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Abstract
Purpose – The purpose of this paper is to analytically perform gaseous slip flow and heat transfer
analysis within a parallel-plate microchannel partially filled with a centered porous medium under
local thermal non-equilibrium (LTNE) condition. Heat transfer of gaseous flow in a porous
microchannel is analytically studied. Energy communication at the porous-fluid interface is considered
by two approaches: the gas rarefaction negatively impacts the heat transfer performance, and the
optimum ratio of porous thickness is found to be around 0.8.
Design/methodology/approach – Both Models A and B are utilized to consider the heat flux
splitting for the fluid and solid phases at the porous-fluid interface.
Findings – Analytical solutions for the fluid and solid phase temperature distributions and the
Nusselt number are derived. In the no-slip flow limit, the present analytical solutions are validated by
the partially and fully filled cases available in the literature.
Research limitations/implications – The continuum flow (no-slip flow) is only a special case of the
slip flow. Meanwhile, the effects of pertinent parameters on the heat transfer are also discussed.
Practical implications – A survey of available literature mentioned above indicates a shortage of
information for slip flow and heat transfer in partially filled porous systems. The main objective of the
present study is to investigate the slip flow and heat transfer characteristics for forced convection
through a microchannel partially filled with a porous medium under LTNE condition. The porous
substrate is placed at the center of the microchannel. Analytical solutions for the temperature
distributions of the fluid and solid phases and the Nusselt number at the microchannel wall are obtained.
Originality/value – Heat transfer of gaseous flow in a porous microchannel is analytically studied.
Energy communication at the porous-fluid interface is considered by two approaches: the gas
rarefaction negatively impacts the heat transfer performance, and the optimum ratio of porous
thickness is found to be around 0.8. Gaseous slip flow and heat transfer analysis is analytically
performed within a parallel-plate microchannel partially filled with a centered porous medium under
LTNE condition. Analytical solutions for the fluid and solid phase temperature distributions and the
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Nusselt number are derived for the first time. The effects of pertinent parameters on the heat transfer are
also discussed. Compared with the results obtained for the continuum flow regime, the gas rarefaction
negatively impacts the heat transfer efficiency and has little influence on the optimal porous thickness.
Keywords Microchannel, Porous medium, Local thermal non-equilibrium, Rarefaction effect
Paper type Research paper

Nomenclature
asf interfacial area per unit volume of the

porous medium (m−1)
Bi Biot number, hsf asf H

2=ks;ef f
cp specific heat of the fluid ( J kg−1 K−1)
Da Darcy number
Dh hydraulic diameter of the

microchannel, 4H (m)
f Fanning friction factor
hsf interstitial heat transfer coefficient

(Wm−2 K−1)
H half-height of the microchannel (m)
kf thermal conductivity of the fluid

(Wm−1 K−1)
kf,eff effective thermal conductivity of the

fluid (Wm−1 K−1)
ks thermal conductivity of the solid

(Wm−1 K−1)
ks,eff effective thermal conductivity of the

solid (Wm−1 K−1)
K permeability (m2)
Kn Knudsen number
M ratio of the effective viscosity of the

porous medium to the viscosity of the
clear fluid

Nu Nusselt number at the channel wall
p pressure (Pa)
P dimensionless pressure gradient
Pr Prandtl number
qw imposed heat flux on the wall (W/m2)
Re Reynolds number
T temperature (K)
u fluid velocity (m/s)
û dimensionless velocity
x longitudinal coordinate (m)
y transverse coordinate (m)

Greek symbols
α velocity slip coefficient, 2�svð Þ=sv

� �
Kn

β temperature jump coefficient,
2�stð Þ=st
� �

2j= jþ1ð Þ� �
Kn=Pr

γ ratio of the heat flux at the interface to
that at the channel wall

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bi 1þkð Þ=k

p
ε porosity
η dimensionless transverse coordinate,

y=H
θ dimensionless temperature,

ks;ef f T�Twð Þ= qwHð Þ
k ratio of the effective thermal

conductivity of the fluid to that of
the solid, kf ;ef f =ks;ef f

λ molecular mean free path (m)
ξ ratio of porous medium thickness to

the channel half-height
μ dynamic viscosity of the fluid (Pas)
ρ density of the fluid (kg/m3)
σt thermal accommodation coefficient
σv tangential momentum

accommodation coefficient
ω porous media shape factor,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=DaM

