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The present article addresses the effects of convective heat transfer of nanofluid utilizing Buongiorno'smodel in a
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number Le, Prandtl number Pr, thermophoresis numberNt and Brownianmotion numberNb are graphically pre-
sented. The streamlines have also been shown to discuss the skin fiction with the different buoyancy discipline.
Computations for hybrid Genetic Algorithm andNelder-Mead approach are also offered for the validity of obtain-
ed results.
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1. Introduction

New resources to improve the heat transfer characteristics are very
much needed for increasing the efficiency for making significant energy
savings in industry. The main crises are due to the low thermal conduc-
tivity of the conventional liquids used in square enclosures such as,
water, oil, acetone, ethylene and glycol. An advanced technique for im-
proving heat transfer characteristics is to use solid particles in nanoscale
(smaller than 100 nm) in working liquids. This technique has already
been used extensively over the past one decade. It is found that the
heat exchange can be upgraded by presenting nanoparticles with high
thermal properties in low volume fraction within the liquid that leads
to new-fangled category of fluids named as nanofluids [1]. Nanofluid re-
fers to the fluid suspension of nanosize particles having less than
100 nmdimension in the base fluidwhereas the base fluid, or dissolving
medium, can be aqueous or non-aqueous in nature and nanoparticles
are metals, carbides, oxides, carbon nanotubes or nitrides and nanopar-
ticles shapes may be disks, spheres, or rods, etc. [2]. Nanoparticles are
better to enhance the thermal conductivity of fluid in nature but not suf-
ficient condition for obtaining high-performance in heat exchanging
equipment, therefor further investigation is required in this field.
Many researchers have investigated the effect of nanofluid on heat
transfer enhancement and thermal conductivities of different shapes
of nanoparticles like spherical and non-spherical are of great interest
in various engineering applications which strongly suggest that
yahoo.com (R. Ellahi).
nanoparticle plays a significant role in the thermal transport in
nanofluids [3–14].

Moreover, fluid flow with convection has many applications in the
industrial and engineeringprocesses such as thermal designing of build-
ings, drying of porous solid and solar power collector. Recently, in the
wavy channels convective flow has received great attention. When
fluid flows in wavy channels, then the collaboration of fluid enhanced
the heat transfer rate near thewavywalls. Thefluid flow and heat trans-
fer in corrugated channelwith variousmodels using traditional fluids as
base fluids have been examined by many researchers [15–20]. They
have observed that an increase in the pressure drop always enhances
the heat transfer flow in straight channel. In particular, large particles
in the fluid quickly settle out of suspension and passing through micro
channels cause severe blockage and increase the pressure considerably
[21]. In the experimental investigation on the suspension of 4.0% vol-
ume 35 nm CuO particles in ethylene glycol, Lee et al. [22] examined
20% increase in thermal conductivity. Xuan and Li [23,24] have exam-
ined experimentally thermal conductivity and conductivity heat trans-
fer feature and flow performance of copper-water nanofluid. It was
found that the nanoparticles extraordinarily improve heat transfer
performance of the base fluid. Santra et al. [25] numerically studied
the heat transfer feature of copper-water nanofluid in a two-dimension-
al horizontal duct. It was detected that with the increase of nanoparticle
volume fraction, heat transfer flow rate increases. Noreen [26] also ana-
lytically discussed the nanofluid in a symmetric channel and so forth.

Furthermore, fluid flow is governed by the nonlinear coupled partial
differential equation system of mass, momentum, energy conservation
and concentration of nanofluid. The flow of nonlinear fluids has gained
noteworthy significance owing to its several applications in the fields of
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applied science and engineering. The traditional Navier-Stokes equa-
tions are not adequate to foresee the features of such flows. Generally
mathematical formulation for such fluids is much complicated. Due
to nonlinear coupled equations, the case becomes quite complex.
Homptopic procedure [27,28] is utilized for the solutions of arising non-
linear differential systems. Solutions of homotopy technique are also
optimized by using optimization technique along with minimize resid-
ual error which are very rare in the literature. Combinations of optimi-
zation technique gave the tremendous solutions. Results for velocity,
temperature, Nusselt number, skin-friction coefficient, and Sherwood
number in this investigation are investigated at 30th order iterations.

