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Transport governing equations are obtained as a combination between Staverman–Kedem–Katchalsky
membrane equations and volume-averaged porous media equations. Temperature and solute transport
fields are coupled by means of Ludwig-Soret effect. Results are in excellent agreement with numerical
and analytical literature data under isothermal conditions, and with numerical literature data for the
hyperthermia case. Effects of hypertension combined with hyperthermia, are also analyzed in this work.
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1. Introduction

The formation of an atherosclerotic plaque inside the wall of an
artery is a very dangerous phenomenon for the human health.
Computational fluid dynamic has a very important role in the
prediction of such phenomena (Abraham et al., 2008), also for
other similar phenomena such as aneurysms (Naughton et al.,
2014), in which modeling fluid-structure interactions is a primary
task (Chung and Vafai, 2012; Sun et al., 2015). If this plaque breaks,
a thrombous in the blood vessel occurs, causing vascular
obstruction. The thrombous is the cause of many cardiovascular
diseases, like strokes and heart attack. The growth of this ather-
osclerotic plaque is caused by the infiltration of Low-Density
Lipoprotein (LDL) through the wall. The LDLs derive from trigly-
cerides hydrolysis of Intermediate-Density Lipoproteins (IDLs)
which are not metabolized by the liver. When LDL infiltrates in the
intima layer through the endothelium, it can oxidize, attracting
monocytes. These monocytes absorb ox-LDL, forming foam cells.
Smooth Muscle Cells (SMC) are then prone to move from the
tunica media to the intima, promoting the growth of the foam cells
that are going to form the plaque. The process of the plaque for-
mation is characterized by the growth of a fibrous connective
tissue layer, namely the fibrous cap, that has an important role in
calcifying atherosclerotic plaques. The plaque formation can be
either stable or unstable. When the plaque is stable, the fibrous
cap is thick and solid. In this case, the risk consists in the occlusion
of the artery. However, because the growth of the plaque is relative
slow, a collateral circulation can occur. On the other hand, an
unstable plaque is more dangerous, because it can break, forming
a thrombous. In that case, there is no collateral circulation that
compensates the problem. When the artery becomes occluded, the
reduction of blood flow could cause several fatal problems. For
example, an ischemic stroke occurs when blood perfusion of the
brain is diminished by a thrombous or by a vascular lumen
restriction caused by a growing plaque. Among the various tech-
niques used to counteract such phenomena, an example of
emerging therapy for the treatment of LDL is the LDL-apheresis
(McGowan, 2013), that reminds of dialysis, in which modeling
mass transfer through the vascular access has a primary role. A
generic mass transfer model for vascular access was presented by
Chelikani et al. (2011). The study of the mechanisms that regulate
LDL accumulation through the wall is then extremely important,
due to its primary role in the growth of the atherosclerotic plaque.

Following Iasiello et al. (2015), two methods are used to
investigate LDL transport through an arterial wall: the first is
based on experiments on animals (Meyer et al., 1996; Xie et al.,
2013), and the second on predictions. Predictive models can also
be distinguished in models based on realistic arteries (Kenjereš
and de Loor, 2014) and on idealized arteries (Prosi et al., 2005;
Yang and Vafai, 2006; Ai and Vafai, 2006) Depending on how
much in detail the wall is represented, predictive methods can also
be divided into three categories (Prosi et al., 2005): wall-free
models, in which the arterial wall is represented by means of a
boundary condition (Wada and Karino, 2000), fluid-wall models,
that are also used for other similar transport problems such as the
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Nomenclature

A Particular solution polynomial
B Coefficients matrix
c LDL concentration (mol/m3)
c1; c2 Constant coefficients
cf Heat capacity (J/kg K)
D LDL mass diffusivity (m2/s)
Da Darcy number
e Known terms vector
f Inertial coefficient
g Unknowns vector
j Mass flux (mol/m2 s)
k First-order reaction coefficient (1/s)
kT Thermal-diffusion coefficient
K Hydraulic permeability (m2)
L Length (m)
Le Lewis number
M Molecular weight (g/mol)
p Hydraulic pressure (mmHg)
Pe Mass Peclet number
q Heat flux (W/m2)
R Hydraulic resistance
Rg Universal gas constant (J/mol K)
Re Reynolds number
t Time (s)
T Temperature (K)
v Filtration velocity (m/s)
v Velocity vector (m/s)
y Radial direction coordinate (m)
z Axial direction coordinate (m)