p
Subscripts/superscripts
eff effective
f fluid
f 1 fluid in the clear region
f 2 fluid in the porous region
i porous-fluid interface
in inlet
m mean value
s solid
w channel wall subject to a constant heat

flux

1. Introduction
Porous medium filling is a potential way to enhance the heat transfer ability of thermal
systems (Pavel and Mohamad, 2004; Zehforoosh and Hossainpour, 2010; Satyamurty and
Bhargavi, 2010; Qu et al., 2012; Nimvari et al., 2012; Lasiello et al., 2015). A great deal of
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research has been carried out to study the filling configurations such as partial
porous filling and full porous filling. Compared with the fully filled system, the partially
filled one is considered as a promising configuration due to its relatively low pressure loss
and high heat transfer (Xu et al., 2011). On the other hand, there are two primary models,
namely local thermal equilibrium (LTE) (Chen et al., 2015; Yuan et al., 2015) and local
thermal non-equilibrium (LTNE) (Yang and Vafai, 2010, 2011a), which can be utilized for
representing the heat transport through a porous medium. When the temperature
difference between the fluid and solid phases is substantial, the LTE model would break
down, but the LTNE model can capture this temperature difference using two different
energy equations for two individual phases (Yang and Vafai, 2010, 2011a) which
significantly reflects on the level of heat transfer (Nimvari et al., 2012; Yang et al., 2012;
Wang et al., 2015c).

In a composite system with partial porous insertion, there usually exist two distinct
regions, i.e. the porous region and the clear region without porous matrix, where the
behavior of fluid flow and heat transfer exhibits different characteristics (Yang and
Vafai, 2011a; Shokouhmand et al., 2011; Yang et al., 2012; Mahdavi et al., 2014). Although
the superiority of LTNE to LTE is applicable to more general analysis for partially filled
porous structures, an extra complexity would be encountered in the modeling of involved
porous-fluid interface at which the physical mechanism of splitting the heat flux between
the fluid and solid phases is still open and the determination of the interfacial thermal
boundary conditions remains a scientific challenge (Yang and Vafai, 2011a, b; Vafai and
Yang, 2013; Mahmoudi et al., 2014). However, a basic consensus is that the heat flux
transmits from the clear fluid to the two phases within the porous medium at the
porous-fluid interface in two distinct ways which were later known as Models A and B
(Vafai and Kim, 1990; Amiri et al., 1995; Yang and Vafai, 2011b; Vafai and Yang, 2013).
The first one assumes that the heat flux is split between the fluid and solid phases within
the porous medium based on their effective conductivities and associated temperature
gradients while the second one assumes that each of individual phases at the interface
receives an equal amount of heat flux from the clear fluid.

Mohamad (2003) studied numerically a tube partially or fully occupied by porous
media. It was found that in the configuration of partial filling, the heat transfer rate was
increased while the pressure drop was decreased in comparison with that of full filling.
Yang and Vafai (2011a) investigated analytically the heat flux bifurcation within a
channel partially filled with a porous medium under LTNE condition. In their study, the
range of validity for all three interface Models A, B and C was established. Yang et al.
(2012) analytically assessed the two cases of partial porous medium filling. It was
revealed that in a comparatively low range of pumping power the heat transfer
performance in a tube with a porous medium core is higher than that of the tube with a
wall covered with a porous medium layer whereas in a high range of pumping power
the latter is superior to the former. Mahmoudi and Maerefat (2011) analytically
investigated the forced convection flow in a channel partially filled with a porous
medium. They concluded that the optimal porous thickness ratio is 0.8 for enhancement
of heat transfer at a reasonable expense of pressure drop. Subsequently, Mahmoudi
et al. (2014) carried out a comprehensive analysis of the two interface Models A and B.
They also discussed the validity of LTE assumption. Torabi et al. (2015) carried out an
analytical study on the heat transfer and entropy generation in a parallel-plate channel
partially filled with a porous medium. The lower wall of the channel was exposed to a
constant heat flux and the upper wall was assumed in the adiabatic condition.
Bifurcation phenomena for both heat transfer and entropy generation were observed.
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In the past decades, the progress in micro fabrication technology has led to the
miniaturization of various fluidic systems such as heat exchangers, pumps, actuators,
etc. At the micro scale, the wall effect on the fluid flow and heat transfer would become
considerable. This effect associated with gaseous flow through micropassages where
the molecular mean free path (λ) of the flowing gas is comparable to the characteristic
dimension of fluid domain, is called the rarefaction effect. The degree of rarefaction of
the gas and the validity of continuum flow assumption are determined by the Knudsen
number (Kn), depending on which four flow regimes exist:Kn⩽ 10−3 for the continuum
flow regime, 10−3oKn⩽ 10−1 for the slip flow regime, 10−1oKn⩽ 10 for the
transition flow regime and KnW10 for the free molecular flow regime. Here,
the Knudsen number is defined as the ratio of the molecular mean free path to the
characteristic dimension. Although the continuum model does not hold for the
slip flow regime where molecular collisions with the walls dominate over
intermolecular collisions, the gaseous flow can still be analyzed by the conventional
Navier-Stokes and energy equations with modifications of boundary conditions
at the walls (Renksizbulut et al., 2006; Haddad et al., 2007; Hooman, 2009). One of
the earliest contributions to the gaseous flow and heat transfer in a fully filled
porous microchannel under the LTNE condition was analytically conducted by
Buonomo et al. (2014) who derived the temperature distributions and the Nusselt
number for Model A. Mahmoudi (2015) analytically studied the effect of internal
heat generation on the forced convective heat transfer in a microchannel fully filled
with a porous medium saturated with rarefied gas. Wang et al. (2015a) performed an
analytical investigation related to gaseous flow and heat transfer in an annulus
fully filled with a porous medium. They pointed out that the configuration of
constant heat flux at the inner wall and adiabatic outer wall creates more heat transfer
enhancement within the porous medium as compared to that of constant heat flux at
the outer wall and adiabatic inner wall. In a separate work, Wang et al. (2015d)
analytically considered the effect of gas rarefaction on a circular tube fully filled
with a porous medium.