Themain objective of the present study is to examine the convective
heat transfer of nanofluid in awavy channel with constant pressure gra-
dient. The investigation covers Reynolds number in between the range
0 to 1 whereas nanoparticle volume fraction lies in the range of (0–1)
%. Firstly development of the problem is given in the next section.
Secondly, efforts are devoted to find analytical solutions in Section 2.
Thirdly to examine the validity of obtained results, convergence of solu-
tions is discussed in Section 3 with hybrid techniques. The mechanical
properties of reported study are presented in Section 4 through pictorial
and numerical tables. Finally, Section 5 summarized the conclusions.
2. Development of problem

The two-dimensional steady boundary layer flow of a nanofluid
through the horizontal symmetric channel bounded by two wavy
walls is considered. Fluid is driven by constant pressure gradient and
Buoyancy force. Here consider the x-axis along the direction of the flow
and y-axis is perpendicular to it. Let us consider the wavy wallsH1 ¼
−d−aCosð2πL xÞ andH2 ¼ dþ aCosð2πL xÞ . We assume that the wave-
length λ of the wavy walls, which is proportional to 2π

L is large, where
a is wave amplitude of wavy wall, d is the mean width of the channel
and L is the length of wavy channel (Fig. 1).

The following fourfield equations represent the conservation of total
mass, momentum, thermal energy and nanoparticles, respectively. The
field variables are the velocity V , the temperature T and nanoparticle
concentration C.

∇:V¼0; ð1Þ

ρ f
∂V
∂t

þV :∇V

 !
¼ −∇pþ μ∇2V þ Cρp þ 1−C

� �
ρ f 1−β T−T�� �� �n oh i

g;

ð2Þ
Fig. 1. Schematic diagrams
ρCð Þ f
∂T
∂t

þV :∇T

 !
¼ K∇2T þ ρCð Þp DB∇C:∇T þ DT=T�ð Þ∇T:∇T� �þΦ;

ð3Þ

∂C
∂t

þ V :∇C ¼ DB∇
2C þ DT=T�ð Þ∇2T: ð4Þ

WhereV¼ðu; vÞ is the velocity,u,vare the velocity components in the
x, ydirections, ρf is the density of the base fluid,p is the pressure, μ is the
viscosity, K is the thermal conductivity, (ρC)f is the heat capacity offluid,
(ρC)p is the effective heat capacity of nanoparticle material, Φ is the
viscous dissipation, β is the volumetric volume expansion coefficient
of the nanofluid and ρp is the density of the particles. T⁎ is the mean
value of T1 and T2, C⁎ is themean value of C1 and C2, g is the gravitational
acceleration, DB is the Brownian diffusion coefficient and DT is the
thermophoretic diffusion coefficient [29,30].

Governing equations in components form can be written as

∂u
∂x

þ ∂v
∂y

¼ 0; ð5Þ

ρ f u
∂u
∂x

þ v
∂u
∂y

� 	
¼ −

∂p
∂x

þ μ
∂2u
∂x2

þ ∂2u
∂y2

 !

þ ρp−ρ f

� �
C−C�
� �

þ 1−C�ð Þρ fβ T−T�� �h i
g;

ð6Þ

ρ f u
∂v
∂x

þ v
∂v
∂y

� 	
¼ −

∂p
∂y

þ μ
∂2v
∂x2

þ ∂2v
∂y2

 !

þ ρp−ρ f

� �
C−C�
� �

þ 1−C�ð Þρ fβ T−T�� �h i
g;

ð7Þ

u
∂T
∂x

þ v
∂T
∂y

¼ α
∂2T
∂x2

þ ∂2T
∂y2

 !
þ τ DB

∂ϕ
∂y

∂T
∂y

þ DT

T�
∂T
∂y

 !2
2
4

3
5þ μ

ρCð Þp
∂u
∂y

� 	2

;

ð8Þ

u
∂C
∂x

þ v
∂C
∂y

¼ DB
∂2C
∂y2

þ DT

T�
� 	

∂2T
∂y2

ð9Þ

Where α is the thermal diffusivity, α ¼ K
ðρCÞ f and τ is parameter

defined by τ ¼ ðρCÞp
ðρCÞ f .
of the physical model.
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With boundary conditions

u ¼ 0; v ¼ 0; T ¼ T1;C ¼ C1 aty ¼ H1
u ¼ 0; T ¼ T2 aty ¼ H2:

ð10Þ

In order to convert the governing equations and the boundary con-
ditions into a dimensionless form, the followingdimensionless variables
are introduced:

x ¼ x
λ
; y ¼ y

d
;u ¼ u

c
; v ¼ v

cδ
; δ ¼ d

λ
;p ¼ d2p

μcλ
;h1 ¼ H1

d
;

h2 ¼ H2

d
;Re ¼ ρcd

μ
; θ ¼ T−T�

T1−T� ;n ¼ T2−T�

T1−T� ;ϕ ¼ C−C�

C1−C� ;

m ¼ C2−C�

C1−C� ; Pr ¼
Cpμ
K

; Le ¼ α
DB

; Sc ¼ PrLe ¼ μ
ρDB

:

ð11Þ

Where Pr is the Prandtl number, Re is the Reynolds number, δ is the
dimensionlesswave number, c is the constant speed of channelwalls, Le
is the Lewis number, Sc is the Schmidt number, θ dimensionless temper-
ature, ϕ is the concentration, n is the temperature scale, governing the
variable temperature-difference between the two channel walls and m
is the concentration scale, governing the variable concentration-
difference between the two channel walls.

In viewof Eq. (11), Eqs. (5) to (9) in dimensionless can be expressed:

∂u
∂x

þ ∂v
∂y

¼ 0; ð12Þ

Reδ u
∂u
∂x

þ v
∂u
∂y

� 	
¼ −

∂p
∂x

þ δ2
∂2u
∂x2

þ ∂2u
∂y2

 !

þ ρp−ρ f

� �
C1−C�ð Þϕþ 1−C�ð Þρ fβ T1−T�ð Þθ

h i
g;

ð13Þ

Reδ3 u
∂v
∂x

þ v
∂v
∂y

� 	
¼ −

∂p
∂y

þ δ2 δ2
∂2v
∂x2

þ ∂2v
∂y2

 !

þ ρp−ρ f

� �
C1−C�ð Þϕþ 1−C�ð Þρ fβ T1−T�ð Þθ

h i
g;

ð14Þ

RePrδ u
∂θ
∂x

þ v
∂θ
∂y

� 	
¼ δ2

∂2θ
∂x2

þ ∂2θ
∂y2

 !
þ τDB C1−C�ð Þ

α
∂ϕ
∂y

∂θ
∂y

þ τDT T1−T�ð Þ
αT�

∂θ
∂y

� 	2

þ μc2

α T1−T�ð Þ ρCð Þp
∂u
∂y

� 	2

;

ð15Þ

Reδ u
∂ϕ
∂x

þ v
∂ϕ
∂y

� 	
¼ 1

Sc
δ2

∂2ϕ
∂x2

þ ∂2ϕ
∂y2

 !
þ DT T1−T�ð Þ
DB C1−C�ð Þ δ2

∂2θ
∂x2

þ ∂2θ
∂y2

 !" #
;

ð16Þ

The corresponding non-dimensionless boundary conditions are

u ¼ 0; v ¼ 0; θ ¼ 1;ϕ ¼ 1aty ¼ h1
u ¼ 0; v ¼ 0; θ ¼ naty ¼ h2:

ð17Þ

Here h1 ¼ −1− a
dCosð2πλL xÞ and h2 ¼ 1þ a

dCosð2πλL xÞ.
The local Rayleigh number Ra is defined as Ra ¼ ð1−C�ÞðT1−T�Þβgd13

να , Nr

is buoyancy ratio defined by Nr ¼ ðρp−ρ f ÞðC1−C�Þ
ρ f βðT1−T�Þð1−C�Þ , Nb is a Brownian

motion defined as Nb ¼ τDBðC1−C�Þ
α , Nt is a thermophoresis parame-

ter defined as Nt ¼ τDT ðT1−T�Þ
T� and Ec is the Eckert number defined

as Ec ¼ c2
CpðT1−T�Þ.
In view of the said dimensionless numbers, the Eqs. (13)–(16) for
long wave length approximation take the following forms:

∂u
∂x

þ ∂v
∂y

¼ 0; ð19Þ

Reδ u
∂u
∂x

þ v
∂u
∂y

� 	
¼ −

∂p
∂x

þ δ2
∂2u
∂x2

þ ∂2u
∂y2

 !
þ Ra
RePr

Nrϕþ θð Þ; ð20Þ

∂p
∂y

¼0; ð21Þ

RePrδ u
∂θ
∂x

þ v
∂θ
∂y

� 	
¼ δ2

∂2θ
∂x2

þ ∂2θ
∂y2

 !
þ Nb

∂ϕ
∂y

∂θ
∂y

þ Nt
∂θ
∂y

� 	2

þEc Pr
∂u
∂y

� 	2

; ð22Þ

Reδ u
∂ϕ
∂x

þ v
∂ϕ
∂y

� 	
¼ 1

Sc
δ2

∂2ϕ
∂x2

þ ∂2ϕ
∂y2

 !
þ Nt

Nb
δ2

∂2θ
∂x2

þ ∂2θ
∂y2

 !" #
: ð23Þ

The local Nusselt number along the walls can be expressed as

Nu ¼ dqw
K T1−T�ð Þ ;whereqw ¼ −K

∂T
∂y

ð24Þ

The dimensionless Nusselt number at the wavy wall y=h1 and y=
h2 is given by

Nuh1 ¼ −
∂θ
∂y

� 	
h1

;Nuh2 ¼ −
∂θ
∂y

� 	
h2

ð25Þ

The Sherwood number along the walls can be expressed as

Sh ¼ dqm
DB C1−C�ð Þ ;whereqm ¼ −DB

∂C
∂y

ð26Þ

The dimensionless Sherwood number at the wavy wall y=h1 and
y=h2 is given by

Shh1 ¼ −
∂ϕ
∂y

� 	
h1

; Shh2 ¼ −
∂ϕ
∂y

� 	
h2

ð27Þ

3. Solution of the problem

Here in this section,we utilized the homotopic procedure in order to
get the convergent solutions resulting in governing equations. For this
purpose the initial guesses and linear operators respectively corre-
sponding to u(y), θ(y) and ϕ(y) respectively are given below:

u0 yð Þ ¼ 0;

θ0 yð Þ ¼ 1−nð Þyþ h1−h2ð Þ− 1−nð Þh1ð Þ
h1−h2

;ϕ0 yð Þ ¼ 1−mð Þyþ h1−h2ð Þ− 1−mð Þh1ð Þ
h1−h2

:

ð28Þ

and

£1 uð Þ ¼ d
dy

du
dy

� 	
; £2 θð Þ ¼ d

dy
dθ
dy

� 	
; £3 ϕð Þ ¼ d

dy
dϕ
dy

� 	
: ð29Þ



Fig. 2. ℏ-Curves for velocity, temperature and concentration upto 30th-order
approximations.

Table 1
Residual error when ϕ=2%, Nt=Nb=Nr=0.5, and Pr=10.

Order of approximation u(y) θ(y) ϕ(y)

2 4.297×10−2 3.633×10−3 2.323×10−4

6 2.124×10−5 2.165×10−6 1.743×10−7

10 2.229×10−6 1.912×10−7 1.443×10−8

14 5.176×10−7 1.221×10−10 3.561×10−8

18 3.533×10−12 3.741×10−12 3.767×10−13

20 2.669×10−14 2.884×10−15 3.324×10−14
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First we define the following non-linear operators N1, N2 and N3

N1 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ � ¼ −P þ ∂2u
∂y2

þ Ra
RePr

Nrϕþ θð Þ;

N2 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ � ¼ ∂2θ
∂y2

þ Nb
∂ϕ
∂y

∂θ
∂y

þ Nt
∂θ
∂y

� 	2

þEc Pr
∂u
∂y

� 	2

;

N3 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ � ¼ ∂2ϕ
∂y2

þ Nt

Nb

∂2θ
∂y2

:

9>>>>>>>>=
>>>>>>>>;

ð30Þ

and then construct the homotopy

1−qð Þ£1 u y; qð Þ−u0 yð Þ½ � ¼ qℏN1 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ �;
1−qð Þ£2 θ y; qð Þ−θ0 yð Þ½ � ¼ qℏN2 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ �;
1−qð Þ£3 ϕ y; qð Þ−ϕ0 yð Þ½ � ¼ qℏN3 u y; qð Þ; θ y; qð Þ;ϕ y; qð Þ½ �;

ð31Þ

where ℏ is convergence control parameter.
For q=0

u y;0ð Þ ¼ u0 yð Þ; θ y;0ð Þ ¼ θ0 yð Þ;ϕ y;0ð Þ ¼ ϕ0 yð Þ ð32Þ

For q=1

u y;1ð Þ ¼ u yð Þ; θ y;1ð Þ ¼ θ yð Þ;ϕ y;1ð Þ ¼ ϕ yð Þ ð33Þ

When embedding parameter q diverges from 0 to 1, then f(y,q),
θ(y,q) and ϕ(y,q) varies from initial guess u0(y), θ0(y) and ϕ0(y) to
final u(y), θ(y) and ϕ(y) solution.