Greek letters

α Thermal diffusivity (m2/s)
Δ Difference
ε Porosity
λ Thermal conductivity (W/m K)

λ1;2 Eigenvalues
μ Dynamic viscosity (kg/m s)
ρ Density (kg/m3)
σ Reflection coefficient

Superscripts

end Endothelium
i i-layer
IEL Internal Elastic Lamina
int Intima
med Media
T Thermal
� Dimensionless

Subscripts

0 Reference
a Advective
c Cold
D Diffusive
ef f Effective property
f Fluid (plasma) property
h Hot
ho Homogeneous
M Mean
osm Osmotic
p Particular
S Staverman filtration
T Thermo-diffusive

Other symbols

∇ Nabla
∂ Partial differential
d Differential
hi Volume average of a variable
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penetration of liquid medication through an arterial wall (Abra-
ham et al., 2013), in which an homogeneous layer represents the
arterial wall (Stangeby and Ethier, 2002), and multi-layer model, in
which the heterogeneity of the wall layers is taken into account
(Yang and Vafai, 2006; Ai and Vafai, 2006).

Most of the predictive models are based on numerical simu-
lations. Because of the complexity of the problem, only few ana-
lytical solutions for comparisons with numerical models based on
the multi-layer model were obtained during the years. The first
analytical solution for the LDL transport through a straight artery
was developed by Yang and Vafai (2008). They obtained flow fields
and LDL concentration profiles along the wall radius, considering a
simplified one-dimensional case. They used several assumptions
to obtain the analytical solution, however, comparisons with lit-
erature data showed that their results were quite accurate. A
comprehensive solution was presented by Khakpour and Vafai
(2008) and Wang and Vafai (2013), using the method of matched
asymptotic expansions in conjunction with Laplace transformation
to calculate fluid flow fields and LDL distributions. Their results
matched the literature data. Effects due to the insertion of a stent
were analytically analyzed by Wang and Vafai (2013), showing
how stent compactness affects transport phenomena. A model for
the transport of therapeutic drugs through a pressurized balloon,
was also proposed by Stark et al. (2013). Curvature effects of an
artery were exhaustively analytically analyzed by Wang and Vafai
(2015). In their study they demonstrate that low curvature ratio
increases concentration polarization, i.e. the accumulation of
solute on a membrane surface (Colton et al., 1972), at the lumen/
endothelium interface.

When hyperthermia occurs in the human body, temperature
gradients are generated. This hyperthermia can occur naturally or
artificially, for example for the treatment of some diseases like
arrhythmias or cancer (Soares et al., 2012; Roesch and Mueller-
Huebenthal, 2015; Hernàndez et al., 2015). Predictions of heat
transfer during hyperthermia treatments were carried out by
Mahjoob and Vafai (2009), Alamiri et al. (2014) and by Wang et al.
(2015). Hyperthermia can be induced also with laser angioplasty,
that is a technique used to remove plaques. The mass transfer is
influenced by temperature gradients by means of Ludwig-Soret
effect (Ludwig, 1856; Soret, 1879). When temperature gradients
are applied to a solution, the solute tends to move from the hot to
the cold zone of the solution (Platten, 2006). The counter part for
the effects of mass transfer on temperature is the Dufour effect
(Ingle and Horne, 1973). Numerical studies for the LDL transport
through the arterial wall under hyperthermia load, applied either
from the exterior or the interior of the artery, were recently per-
formed by Chung and Vafai (2014) for a straight artery, and by
Iasiello et al. (2015) for a stenosed artery. There are no analytical
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results in literature for the comparisons of the cited numerical
models describing or predicting hyperthermia effects on LDL
transport through an arterial wall.