A survey of available literature mentioned above indicates a shortage of
information for slip flow and heat transfer in partially filled porous systems.
The main objective of the present study is to investigate the slip flow and heat
transfer characteristics for forced convection through a microchannel partially filled
with a porous medium under LTNE condition. The porous substrate is placed at the
center of the microchannel. Analytical solutions for the temperature distributions of
the fluid and solid phases and the Nusselt number at the microchannel wall are
obtained. Both Models A and B are employed for incorporating the heat flux splitting
between the fluid and solid phases within the porous medium at the porous-fluid
interface. The effects of pertinent parameters such as effective thermal conductivity
ratio, Biot number, Knudsen number, Darcy number and porous medium thickness
are also discussed.

2. Mathematical modeling
2.1 Governing equations
The schematic diagram of the problem under consideration is illustrated in Figure 1.
The fluid flows through a parallel-plate microchannel partially filled with a centered
porous medium without phase change. The microchannel walls are assumed
impermeable and uniformly heated by a constant heat flux qw. Due to the symmetry of
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the thermal system, only one half is analyzed. Meanwhile, the following assumptions
are invoked in the current study:

• the flow is assumed to be incompressible due to the fact that in most practical
situations the Mach number (Ma) for a flow in a porous medium will be small
compared with unity (Nield and Kuznetsov, 2007);

• the steady-state hydrodynamically and thermally fully developed conditions are
desired with temperature independent properties;

• natural convection, dispersion and radiative heat transfer are negligible;
• the LTNE between the fluid and solid phases in the porous region is allowed; and
• longitudinal conduction of the fluid in both porous and clear regions is negligible

for high Peclet number (Pe) (Narasimhan et al., 2001).

The momentum equation in the clear region reads:

m
d2uf 1
dy2

�dp
dx

¼ 0 (1)

The Brinkman-extended Darcy momentum equation is employed in the porous region:

mef f
d2uf 2
dy2

�m
K
uf 2�

dp
dx

¼ 0 (2)

The energy equation for the fluid in the clear region gives:

kf
@2Tf 1

@y2
¼ rcpuf 1

@Tf 1

@x
(3)

The energy equation for the fluid phase in the porous region reads:

kf ;ef f
@2Tf 2

@y2
þh sf asf Ts�Tf 2

� � ¼ rcpuf 2
@Tf 2

@x
(4)