Let us expand u(y,q), θ(y,q) and ϕ(y,q) in Maclaurin's series as

u y; qð Þ ¼ u0 yð Þ þ
X
l¼1

∞

ul yð Þql;

θ y; qð Þ ¼ θ0 yð Þ þ
X
l¼1

∞

θl yð Þql;

ϕ y; qð Þ ¼ ϕ0 yð Þ þ
X
l¼1

∞

ϕl yð Þql:

9>>>>>>>>>=
>>>>>>>>>;

ð34Þ

In which

ul yð Þ ¼ 1
l!
∂lu y; qð Þ

∂ql







q¼0

; θl yð Þ ¼ 1
l!
∂lθ y; qð Þ

∂ql







q¼0

;ϕl yð Þ

¼ 1
l!
∂lϕ y; qð Þ

∂ql







q¼0

: ð35Þ

Differentiating l− times to zeroth-order deformation Eq. (31)
with respect to the q and dividing it by l! then putting q=0 and gain
lth−order deformation expression for ul(y), θl(y) and ϕl(y) as follow

£1 ul yð Þ−χlul−1 yð Þ½ � ¼ ℏ1Rul yð Þ;
£2 θl yð Þ−χlθl−1 yð Þ½ � ¼ ℏ2Rθl yð Þ;
£3 ϕl yð Þ−χlϕl−1 yð Þ½ � ¼ ℏ3Rϕl yð Þ;

9=
; ð37Þ

ul y; qð Þ ¼ 0; θl y; qð Þ ¼ 1; ϕl y; qð Þ ¼ 1 at y ¼ h1
ul y; qð Þ ¼ 0; θl y; qð Þ ¼ n; ϕl y; qð Þ ¼ m at y ¼ h2

�
; ð38Þ

Rul yð Þ ¼ −P þ u00
l þ

Ra
RePr

Nrϕl þ θlð Þ;

Rθl yð Þ ¼ θ00l þ Nb

Xl
k¼0

θ0kϕ
0
l−k þ Nt

Xl
k¼0

θ0kθ
0
l−kþEc Pr

Xl
k¼0

u0
ku

0
l−k;

Rϕl yð Þ ¼ ϕ00
l þ

Nt

Nb
θ00l :

9>>>>>>>=
>>>>>>>;

ð39Þ
The lth−order approximation of the solution can be expressed as

u yð Þ ¼ u0 yð Þ þ
X
k¼1

l

uk yð Þ;

θ yð Þ ¼ θ0 yð Þ þ
X
k¼0

l

θk yð Þ;

ϕ yð Þ ¼ ϕ0 yð Þ þ
X
k¼0

l

ϕk yð Þ:

9>>>>>>>>>>=
>>>>>>>>>>;

ð40Þ

The solutions expressions for the best understanding of readers at
first and second iterations for velocity, temperature and concentration
are given as

u ¼ 3
8
−

1
40

y−
3
8
y2 þ 1

40
y3 þ Nr

3
40

−
1
40

y−
3
40

y2 þ 1
40

y3
� 	

; ð41Þ

θ ¼ 1
2
−

1
2
yþ Nb

3
40

−
3
40

y2
� 	

þ Nt
3
40

−
3
40

y2
� 	

; ð42Þ

ϕ ¼ 1
2
−

1
2
y: ð43Þ

and

u ¼ 33
40

−
7

200
y−

33
40

y2 þ 7
200

y3 þ Nr

21
200

−
7

200
y−

21
200

y2 þ 7
200

y3þ

Nb
3

320
−

9
800

y2 þ 3
1600

y4
� 	

þ

Nt
3

320
−

9
800

y2 þ 3
1600

y4
� 	

0
BBBBBB@

1
CCCCCCA
;

ð44Þ



Table 2
Correlation between homotopic solutions by ℏ-curve and optimal series solution using GA and NM for velocity u.

Nb Nt Nr Le

Series solution Optimal solution with GA and NM

Iteration Time Error Iteration Time ℏ-curves Error

0.3 0.3 0.3 1 10 2.567 1.6×10−1 10 0.099 −0.612730 5.6×10−3

20 90.623 4.0×10−3 20 1.212 −0.591276 4.3×10−6

30 301.426 7.9×10−5 30 5.339 −0.612730 7.3×10−8

0.4 0.4 0.4 2 10 2.837 1.6×10−1 10 0.212 −0.586543 2.2×10−3

20 93.742 4.0×10−3 20 1.534 −0.736722 5.4×10−5

30 310.237 7.9×10−5 30 5.644 −0.612730 7.3×10−8

0.5 0.5 0.5 3 10 2.977 1.6×10−1 10 0.411 −0.839433 7.1×10−2

20 95.123 4.0×10−3 20 1.722 −0.735678 4.3×10−6

30 312.123 7.9×10−5 30 5.892 −0.612730 6.4×10−8
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θ ¼ 1
2
−