An analytical solution is established here for the LDL transport
through the arterial wall, under hyperthermia conditions. Mass,
momentum and energy dimensionless governing equations are
solved for both external and internal hyperthermia loads. Com-
parisons with numerical and analytical results from literature are
presented. Effects of hyperthermia, set of thermophysical proper-
ties and media/adventitia boundary condition, are also discussed.
2. Mathematical model

2.1. Geometry of an artery: the multi-layer model

The sketch of the arterial wall is shown in Fig. 1a. The space in
which the blood flows is called the lumen. The lumen is in direct
contact with a layer of cells elongated in the blood flow direction,
namely the endothelium, that is a semi-selective barrier which has
a primary role into the mass exchanges between the lumen and
the rest of the wall. This layer is covered by the glycolcalyx, that is
a coating of molecules rich in carbohydrates. After the endothe-
lium, the tunica intima is a layer formed by proteoglycan fibers
and looser-thicker collagen fibers, in which LDL tends to accu-
mulate before and during the evolution of the atherosclerotic
plaque. The tunica media is a layer made up by connective tissue
and smooth muscle cells, that migrates into the intima layer to
contribute the growth of the plaque. The last layer is the tunica
adventitia, made of connective tissue, in which lymphatic vessels
and vasa vasorum are present. Thickness of the arterial wall layers
are shown in Fig. 1a.

2.2. Governing equations

The arterial wall is modeled following the multi-layer model
(Yang and Vafai, 2006; Ai and Vafai, 2006). Four layers are con-
sidered: endothelium, intima, IEL and media, reported in Fig. 1a
with their corresponding thicknesses. The glycocalyx layer is
neglected in the present study (Tarbell, 2003; Yang and Vafai,
2006; Liu et al., 2011). Tunica adventitia can be replaced by a
boundary condition on the media/adventitia interface (Yang and
Vafai, 2006; Ai and Vafai, 2006; Yang and Vafai, 2008).

Because in the present study Ludwig-Soret and Dufour effects
on LDL transport are considered (Chapman and Cowling, 1952;
Fig. 1. (a) Anatomy of an artery a
Wakeham et al., 1991; Kays and Crawford, 1993; Chung and Vafai,
2014; Iasiello et al., 2015), the mass and the heat fluxes j and q due
to these effects can be in general expressed as a sum of advective,
diffusive and thermo-diffusive contributions, respectively ja, jD
and jT for the mass flux and qa, qD and qT for the heat flux:

j¼ jaþ jDþ jT ¼ vc�Def f∇c�
kTρf

Mf

Def f

T
∇T ð1Þ

q¼ qaþqDþqT ¼ vT�λef f∇T�
RgTkTρf

Mf

Def f

c
∇c ð2Þ

where v is the velocity vector, c the solute concentration, Def f the
effective solute mass diffusion coefficient, kT the thermal-diffusion
coefficient, ρf the plasma density, Mf the plasma molecular
weight, T the temperature, λef f the effective thermal diffusivity
and Rg is the universal gas constant. Governing equations for mass,
momentum, energy and LDL species are obtained as a combination
between Staverman–Kedem–Katchalsky biological membranes
equations (Kedem and Katchalsky, 1958) and porous media
equations, including Eqs. (1) and (2). Local Thermal Equilibrium
(LTE) between the two phases of the porous medium is assumed
(Amiri and Vafai, 1994; Nield and Kuznetsov, 1999, 2001; Alazmi
and Vafai, 2001):

∇U vh i ¼ 0 ð3Þ

ρf

ε
∂ vh i
∂t

þ vh iU∇ vh i
� �

þ∇ p
� �

f ¼
μf

ε
∇2 vh i�μf

K
vh i� ρf f

K1=2 vh ij j vh i

þRg Th iσosm∇ ch i ð4Þ

∂ ch i
∂t

þ 1�σSð Þ vh iU∇ ch i ¼Def f∇2 ch iþkTρf

Mf

Def f

Th i∇
2 Th i�k ch i ð5Þ

∂ Th i
∂t

þ vh iU∇ Th i ¼ αef f∇2 Th iþRg Th ikT
cfMf

Def f

ch i ∇
2 ch i ð6Þ

where ε is the porosity, t the time, p the pressure, μf the plasma
dynamic viscosity, K the hydraulic permeability, f the inertial
coefficient, σosm the osmotic reflection coefficient, σS the filtration
reflection coefficient, k the first-order reaction coefficient, αef f the
effective thermal diffusivity, and cf is the plasma thermal capacity.
The last term on the right side of Eq. (4) takes into account osmosis
effects. In Eq. (5), the term 1�σSð Þ takes into account the LDL
selective rejection of the membranes. On the right side, the last
term models the uptake of solutes operated by SMC and macro-
phages into the media layer (Fry, 1985; Huang and Tarbell, 1997;
Yang and Vafai, 2006; Chung and Vafai, 2012). The symbols
nd (b) boundary conditions.
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“o 4” and “o4 f” are referred to the extrinsic and intrinsic
phase averaged value of a certain variable. These symbols will be
dropped from now for simplicity.