The energy equation for the solid phase in the porous region is expressed as:

ks;ef f
@2Ts

@y2
�hsf asf Ts�Tf 2

� � ¼ 0 (5)

where u is the fluid velocity, μ the dynamic viscosity of the fluid, kf and ks the thermal
conductivities of the fluid and solid phases, kf,eff and ks,eff the effective thermal

inlet

clear fluid

porous medium 2�H 2H

gas rarefaction

y

x

qw

uin,Tin

qw

Figure 1.
Schematic diagram
of a parallel-plate
microchannel
partially filled with
a centered
porous medium
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conductivities of the fluid and solid phases, and kf,eff¼ εkf, ks,eff¼ (1−ε)ks, μeff the
effective viscosity,K the permeability of the porous medium, p the applied pressure and
Tf, Ts, ε, ρ and cp the fluid and solid temperatures, the porosity, the density and specific
heat of the fluid, hsf and asf are, respectively, the heat transfer coefficient and the
specific surface area which couples the two energy equations for the fluid and solid
phases in the porous region.

2.2 Boundary conditions
The symmetry conditions at y¼ 0 are:

duf 2
dy

����
y¼0

¼ 0 (6)

@Tf 2

@y

����
y¼0

¼ @Ts

@y

����
y¼0

¼ 0 (7)

Beyond the continuum limit, the fluid particles adjacent to the wall surface no longer
reach the velocity of the surface due to the presence of rarefaction phenomenon at the
micro scale. More importantly, the velocity slip and relaxed fluid-solid contact of
surfaces may lead to the temperature jump. At the microchannel wall ( y¼H), hence,
the following first-order velocity slip and temperature jump conditions at the walls
need to be utilized (Karniadakis et al., 2005):

uslip ¼ uf 1
��
y¼H ¼ �aH

duf 1
dy

����
y¼H

; a ¼ 2�sv
sv

Kn (8)

Tjump ¼ Tf 1
��
y¼H�Tw ¼ �bH

@Tf 1

@y

����
y¼H

; b ¼ 2�st
st

2j
jþ1

Kn
Pr

(9)

Additionally, the total heat flux transmitted from the heated wall to the clear fluid can
be expressed as:

kf
@Tf 1

@y

����
y¼H

¼ qw (10)

where Tw is the temperature of the microchannel wall, φ the specific heat ratio, Pr the
Prandtl number, σv and σt are, respectively, the tangential momentum and thermal
accommodation coefficients, both of which are dependent on the surface finish, the fluid
temperature and pressure. As highlighted by Cai et al. (2007) and Bahrami et al. (2012),
the values of σv and σt should be less than unity based on the experimental results
(Bahrami et al., 2012). In the current study, σv¼σt¼ 0.85, γ¼ 1.4 and Pr¼ 0.707 are
employed unless otherwise noted. It should be noted that Kn ¼ l=H and obviously the
velocity slip and temperature jump given by Equations (8) and (9) increase as λ increases.

At the porous-fluid interface ( y¼ ξH ), the fluid velocity should be specified as
(Mahmoudi et al., 2014; Mahmoudi, 2015):

m
duf 1
dy

����
y¼xH þ

¼ meff
duf 2
dy

����
y¼xH�

(11)
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uf 1
��
y¼xH þ ¼ uf 2

��
y¼xH� (12)

Based on the work of Amiri et al. (1995) and Yang and Vafai (2010, 2011a), the thermal
boundary conditions for Model A are given by:

kf
@Tf 1

@y

����
y¼xH þ

¼ kf ;ef f
@Tf 2

@y

����
y¼xH�

þks;ef f
@Ts

@y

����
y¼xH�

¼ qi (13)

Tf 1
��
y¼xH þ ¼ Tf 2

��
y¼xH� ¼ Tsjy¼xH� ¼ Ti (14)

whereas the thermal boundary conditions for Model B are casted as (Yang and Vafai,
2010, 2011a):

kf
@Tf 1

@y

����
y¼xH þ

¼ kf ;ef f
@Tf 2

@y

����
y¼xH�

¼ ks;ef f
@Ts

@y

����
y¼xH�

¼ qi (15)

Tf 1
��
y¼xH þ ¼ Tf 2

��
y¼xH� (16)

where qi and Ti are the total heat flux and the temperature at the porous-fluid interface.
In the partial filling microchannel, the bulk mean flow velocity is defined by

(Mahmoudi et al., 2014; Mahmoudi, 2015):

um ¼ 1
H

Z xH�

0
uf 2dyþ

Z H

xH þ
uf 1dy

� 	
(17)

Integrating Equation (3) from the interface to the channel wall and incorporating the
boundary conditions given by Equations (10) and (13) produces:

rcp
@Tf 1

@x

Z H

xH þ
uf 1dy ¼ qw�qi (18)