1
2
yþ Nt

21
200

−
21
200

y2
� 	

þ Nt
2 3

200
y−

3
200

y3
� 	

þ Nb
2 3

400
y−

3
400

y3
� 	

þ

Nb
21
200

þ 9
400

Nty−
21
200

y2−
9

400
Nty3

� 	
;

ð45Þ

ϕ ¼ 1
Nb

Nt
2 −

9
200

þ 9
200

y2
� 	

þ Nb
1
2
−

1
2
yþ Nt −

9
200

þ 9
200

y2
� 	� 	� 	

:

ð46Þ

4. Convergence of the solutions

The homotopic method gives us an amazing adaptability to pick the
auxiliary parameter ℏ. As pointed out by Liao [31], the rate of approxi-
mation and the convergence region is dependent on ℏ. To decide the ap-
propriate value of ℏ, Fig. 2 portrays the ℏ-curves to find the permissible
values for interval of convergence for velocity, temperature and concen-
tration. The admissible ranges for velocity profile, temperature profile
and nanoparticle concentration are −1.6≤ℏ≤ −0.1, −1.5≤ℏ≤ −0.4
and −1.5≤ℏ≤ −0.1 respectively.
Table 4
Correlation between homotopic solutions by ℏ-curve and optimal series solution using GA and

Series solution

Nb Nt Nr Le Iteration Time E

0.3 0.3 0.3 1 10 2.567 2
20 90.623 8
30 301.426 9

0.4 0.4 0.4 2 10 2.837 1
20 93.742 4
30 310.237 7

0.5 0.5 0.5 3 10 2.977 1
20 95.123 4
30 312.123 7

Table 3
Correlation between homotopic solutions by ℏ-curve and optimal series solution using GA and

Series solution

Nb Nt Nr Le Iteration Time E

0.3 0.3 0.3 1 10 2.567 1
20 90.623 4
30 301.426 7

0.4 0.4 0.4 2 10 2.837 1
20 93.742 4
30 310.237 7

0.5 0.5 0.5 3 10 2.977 1
20 95.123 4
30 312.123 7
Moreover, the error of norm 2 of two successive approximations for
velocity, temperature and concentration over [0,1] with HAM by 30th-
order approximations are calculated by

Eu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
21

X15
i¼0

u i=20ð Þð Þ2
vuut ;

Eθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
21

X15
i¼0

θ i=20ð Þð Þ2
vuut ;

Eϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
21

X15
i¼0

ϕ i=20ð Þð Þ2
vuut :

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

ð41Þ

It is seen that the error isminimumatℏ=−0.6 for velocity, temper-
ature and concentration as shown in Table 1. It is also noteworthy that
the admissible values ℏ lie in their respective admissible range.

A hybrid Genetic Algorithm and Nelder-Mead approach [32] is also
used to accelerate homotopy technique to find the value of embedding
parameter ℏ. Detail is given in the following numerical Tables 2 to 5.
NM for concentration ϕ.

Optimal solution with GA and NM

rror Iteration Time ℏ-curves Error

.4×10−2 10 0.099 −0.612730 5.3×10−5

.4×10−4 20 1.212 −0.867476 4.3×10−7

.9×10−6 30 5.339 −0.873660 3.3×10−9

.6×10−2 10 0.212 −0.654783 2.2×10−5

.7×10−4 20 1.534 −0.778332 5.7×10−7

.9×10−6 30 5.644 −0.765333 2.3×10−9

.9×10−2 10 0.411 −0.646747 5.5×10−4

.1×10−4 20 1.722 −0.767678 4.3×10−7

.3×10− 30 5.892 −0.648430 3.2×10−9

NM for temperature θ.

Optimal solution with GA and NM

rror Iteration Time ℏ-curves Error

.8×10−2 10 0.099 −0.612730 6.5×10−5

.2×10−4 20 1.212 −0.638747 5.3×10−7

.9×10−7 30 5.339 −0.839930 7.7×10−9

.7×10−2 10 0.212 −0.653733 2.2×10−5

.4×10−5 20 1.534 −0.783722 6.5×10−7

.9×10−7 30 5.644 −0.867330 7.8×10−9

.8×10−3 10 0.411 −0.638933 7.9×10−4

.3×10−5 20 1.722 −0.735678 4.8×10−7

.5×10−7 30 5.892 −0.666730 6.9×10−9



Fig. 6. The dimensionless streamlines.