The following well established results based on prior research
works are invoked here:

� stationary state is assumed, due to the negligible effects of
pulsatile flow (Yang and Vafai, 2006);

� convective term can be neglected (Vafai and Tien, 1981; Khak-
pour and Vafai, 2008; Wang and Vafai, 2013);

� Forchheimer term for the momentum equation, relative to the
inertial coefficient f , is neglected due to the very low Reynolds
number typical of the fluid flow through the arterial wall;

� osmotic pressure effects on the velocity in the arterial wall are
considered to be negligible (Yang and Vafai, 2006; Chung and
Vafai, 2014);

� Brinkman viscous effects term, relative to the solid boundaries,
can be neglected (Yang and Vafai, 2008);

� Dufour effect can be neglected for hyperthermia effects on LDL
transport (Chung and Vafai, 2014), and in general for liquids
(Aouachria et al., 2012);

Utilizing the above established results based on the prior lit-
erature, the governing equations for the LDL transport within an
arterial wall can be presented as:

∇Uv¼ 0 ð7Þ

∇p¼ �μf

K
v ð8Þ

1�σSð ÞvU∇c¼Def f∇2cþkTρf

Mf

Def f

T
∇2T�kc ð9Þ

vU∇T ¼ αef f∇2T ð10Þ
3. Analytical solution

3.1. Dimensionless governing equations and boundary conditions

Governing Eqs. (7)–(10) are further simplified by observing the
following attributes established in earlier literature:

� filtration velocity in the axial direction is much smaller than
filtration velocity in the radial direction. This means that LDL
transport can be approximated as independent of axial direction
(Yang and Vafai, 2006; Yang and Vafai, 2008);

� heat transfer is independent of axial direction (Chung and Vafai,
2014; Iasiello et al., 2015);

� effect of curvature is negligible, since the thickness of the
arterial wall is small when compared to the overall radius of the
artery (Wang and Vafai, 2015).

� in the denominator of the Ludwig-Soret term, for each layer a
mean temperature is considered. This simplification is justified
and often appears in numerical and analytical studies (Alam and
Rahman, 2006) for phenomena in which Ludwig-Soret effect is
involved.

As such, the above equations can be written in a dimensionless
form, resulting in:

dv�

dy�
¼ 0 ð11Þ

dp�

dy�
¼ � 1

ReDa
v� ð12Þ
1�σSð Þv�dc
�

dy�
¼ 1
Pe

d2c�

dy�2
þkTΔT
PeTM

ρf

Mf c0

d2T�

dy�2
�kL0

v0
c� ð13Þ

v�
dT�

dy�
¼ 1

PeT
d2T�

dy�2
ð14Þ

where the following dimensionless parameters were used:

v� ¼ v
v0
; c� ¼ c

c0
; p� ¼ p

ρf v
2
0

; y� ¼ y
L0
; Re¼ ρf v0L0

μf
; Da¼ K

L20
;

Pe¼ v0L0
Def f

; PeT ¼ v0L0
αef f

; T� ¼ T�Tc

Th�Tc

where TM is the mean temperature, Re the Reynolds number, Da
the Darcy number, Pe the mass Peclet number, PeT the thermal
Peclet number, v0 the reference filtration velocity, set as
2.31∙10�8 m/s from Meyer et al. (1996), c0 the reference con-
centration value at the lumen inlet section, namely 28.6∙10�3 mol/
m3 (Chung and Vafai, 2012) and L0 is the reference length of the
arterial wall, in the radial direction, namely 214 μm. Th represents
the temperature at the hot surface, and Tc the temperature at the
cold surface.

Boundary conditions for Eqs. (11)–(14) are shown in Fig. 1b. For
the flow, physiological transmural pressure conditions are con-
sidered with Δp¼70 mmHg (Meyer et al., 1996), with p�1 ¼ p1=ρf v

2
0

and p�2 ¼ p2=ρf v
2
0, where p1¼100 mmHg and p2¼30 mmHg. For

the LDL, at the lumen/endothelium interface a value of c�¼ 1.0246
is imposed (Yang and Vafai, 2006 and Yang and Vafai, 2008). This
value corresponds to the LDL concentration at the midsection
longitudinally of the lumen/endothelium interface (Yang and
Vafai, 2006). Continuity conditions are employed at the bound-
aries between the different layers.

