.321 4.324 4.324 4.324
0.02 2.768 3.986 4.219 4.224 4.224 4.224
0.04 2.561 3.733 3.998 4.007 4.008 4.008
0.06 2.349 3.469 3.770 3.785 3.787 3.787
0.08 2.148 3.213 3.548 3.569 3.571 3.571
0.1 1.965 3.213 3.338 3.364 3.367 3.367
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Tw1 ¼ 2qw 3

Rrcpue
z� qwR

ks;eff
qf ;b1 þ Te (64)

Tf ;b1 ¼ Tf ;b ¼ 2qw 3

Rrcpue
zþ Te (65)

Tw1 � Tf ;b1 ¼ �qwR
ks;eff

qf ;b1 (66)
4. Results and discussion

For all of the presented results, it is assumed that g ¼ 1.4 and
Pr ¼ 0.707 unless otherwise noted. First, the proposed exact solu-
tions are validated by comparing some limiting results available in
the literature. Fig. 2 depicts the dimensionless velocity distribution
along the radial direction for no-slip flow regime (Kn ¼ 0) with
u ¼ 1. The results are in complete agreement with the analytical
velocity distribution obtained by Haji-Sheikh and Vafai [17]. The
case of the velocity slip is also displayed in Fig. 2 with Knudsen
number Kn¼ 0.025, 0.05 and 0.1. It is obviously seen from the figure
that as the value of Kn increases, the velocity slip at the wall in-
creases. It is worthmentioning that the velocity gradient at thewall
for the slip flow decreases as compared to the no-slip flow. This
implies that higher Kn reduces the retarding effect of the wall and
yields more flow passing through the microtube.
Fig. 4. Effect of (a) the porosity and (b) Knuds
Fig. 3 depicts the dimensionless temperature distribution with
k ¼ 0.01, Bi ¼ 0.5 and u ¼ 1. The Knudsen number has been set to
zero to compare our analytical solution with the work of Dukhan
et al. [26]. An excellent agreement is observed between these so-
lutions. Also, the temperature distributions for Kn¼ 0.025, 0.05 and
0.1 are plotted in Fig. 3. As expected, the temperature profile shifts
down with increasing Kn, but the normal temperature gradient of
the tube wall remains constant due to the isoflux boundary con-
dition. Centerline temperatures for both phases decrease with an
increase in the Knudsen number.

We have also compared our results with those obtained by Nield
and Kuznetsov [6] for the limiting case of Bi / ∞. As seen from
Table 1, an excellent agreement is found. Moreover, an increase in
the Knudsen number renders a decrease in the Nusselt number.
This is because of a decrease in heat transfer due to the rarefaction
effects.

Fig. 4 illustrates the variation of fRe with the porosity or the
Knudsen number at u ¼ 10�2, 1, 102 and 103. As seen from Fig. 4(a),
fRe decreases with an increase in 3. An increase in the porosity
results in a decrease in the volume fraction of solid matrix, which
relieves the flow resistance and in turn reduces the wall friction.
Fig. 4(b) demonstrates that fRe decreases as Knudsen number in-
creases when u � 1 while fRe remains almost independent of Kn
when u � 102. It is known that an increase in Knudsen number
would lead to an enhancement in Re due to the increase in the flow
velocity and a reduction in f due to the gas rarefaction at the tube
wall. For lower values of u the wall friction (Brinkman shear stress
term) predominates in the competitionwith the Darcy viscous drag
while for higher values of u their impacts on fRe are very close to
each other.

The effect of the Biot number on the Nusselt number is shown in
Fig. 5 for k ¼ 0.1 and u ¼ 0.1, 1, 10 and 102. As expected, an increase
in Bi yields an increase in the Nusselt number. Increasing Bi
translates to an enhancement in interstitial heat transfer. For large
values of Bi, specifically for Bi > 103, Nu tends to asymptotic values.
As mentioned above, the LTNE model reduces to the LTE one as
Bi / ∞. Hence, these asymptotic values will converge to the LTE
solutions as Bi increases. For a fixed value of Bi, the higher the
Knudsen number, the lower the Nusselt number. Higher Kn implies
fewer molecules collide with the heated wall and carry part of the
energy at the wall. As a consequence, it increases the temperature
difference between the wall and the bulk fluid, which is the main
driving force for the heat transfer. It is worth commenting that the
change in Nu is more severe when the value of Bi falls in the range
between 1 and 102. Also, this figure demonstrates that for lower
porous media shape factors (u � 1), the Nusselt number is less
en number on the Fanning friction factor.



Fig. 6. Effect of Knudsen number and the effective thermal conductivity ratio on the Nusselt number at different Biot numbers for u ¼ 10: (a) Bi ¼ 10�2, (b) Bi ¼ 1, (c) Bi ¼ 102 and
(d) Bi ¼ 104.

Fig. 5. Effect of Knudsen and Biot numbers on the Nusselt number at different porous media shape factors for k ¼ 0.1: (a) u ¼ 0.1, (b) u ¼ 1, (c) u ¼ 10 and (d) u ¼ 102.
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Fig. 8. Effect of Knudsen number on the dimensionless temperature distribution along the radial direction for u ¼ 1: (a) k ¼ 0.1, Bi ¼ 0.1, (b) k ¼ 0.1, Bi ¼ 10, (c) k ¼ 10, Bi ¼ 0.1 and
(d) k ¼ 10, Bi ¼ 10.