Fig. 3. The dimensionless velocity profiles for various values of Pr withNr=Nt=Nb=0.5.
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5. Results and discussion

To see the effects of emerging parameters on velocity, temperature,
nanoparticle concentration, Nusselt number, skin-friction coefficient
and Sherwood number Figs. 3 to 16 have been displayed. To get better
understanding of flow and heat transfer characteristics in the nanofluid,
we thereaftermake a detailed analysis on theproblemof the fully devel-
oped nanofluid flow and heat transfer in a horizontal channel. The di-
mensionless velocity profiles u(y) for various values of Pr when Nr=
Nt=Nb=0.5 are presented in Fig. 3. It can be seen that for Prandtl num-
ber, the velocity near the centerline of the channel increases by
Fig. 5. The dimensionless velocity profiles for various values of Ntwith Nr=Nb=0.5 and
Pr=10.

Fig. 4. The dimensionless velocity profiles for various values of Nrwith Nt=Nb=0.5 and
increasing the values of Pr while it decreases near the walls with the in-
creasing magnitude ofPr. It is in accordance with the physical expecta-
tion, because it is due to the fact that, viscous force near the walls,
plays an important role to keep the fluid attached with thewalls, there-
fore, increasing of Buoyancy force immediately yields an increase in the
velocity profile. The dimensionless velocity profile for various values of
Nr are presented in Fig. 4 for the fixed Nt=Nb=0.5 and Pr=10. It is
Fig. 7. (bottom). Thedimensionless skin friction for various values ofNrwithNt=Nb=0.5
and Pr=10. (top). The dimensionless skin friction for various values ofNrwithNt=Nb=
0.5 and Pr=10.



Fig. 9. (bottom). Effects of Prandtl number and thermophoresis parameters on
temperature for various values of Nt with Nr=Nb=0.5 and Pr=10. (top) Effects of
Prandtl number and thermophoresis parameters on temperature for various values of Nt
with Nr=Nb=0.5 and Pr=10.

Fig. 8. (bottom). The dimensionless skin friction for various values of Pr with Nt=Nb=
Nr=0.5. (bottom). The dimensionless skin friction for various values of Pr with Nt=
Nb=Nr=0.5.

Fig. 10. The dimensionless temperature profiles for various values of Pr with Nr=Nt=
Nb=0.5.
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found that for Buoyancy ratio case (NrN0), the velocity near the center-
line of the channel decreaseswith the increase ofNrwhile in the vicinity
of the walls it decreases. The dimensionless velocity profile for various
values of Nt with Nr=Nb=0.5and Pr=10 are presented in Fig. 5. It
can be seen from Fig. 5 that for thermophoresis parameter case
(NtN0), the dimensionless velocity near the centerline of the channel
decreases by increase the values of Ntwhile in the vicinity of the walls
it decreases endlessly with the magnitude of Nt. Fig. 6 displays the
streamlines. Fig. 7 shows the effects of skin fiction with the different
Buoyancy ratio Nr with Nt=Nb=0.5 and Pr=10. In Fig.7— (top), it is
found that skin fiction increases with the increase of the Buoyancy
ratio whereas at bottom, skin fiction decreases by increasing the values
of Buoyancy ratio. Fig. 8— (top) and (bottom) show the effects of skin
fiction with the different Prandtl numberPr when Nr=Nt=Nb=0.5
are kept fixed. It can be noted that in Fig. 8— (top), the skin fiction de-
creases with increasing the Prandtl number while in Fig. 8— (bottom),
skin fiction increases with increasing the Prandtl number. Fig. 9—
(top) and (bottom) shows the effects of Nusselt numberwith the differ-
ent thermophoresis parameters Nt with Nr=Nb=0.5 andPr=10. It
can be seen at the top of Fig. 9, that Nusselt number decreases by in-
creasing the values of thermophoresis parameters while at the bottom
of Fig. 9, the Nusselt number increases with the increase of
thermophoresis parameters. The temperature profile θ(y) for various
values of Pr with Nr=Nt=Nb=0.5 is offered in Fig. 10. It is revealed
that the temperature in the channel increases monotonously with the
increase of Pr. Fig. 11— (top) and (bottom) shows variation of Nusselt
number along the wavy channel for different values of Prandtl number.
As shown in these figures, the Nusselt number has a rapid reduction
from the channel inlet plane until the core flow meets the bumps on
the channel throats. As the flowmoves downstream, when the channel
cross-sectional areas over the bumps (or the throats) decreases, the av-
erage velocity at the section and as a result the corresponding velocity
gradient increases, subsequently, a salient in the Nusselt number is ex-
perienced over the channel throats. It is also noted in Fig. 11— (top),
when the Prandtl number Pr increases, the Nusselt number Nu de-
creases at the peak and the minimum values of the Nusselt number
occur slightly upstream of the maximum cross sections of the channel.
Fig. 11 (bottom) shows the profile of the Nusselt number along the
wavy channel at various values of Prandtl number Pr. It is exposed
that it increases with the increase in the Prandtl number. Fig. 12
shows the variation of Nusselt number along the wavy channel for



Fig. 11. (bottom). Effects of Prandtl number on distribution ofNusselt number. (top) Effect
of Prandtl number on distribution of Nusselt number.