Thermophysical properties that close Eqs. (11)–(14) are the
same that have been used by Chung and Vafai (2014) and Iasiello
et al. (2015). In this study, also other thermophysical properties are
employed for comparisons. However, we have mentioned when
properties different from the above cited sources have been
employed, by citing the literature source.

3.2. Fluid flow

Filtration velocity of the flow is obtained by means of a
hydraulic analogy. Considering L* as the dimensionless thickness
of each ith-layer Li;� ¼ Li=L0, filtration velocity is expressed in terms
of (Yang and Vafai, 2008):

v� ¼ p�1�p�2P4
i ¼ 1

Ri
¼ p�1�p�2
RendþRintþRIELþRmed

ð15Þ

with the i-layer hydraulic resistance Ri equal to:

Ri ¼ Li;�

ReDa
ð16Þ

Comparisons with results from literature are carried out in
Fig. 2. Filtration velocity is reported as a function of axial coordi-
nate, because models from literature are considered to be axi-
symmetric. In Fig. 2a, comparisons with numerical results from
Yang and Vafai (2006), Ai and Vafai (2006), and Chung and Vafai
(2012), is reported for physiological transmural pressure, while a
comparison with numerical results from Yang and Vafai (2006), is
carried out for different hypertensive transmural pressure values
in Fig. 2b. It is shown that hypertension increases filtration velo-
city, as depicted in Eq. (15). A good agreement has been found
with literature data for all cases.



Fig. 2. Filtration velocity at the lumen/endothelium interface along the axial direction for (a) different set of properties, and (b) under hypertension conditions.
(c) Dimensionless and (d) dimensional temperature profiles: the dimensional profile is for external heating, for ΔT¼ 20 K and 40 K.
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3.3. Heat transfer

In order to solve concentration Eq. (13) to obtain the LDL
concentration distribution, the energy Eq. (14) needs to be solved
first. Once the temperature distribution is obtained, it will be
utilized in the concentration Eq. (13).

The temperature distribution is obtained as:

T� y�ð Þ ¼ cT1e
λT1y

� þcT2 ð17Þ

This function is relative to each layer, and continuity between
each layer is guaranteed by boundary conditions. Coefficients cT1
and cT2 are obtained by applying boundary conditions reported
in Fig. 1b, resulting in a linear system with 8 equations and
8 unknowns. With references to Chung and Vafai (2014), the
thermal diffusivity αef f is chosen to be the same in each porous
layer. This implies that PeT ;end ¼ PeT ; int ¼ PeT ;IEL ¼ PeT ;med ¼ PeT.
Because PeTis chosen to be the same for each layer, it is possible to
simplify this linear system to two equations with 2 unknowns. For
the internal heating, we have:

cT1 ¼ 1

1�eλ
T
1

cT2 ¼ � eλ
T
1

1� eλ
T
1

)
cT1 ¼ �3:73U104

cT2 ¼ 3:73U104

8<
:

8><
>: ð18Þ

while, for the external heating:

cT1 ¼ � 1

1� eλ
T
1

cT2 ¼ 1

1�eλ
T
1

)
cT1 ¼ 3:73U104

cT2 ¼ �3:73U104

8<
:

8><
>: ð19Þ
The difference between internal and external heating is due to
the physical location of the thermal load shown in Fig. 1b.

Results are reported in Figs. 2c and d. It is shown that tem-
perature profiles are practically linear, as reported in the com-
prehensive numerical results from Chung and Vafai (2014) and
Iasiello et al. (2015), where all the effects were accounted for, due
to the small thermal Peclet numbers (PeT). External heating tem-
perature profiles are reported for different ΔT s along the arterial
wall in Fig. 2d.