Fig. 7. Effect of Knudsen number and the porous media shape factor on the Nusselt number at different thermal conductivity ratios for Bi ¼ 10: (a) k ¼ 10�2, (b) k ¼ 0.1, (c) k ¼ 1 and
(d) k ¼ 102.
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Table 2
Nusselt number for air and helium at the microtube wall subject to a constant heat
flux (k ¼ 0.1, Bi ¼ 10, u ¼ 1).

sv st Kn ¼ 0.001 0.01 0.02 0.04 0.06 0.08 0.1

Air (Pr ¼ 0.707, g ¼ 1.4)
0.95 0.95 2.933 2.876 2.803 2.638 2.464 2.293 2.131

0.85 2.930 2.848 2.749 2.540 2.333 2.138 1.962
0.75 2.927 2.814 2.684 2.425 2.185 1.970 1.782

0.85 0.95 2.934 2.889 2.823 2.663 2.485 2.308 2.140
0.85 2.932 2.861 2.768 2.561 2.349 2.148 1.965
0.75 2.928 2.826 2.701 2.442 2.195 1.974 1.780

0.75 0.95 2.936 2.905 2.848 2.691 2.509 2.325 2.149
0.85 2.934 2.876 2.791 2.585 2.366 2.157 1.968
0.75 2.930 2.840 2.722 2.462 2.207 1.977 1.777

Helium (Pr ¼ 0.68, g ¼ 1.667)
0.95 0.60 2.916 2.716 2.507 2.139 1.838 1.596 1.400

0.45 2.912 2.596 2.305 1.849 1.518 1.274 1.090
0.30 2.874 2.386 1.985 1.454 1.126 0.090 0.756

0.925 0.60 2.916 2.719 2.510 2.141 1.838 1.594 1.398
0.45 2.902 2.598 2.307 1.849 1.517 1.272 1.087
0.30 2.875 2.388 1.986 1.453 1.124 0.906 0.753

0.90 0.60 2.917 2.721 2.513 2.143 1.838 1.593 1.395
0.45 2.903 2.601 2.309 1.849 1.516 1.270 1.084
0.30 2.875 2.389 1.987 1.452 1.122 0.903 0.750
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sensitive to the rarefaction effects. As expected, for u > 102, the heat
transfer is strongly dependent on the rarefaction. The values of Nu
are bounded between 4.36 (plane Poiseuille flow, u / 0) and 8
(slug flow, u / ∞). This is in accordance with the conclusions of
Hooman and Ranjbar-Kani [27].

Fig. 6 depicts the impact of the effective thermal conductivity
ratio on the Nusselt number for u¼ 10 and Bi¼ 10�2, 1, 102 and 104.
A larger effective thermal conductivity ratio physically implies an
enhancement in the contribution of forced convection currents. As
expected, increasing k leads to an increase in Nu. It is seen that the
asymptotic values of Nu appear when k > 102. As shown in Fig. 6(d),
Nu does not strongly depend on k for higher values of Bi. This is due
to the fact that the behavior of the LTNE model approaches that of
the LTEmodel whereNu is independent of k according to Eq. (60) or
Eq. (63).

Fig. 7 displays the variation of Nusselt number with the porous
media shape factor for Bi ¼ 10. It can be seen that as u increases,
first, Nu decreases slightly, then it increases and finally approaches
its asymptotic value. Lower u values (u < 1) are related to higher
Darcy numbers and greater permeability while larger u values
(u > 500) are associated with smaller Darcy numbers and lower
permeability. As discussed before, the rarefaction decreases the
heat transfer, i.e. increasing Kn leads to a reduction in Nu.

Fig. 8 delineates the effect of Knudsen number on the temper-
ature distribution with various combinations of the effective ther-
mal conductivity ratio and Biot numbers. As expected, increasing Bi
renders a reduction in the temperature difference between the
fluid and solid phases. However, the influence of k on the temper-
ature difference is not remarkable. As illustrated, increasing Kn
gives rise to an increase in the temperature jump at the wall. This is
due to the reduction in the interaction between the gas molecules
and the heated wall. As Kn increases, the mean free path length of
the gas molecules increases and any molecule reflected from the
wall has less opportunity to collide with other molecules. The in-
crease in the temperature jump reduces the energy transmission
from the heated wall to the gas.

Table 2 displays the rarefaction effects for air and helium based
on various combinations of sv, st and Kn. Obviously, an enhance-
ment in Nu is observed as st increases for an assigned value of sv.
5. Conclusions

Slip-flow and heat transfer in a porous circular microtube is
investigated analytically under the constant heat flux and LTNE
conditions. The flow through the porous microtube is described by
the Brinkman-extended Darcy flow model. Exact solutions for fully
developed velocity and temperature distributions as well as the
average Nusselt number are derived incorporating rarefaction ef-
fects at the tubewall. Compared to the no-slip flow regime (Kn¼ 0),
the slip-flow counterpart (10�3 < Kn � 10�1) is associated with a
reduction in wall friction (for lower values of u) and an increase in
the temperature difference between the wall and the bulk fluid,
resulting in a decrease in the heat transfer. Furthermore, as u / 0
the Brinkman flow reduces to the Poiseuille flow, hence the present
analytical solutions are applicable for the clear fluid case. Our
analytical results can be extended to handle more complicated
microchannels with multiply connected cross sections such as co-
axial cylindrical annuluses.
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