Adding Equations (4) and (5), integrating the resultant equation from the center to the
interface and applying the boundary conditions given by Equation (13) leads to:

rcp
@Tf 2

@x

Z xH�

0
uf 2dy ¼ qi (19)

In a fully developed flow, it should be noted that @Tf 1=@x ¼ @Tf 2=@x ¼ @Tf =@x ¼ const.
Adding Equations (18) and (19) and considering Equation (17) yields:

rcp
@Tf

@x

����
Model A

¼ qw
Hum

(20)

Combining Equations (20) and (19) results in Model A-based heat flux prediction at the
porous-fluid interface as:

g
��
Model A ¼ qi

qw

����
Model A

¼ 1
Hum

Z xH�

0
uf 2dy (21)
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Following the similar way as done for Model A, adding Equations (4) and (5),
integrating the resultant equation from the center to the interface and applying the
boundary condition given by Equation (15) yields:

rcp
@Tf 2

@x

Z xH�

0
uf 2dy ¼ 2qi (22)

The physical mechanism for Equation (22) has been explained by Amiri et al. (1995),
Lee and Vafai (1999), Yang and Vafai (2010, 2011a) and Mahmoudi et al. (2014), and
then, Equations (18) and (22) are added to obtain the following relation:

rcp
@Tf

@x

����
Model B

¼ qwþqi
Hum

(23)

Combining Equations (23) and (22) leads to Model B-based heat flux prediction at the
interface as:

g
��
Model B ¼ qi

qw

����
Model B

¼
R xH�

0 uf 2dy

2Hum�
R xH�

0 uf 2dy
(24)

2.3 Hydrodynamic analysis
The non-dimensionalization procedure is of primary significance in the hydrodynamic
and thermal analysis (Glicksman, 1988; de Souza Mendes, 2007). This procedure can
remarkably reduce the amount of variables involved in the governing equations, which
is helpful for gaining insight into the essence of fluid flow and heat transfer. After
introducing the following the dimensionless variables:

Z ¼ y
H
; û ¼ u

um
; P ¼ K

mu
dp
dz
; Da ¼ K

H 2; o ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

DaM

r
; M ¼ mef f

m
(25)

the momentum Equations (1) and (2) and associated boundary conditions given by
Equations (6), (8), (11) and (12) can be written in the dimensionless forms:

d2ûf 1
dZ2

� P
Da

¼ 0 (26)

M
d2ûf 2
dZ2

� 1
Da

ûf 2þP
� � ¼ 0 (27)

dûf 2
dZ

����
Z¼0

¼ 0 (28)

dûf 1
dZ

����
Z¼xþ

¼ M
dûf 2
dZ

����
Z¼x�

(29)
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ûf 1
��
Z¼xþ ¼ ûf 2

��
Z¼x� (30)

ûf 1
��
Z¼1 ¼ �a

dûf 1
dZ

����
Z¼1

(31)

Thus, the velocity distributions in the porous and clear regions can be simultaneously
evaluated by solving Equations (26) and (27) subject to the boundary conditions given
by Equations (28)-(31) as:

ûf 1 ¼ A1þA2Zþ
1
2
P
Da

Z2 (32)

ûf 2 ¼ A3cosh oZð Þ�P (33)

where the constants A1, A2, A3 and P are presented in the Appendix. Upon obtaining
the velocity fields in the porous and clear regions, we can proceed with the pressure
drop information in terms of the Fanning friction factor f and the Reynolds number Re:

f Re ¼ �8P
Da

(34)

where f ¼ � 4Hð Þ dp=dz
� �

= ru2m
� �

and Re ¼ rum 2Hð Þ=m.
Attention will now be turned to the heat flux ratio γ at the porous-fluid interface.

Using Equation (25), the heat flux ratio for Models A and B given by Equations (21) and
(24) can be explicitly evaluated in the following dimensionless forms:

g
��
Model A ¼

Z x�

0
ûf 2dZ ¼ A3

o
sinh oxð Þ�Px (35)

g
��
Model B ¼

R x�
0 ûf 2dZ

2� R x�0 ûf 2dZ
¼ A3sinh oxð Þ�Pox

2o�A3sinh oxð Þ�Pox
(36)

2.4 Heat transfer analysis
2.4.1 Model A-based temperature prediction. To normalize the energy equations and
associated boundary conditions, the following dimensionless variables are utilized as:

k ¼ kf ;ef f
ks;ef f

; Bi ¼ hsf asf H
2

ks;ef f
; yf ¼

ks;ef f Tf�Tw
� �
qwH

; ys ¼
ks;ef f Ts�Twð Þ

qwH
(37)

where κ is the ratio of the effective thermal conductivity of the fluid to that of the solid
and Bi is the equivalent Biot number for the inserted porous substrate.