3.4. Solute transport

Eq. (13) can be rearranged in order to obtain the following
form:

1
Pe

d2c�

dy�2
� 1�σSð Þv�dc

�

dy�
�kL0

v0
c� ¼ �kTΔT

PeTM

ρf

Mf c0

d2T�

dy�2
ð20Þ

Substituting the right term of this equation with the second
derivative of Eq. (17), we obtain the following:

1
Pe

d2c�

dy�2
� 1�σSð Þv�dc

�

dy�
�kL0

v0
c� ¼ �kTΔT

PeTM

ρf

Mf c0
cT1v

�2PeT
2

ev
�PeTy� ð21Þ

The solution for Eq. (21) can be presented as:

c� y�ð Þ ¼ ci1e
λ1y� þci2e

λ1y� þAieλ
T
1y

� ð22Þ
where i refers to the ith-layer. Eigenvalues λ1 and λ2 are:

λ1;2 ¼
Pe 1�σSð Þv�7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pe 1�σSð Þv�½ �2þ4kPeL0

v0

q
2

ð23Þ
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Eigenvalues for endothelium, intima and IEL are obtained by
setting k¼0. It is straightforward to show that, in these three
layers, λ2 ¼ 0. The Ai is given by:

Ai ¼ � kTΔT
TM

ρf

Mf c0
cT1

� �
U

1

1�Le 1�σSð Þ� kL0Le
v0v�

2 PeT

ð24Þ

where the Lewis number is defined as Le¼Pe/PeT. Continuity
between layers is guaranteed by boundary conditions reported in
Fig. 1b. Constants ci1 and ci2 are obtained, for each ith-layer, by
applying such boundary conditions to Eq. (22), obtaining the fol-
lowing 8 equations in 8 unknowns:

cend1 þcend2 þAend ¼ 1:0246 ð25aÞ

cend1 eλ
end
1 y�;end þcend2 þAendev

�PeTy�;end ¼ cint1 eλ
int
1 y�;end þcend2 þAendev

�PeTy�;end

ð25bÞ

1�σend
S

	 
h i
v� cend1 eλ

end
1 y�;end þcend2 þAendev

�PeTy�;end
	 


� 1

Peend
λend1 cend1 eλ

end
1 y�;end þAendv�PeTev

�PeTy�;end
	 


�

� kTΔT
PeendTend

M

ρf

Mf c0
v�PeTcT1e

v�PeTy�;end

¼ 1�σint
S

	 
h i
v� cint1 eλ

int
1 y�;end þcint2 þAintev

�PeTy�;end
	 


�

� 1

Peint
λint1 cint1 eλ

int
1 y�;end þAintv�PeTev

�PeTy�;end
	 


� kTΔT
PeintTint

M

ρf

Mf c0
v�PeTcT1e

v�PeTy�;end ð25cÞ

cint1 eλ
int
1 y�; int þcint2 þAintev

�PeTy�; int ¼ ciel1 eλ
IEL
1 y�; int þcIEL2 þAIELev

�PeTy�; int

ð25dÞ

1�σint
S

	 
h i
v� cint1 eλ

int
1 y�; int þcint2 þAintev

�PeTy�; int
	 


� 1

Peint
λint1 cint1 eλ

int
1 y�; int þAintv�PeTev

�PeTy�; int
	 


�

� kTΔT
PeintTint

M

ρf

Mf c0
v�PeTcT1e

v�PeTy�; int

¼ 1�σIEL
S

� � �
v� cIEL1 eλ

IEL
1 y�; int þcIEL2 þAIELev

�PeTy�; int
	 


�

� 1

PeIEL
λIEL1 cIEL1 eλ

IEL
1 y�; int þAIELv�PeTev

�PeTy�; int
	 


� kTΔT
PeIELTIEL

M

ρf

Mf c0
v�PeTcT1e

v�PeTy�; int ð25eÞ

cIEL1 eλ
IEL
1 y�;IEL þcIEL2 þAIELev

�PeTy�;IEL ¼ cmed
1 eλ

med
1 y�;IEL þcmed

2 þAmedev
�PeTy�;IEL

ð25f Þ

1�σIEL
S

� � �
v� cIEL1 eλ

IEL
1 y�;IEL þcIEL2 þAIELev
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where y�;i represents the value of the dimensionless coordinate y*,
with reference to the physical location of each ith-layer. In order to
solve the aforementioned 8 equations in 8 unknowns, these are
rearranged in a matrix form:

B¼
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The vector form of the coefficients g is obtained using the
following matrix format:

g¼ B�1 Ue ð28Þ
That is the compact form of the analytical solution of Eq. (13).
Fig. 3. Concentration profiles in different layers: (a) endothelium, (b) intima, (c) IEL
literature.
3.4.1. Comparisons for solute transport
3.4.1.1. Isothermal conditions. Comparisons with numerical results
from Yang and Vafai (2006), Ai and Vafai (2006) and Chung and
Vafai (2014), for the LDL transport for an isothermal arterial wall,
are presented in Fig. 3. The corresponding properties utilized in
each of the numerical results, which incorporate all the effects,
were utilized in our analytical solution. A very good agreement
with numerical results has been found for the present analytical
solution. It is shown that the slope of concentration profile
through the endothelium layer strongly depends on the set of
properties employed. Indeed, the highest Peend, which indicates
the competition between advective transport and diffusive trans-
port, have been found in Chung and Vafai (2014), while the lowest
in Yang and Vafai (2006).

A comparison with analytical solutions from Yang and Vafai
(2008), Khakpour and Vafai (2008) and Wang and Vafai (2013) is
reported in Fig. 4. Comparisons are reported for a physiological
normal intramural pressure, namely Δp¼ 70 mmHg, with an
endothelium diffusivity of Dend

ef f ¼ 6� 10�17m2=s and for a hyper-
tensive pressure, namely Δp¼ 160 mmHg, in which the endothe-
lium diffusivity is taken as Dend

ef f ¼ 2:4� 10�16m2=s. The results are
in very good agreement. It has to be observed that Yang and Vafai
(2008) used a different value for the reaction term, namely
k¼1.4∙10�4 1/s, instead of k¼3.197∙10�4 1/s.

3.4.1.2. Hyperthermia conditions. Our analytical results are com-
pared with numerical results from Chung and Vafai (2014), for
both external and internal hyperthermia loads, using the same
thermo-diffusion coefficient and temperature differences that they
had utilized, namely kT ¼ 0; 0:005; 0:01, and ΔT ¼ 20 K; 40 K.
Such values were also used by Iasiello et al. (2015) for the study of
and (d) media, without hyperthermia, compared with numerical solutions from



Fig. 4. Concentration profiles in different layers, without hyperthermia, compared with analytical solutions from literature: (a) intima and IEL, (b) media, both with
Δp¼ 70mmHg and Dend

ef f ¼ 6� 10�17m2=s; (c) intima and IEL, (d) media, both with Δp¼ 160mmHg and Dend
ef f ¼ 2:4� 10�16 m2=s.

Fig. 5. Concentration profiles for different ΔTs under external heating: (a) and (b) are for ΔT¼ 40 K, while (c) and (d) are for ΔT¼ 20 K.
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Fig. 6. Concentration profiles for different ΔTs under internal heating: (a) and (b) are for ΔT¼ 40 K, while (c) and (d) are for ΔT¼ 20 K.
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hyperthermia effects on a stenosed artery. Thermo-diffusion
coefficient kT is usually about 0.01 (Chapman and Cowling, 1952;
Wakeham et al., 1991, Chung and Vafai, 2014; Iasiello et al., 2015);
however, because LDL is a heavy molecule, this value is expected
to be lower. Comparisons for external heating are reported in
Fig. 5, while for internal heating in Fig. 6. A good agreement can be
observed. In the intima layer, this trend of the curves is justified by
the fact that Ludwig-Soret effect moves the particles from the hot
zone to the cold zone. This causes, in terms of LDL concentration,
an accumulation of LDL on the endothelium/intima interface for
external heating. For internal heating, LDL tends to accumulate on
intima/IEL interface. As can be seen from Eq. (1), the absolute
temperature value causes the concentration distribution to be in
general higher in the intima for the external heating, compared to
the internal heating case. Indeed, when heat is applied on the
external wall, temperatures are lower in the intima region, com-
pared to when heat is applied at the internal wall. As can be seen
from the mass flux, a lower temperature value causes a reduction
in the mass flux due to Ludwig-Soret effect jT . Finally, for the
internal heating case shown in Fig. 6, the concentration tends to
reduce in the other layers because other physical effects (mole-
cular diffusion, advection, uptake of solutes) are more pronounced
than Ludwig-Soret effect.

4. Analytical results

4.1. Hypertension effects under hyperthermia conditions

Hypertension effects under hyperthermia conditions are
investigated here. Hypertension conditions are imposed by
varying transmural pressure, such as Δp¼70, 120 and 160 mmHg,
with ΔT¼ 40 K, for kT values of 0, 0.005 and 0.01. Results are
reported in Fig. 7 for external hyperthermia load, and in Fig. 8 for
internal hyperthermia load.