Fig. 13. (bottom). Nanoparticle volume fraction profiles for various values ofNtwith Nr=
Nb=0.5 and Pr=10. (top) Nanoparticle volume fraction profiles for various values of Nt
with Nr=Nb=0.5 and Pr=10.
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different values of Prandtl number. As shown in these figures, the
Nusselt number increases by increasing the Prandtl number at the top
of the channel and Nusselt number decreases by increasing the Prandtl
number at the bottom of the channel. Fig. 13— (top) and (bottom) dem-
onstrates the effects of Nusselt number with the different
thermophoresis parameters Ntwith Nr=Nb=0.5 and Pr=10. It is dis-
covered at the top that Nusselt number increaseswith increasing values
of thermophoresis parameter however at the bottom, Nusselt number
increases with increasing values of thermophoresis parameters. The di-
mensionless nanoparticle volume fraction profiles φ(y) for various
values of Pr with Nr=Nt=Nb=0.5 are accessible in Fig. 14. It is seen
that for Prandtl number case (PrN0), the dimensionless nanoparticle
volume fraction in the channel decreases monotonously with the
Fig. 12. Effect of Prandtl number on distribution of Nusselt number.
increase of Pr Fig. 15— (top) and (bottom) show the variation of Sher-
wood number Sh along the wavy channel for different values of Prandtl
number. It is depicted that the Sherwood number Sh has a rapid reduc-
tion from the channel inlet plane until the core flow meets the bumps
on the channel throats. As the flowmoves downstream,when the chan-
nel cross-sectional areas over the bumps (or the throats) decrease, the
average velocity at the section, and the corresponding velocity gradient
increase obviously. Consequently a salient in the Sherwood number Sh
is experienced over the channel throats. In Fig. 15— (top), it is noticed
that when the Prandtl number Pr increases, the peak value of the Sher-
wood number Sh increases as well. The minimum values of the Sher-
wood number Sh occur slightly upstream of the maximum cross
Fig. 14. The dimensionless nanoparticle volume fraction profiles for various values of Pr
with Nr=Nt=Nb=0.5.



Fig. 15. (bottom) Effects of Prandtl number on distribution of Sherwood number. (top)
Effects of Prandtl number on distribution of Sherwood number.
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sections of the channel. Fig. 15— (bottom) shows the profile of the Sher-
wood number Sh along the wavy channel at various values of Prandtl
number Pr. Sherwood number decreases with increasing values of
Prandtl number. Fig. 16 shows the variation of Sherwood number Sh
along the wavy channel for different values of Prandtl number. The
Sherwood number Sh increases by increasing the Prandtl number at
the top of the channel while it decreases by increasing the Prandtl num-
ber at the bottom of the channel.

Pr=10.

6. Conclusions

In this paper, effects of convective heat transfer of nanofluid in a
wavy channel are reported. Constant pressure gradient is taken into ac-
count. Effects of different parameters on velocity, temperature,
Fig. 16. Effects of Sherwood number.
nanoparticle volume fraction, Nusselt numbers and Sherwood number
are examined graphically. Numerical results are presented for the con-
vergence of series solutions. It is observed that the velocity near the cen-
terline of the channel monotonously increases with the increase of
Prandtl number and thermophoresis parameter while it decreases in
the vicinity of the walls. On the other hand velocity near the centerline
of the channel decreases by increasing the Buoyancy ratio whereas in
the vicinity of the walls velocity decreases with the increasing magni-
tude of Buoyancy ratio. The dimensionless temperature in the channel
increases with the increase of Pr but quite the reverse behavior is
noted for the case of dimensionless nanoparticle volume fraction. The
nanoparticle volume fraction in the channel decreaseswith the increase
of Pr. Nusselt number is also increasing function of Pr. It is also noted
that the Sherwood number and Nusselt number decrease with the in-
crease of Pr at the bottom of the channel while Sherwood number is in-
creased with the increase of Pr at the top of the channel.
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