Upon substituting Equation (37) into Equations (3)-(5) and (7), (9), (10), (13) and (14)
and considering Equations (32) and (33), we obtain the dimensionless energy equations
and boundary conditions as follows.

For the fluid in the clear region:

k
e
@2yf 1
@Z2

¼ A1þA2Zþ
1
2
P
Da

Z2 (38)
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For the fluid phase in the porous region:

k
@2yf 2
@Z2

þBi ys�yf 2
� � ¼ A3cosh oZð Þ�P (39)

For the solid phase in the porous region:

@2ys
@Z2

�Bi ys�yf 2
� � ¼ 0 (40)

For the thermal boundary conditions:

@yf 2
@Z

����
Z¼0

¼ @ys
@Z

����
Z¼0

¼ 0 (41)

yf 1
��
Z¼xþ ¼ yf 2

��
Z¼x� ¼ ysjZ¼x� (42)

yf 1
��
Z¼1 ¼ �b

@yf 1
@Z

����
Z¼1

;
@yf 1
@Z

����
Z¼1

¼ e
k

(43)

The ordinary differential Equation (38) is integrated twice and the temperature
distribution of the flow in the clear region is obtained as:

yf 1 ¼ B1þB2Zþ
e
6k

3A1Z2þA2Z3þ
P
4Da

Z4
� 	

(44)

It should be noted that Equations (39) and (40) are coupled. Hence, decoupling
techniques are required for the solutions of fluid and solid temperatures in the porous
region. As categorized by Wang et al. (2015b), these techniques involve the direct
decoupling method (DDM) and the indirect decoupling method (IDM). Additional
higher order boundary conditions must be established in DDM whereas only original
boundary conditions are required in IDM. In the current study, therefore, IDM is
employed as the solution procedure due to its easy-to-use analytic characteristics.
By adding the two dimensionless energy Equations (39) and (40), we can obtain the
following equation for a new variable kyf 2þys:

@2

@Z2
kyf 2þys
� � ¼ A3cosh o xð Þ�P (45)

Combining Equations (41) and (45) and solving for kyf 2þys, we obtain the solid phase
temperature distribution as follows:

ys ¼ B3þ
A3

o2cosh oZð Þ�P
2
Z2�kyf 2 (46)

863

Gaseous slip
flow and heat

transport



Substituting Equation (46) into Equation (39) and considering Equation (33) results in:

@2yf 2
@Z2

�d2yf 2 ¼
A3

k
1�Bi

o2

� 	
cosh oZð ÞþBi

k
P
2
Z2�B3

� 	
�P
k

(47)

where d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bi 1þkð Þ=k

p
. Thus, the fluid phase temperature distribution can be readily

obtained by solving the ordinary differential Equation (47) together with the boundary
condition given by Equation (41) as:

yf 2 ¼ B4cosh dZð ÞþA3

k
1�Bi

o2

� 	
cosh oZð Þ
o2�d2

þ 1
1þk

P
1

kd2
�Z2

2

� 	
þB3


 �
(48)

where the constants B1, B2, B3 and B4 involved in Equations (44), (46) and (48) are
presented in the Appendix. To this end, the two energy Equations (39) and (40) are
decoupled. As addressed by Mahjoob and Vafai (2009a, b), Yang and Vafai (2010,
2011a) and Wang et al. (2015a, c, d), the LTE solutions can be obtained with the
temperature of fluid and solid phases in the porous medium being assumed to be equal.
Following this way, the temperature distribution in the porous region is readily
obtained as:

yf 2 ¼ ys ¼
1

1þk
B0
3þ

A3

o2cosh oZð Þ�P
2
Z2


 �
(49)

where the constant B′3 is presented in the Appendix.
2.4.2 Model B-based temperature prediction. For this approach, each of the two

phases at the interface is exposed to a heat flux qi. The dimensionless energy equations
and the associated boundary conditions can be obtained by substituting Equation (37)
into Equations (3)-(5), (7), (9), (15) and (16) and considering Equations (32) and (33).
Hence, the energy equation for the fluid in the clear region is found to be:

k
e
@2yf 1
@Z2

¼ 1þgð Þ A1þA2Zþ
1
2
P
Da

Z2

 �

(50)