Results on external heating show that hypertension generally
increases LDL concentration in each layer. This effect is also
amplified by hyperthermia. Indeed, the case with kT¼ 0.01 and
Δp¼ 160 mmHg has the highest concentration values, while when
kT ¼ 0 and Δp¼ 70 mmHg concentration becomes the lowest. In
the endothelium layer, the highest Peend value corresponds to the
case with kT¼ 0.01 and Δp¼ 160 mmHg, which suggests that
advection dominates diffusion substantially more than the
other ones.

For the internal heating, similar to the external heating, LDL
concentration in general increases in each layer with hyperten-
sion. For the endothelium layer, curves seem to have a similar
slope. In the intima layer, hyperthermia generally reduces the
concentration in the first part of the layer, but near the intima/IEL
interface it gets always higher than the case with kT ¼ 0. This effect
of reduction followed by an increase, is more emphasized for the
hypertension conditions. Reduction of LDL in the IEL layer seems
to be higher when Ludwig-Soret effect is more pronounced.

4.2. Effect of thermophysical properties

The effect of different properties on the hyperthermia effects is
displayed in Fig. 9. In the endothelium layer, it can be seen that
Ludwig-Soret effect has more influence on the LDL transport when
properties from Yang and Vafai (2006) are used. In the intima
layer, only absolute values of the curves are affected, while slopes



Fig. 7. Concentration profiles in different layers: (a) endothelium, (b) intima, (c) IEL and (d) media under external hyperthermia load, with hypertension effects, for ΔT¼40 K.

Fig. 8. Concentration profiles in different layers: (a) endothelium, (b) intima, (c) IEL and (d) media under internal hyperthermia load, with hypertension effects, for ΔT¼40 K.
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Fig. 9. Concentration profiles in different layers: (a) endothelium, (b) intima, (c) IEL and (d) media with external hyperthermia load, for ΔT¼40 K, using different sets of
physical properties.

Fig. 10. Concentration profiles for the media layer by means of different boundary
conditions at the media/adventitia interface, for ΔT¼40 K and kT ¼ 0.01 or 0.005,
under external heating.
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under different kT remain almost the same. In the IEL layer,
properties from Chung and Vafai (2014) and from Ai and Vafai
(2006) causes the LDL to have similar behavior, while the situation
is different when properties from Ai and Vafai (2006) are utilized;
in particular concentration increases, resulting in a concentration
polarization effect on the IEL/media interface. The main reason for
this is that Staverman reflection coefficient for the IEL layer taken
from Ai and Vafai (2006) is about 15% less than Staverman
reflection coefficient from the other two models. This causes the
particles to accumulate on the IEL/media interface, when they are
moving from media/adventitia interface to the intima/IEL interface
due to the external heating application. Another reason is that
first-order reaction term k used in Ai and Vafai (2006) transport
model is one order of magnitude less than k used in the other two
models.

4.3. Media/adventitia boundary condition effects

Effects of hyperthermia under different media/adventitia
boundary conditions are shown in Fig. 10. These boundary condi-
tions are ∂c�=∂y� ¼ 0, c� ¼ 0 and c� ¼ 0:01. Heat is applied by
means of external heating, while ΔT¼ 40 K and kT ¼ 0.005 or 0.01.
It should be noted that c� ¼ c=c0. As it can be seen, the media/
adventitia boundary condition has an insignificant effect on the
concentration distribution, except for a minor impact when the
boundary condition c� ¼ 0:01 is employed. Comparing concentra-
tion profiles for kT ¼ 0.005 or 0.01 when boundary condition c� ¼
0:01 is employed, it can be seen that these profiles are practically
overlapped near the media/adventitia interface.
5. Conclusions

An analytical solution has been presented for the problem of
LDL transport through an arterial wall under hyperthermia con-
ditions. Results are in very good agreement with previous
numerical and analytical studies from literature for isothermal
case, and also with numerical results when hyperthermia is con-
sidered. It is shown that hyperthermia generally increases LDL
concentration through an arterial wall, and hypertension
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combined with hyperthermia further augments this LDL accu-
mulation. Effects of different sets of thermophysical properties are
also discussed. An analysis of media/adventitia boundary condi-
tion is also carried out, showing that different boundary conditions
have a negligible effect on LDL transport.
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