Fluid phase energy equation in the porous region is:

k
@2yf 2
@Z2

þBi ys�yf 2
� � ¼ 1þgð Þ A3cosh oxð Þ�P½ � (51)

and the solid phase energy equation in the porous region is given by:

@2ys
@Z2

�Bi ys�yf 2
� � ¼ 0 (52)

The associated energy boundary conditions are:

@yf 2
@Z

����
Z¼0

¼ @ys
@Z

����
Z¼0

¼ 0 (53)
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yf 1
��
Z¼xþ ¼ yf 2

��
Z¼x� ;

@ys
@Z

����
Z¼x�

¼ g
k

(54)

yf 1
��
Z¼1 ¼ �b

@yf 1
@Z

����
Z¼1

;
@yf 1
@Z

����
Z¼1

¼ e
k

(55)

The temperature distribution of the fluid in the clear region is obtained by integrating
the ordinary differential Equation (50) twice as:

yf 1 ¼ C1þC2Zþ
e 1þgð Þ
6k

3A1Z2þA2Z3þ
P
4Da

Z4
� 	

(56)

Using the DDM employed for Model A, the two dimensionless energy Equations (51)
and (52) for Model B are added to yield the following ordinary differential equation for a
new variable kyf 2þys:

@2

@Z2
kyf 2þys
� � ¼ 1þgð Þ A3cosh oxð Þ�P½ � (57)

Combining Equations (53) and (57) and solving for kyf 2þys, we obtain the solid phase
temperature distribution as follows:

ys ¼ C3þ 1þgð Þ A3

o2cosh oZð Þ�P
2
Z2


 �
�kyf 2 (58)

Substituting Equation (58) into Equation (51) and incorporating Equation (33) results
in:

@2yf 2
@Z2

�d2yf 2 ¼
A3

k
1þgð Þ 1�Bi

o2

� 	
cosh oZð ÞþBi

k
P
2
1þgð ÞZ2�C3


 �
�P
k
1þgð Þ (59)

After considering the boundary condition given by Equation (53), the fluid phase
temperature distribution can be achieved by solving Equation (59) as:

yf 2 ¼ C4cosh dZð ÞþA3

k
1þgð Þ 1�Bi

o2

� 	
cosh oZð Þ
o2�d2

þ 1
1þk

P 1þgð Þ 1

kd2
�Z2

2

� 	
þC3


 �
(60)

where the constants C1, C2, C3 and C4 involved in Equations (56), (58) and (60) are
presented in the Appendix.
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2.5 Heat transfer correlations
From the analytical solutions for the velocity and temperature distributions, the
Nusselt number on the microchannel walls with the constant heat flux, being
the primary parameter of interest in heat transfer analysis, is determined based on the
thermal conductivity of the gas. The wall heat transfer coefficient is obtained from:

hw ¼ qw
Tw�Tf;b

(61)

thus the Nusselt number from:

Nu ¼ Dhhw
kf

¼ � 4e
kyf;b

(62)

for the partial filling case (ξo1) and:

Nu ¼ Dhhw
kf;ef f

¼ � 4
kyf;b

(63)

for the fully filled case (ξ→1). Here Dh is the hydraulic diameter of the microchannel and
θf,b the dimensionless bulk mean fluid temperature defined by:

yf ;b ¼
Z x�

0
ûf 2yf 2 dZþ

Z 1

xþ
ûf 1yf 1 dZ (64)

which can be explicitly expressed as:

yf;b
��
Model A ¼ A3B4

o2�d2
ocosh dxð Þsinh oxð Þ�dcosh oxð Þsinh dxð Þ½ �

þ 1
4ko

A2
3

o2�d2
1�Bi

o2

� 	
2oxþsinh 2oxð Þ½ �

� A3P
2 1þkð Þ

1
o3 2þo2x2
� �

sinh oxð Þ�2oxcosh oxð Þ� �
þA3

o
1

1þk
P

kd2
þB3

� 	
�P
k

1�Bi
o2

� 	
1

o2�d2


 �
sinh oxð Þ

�B4
P
d
sinh dxð Þþ P2

6 1þkð Þx
3� P

1þk
P

kd2
þB3

� 	
x

þA1B1 1�xð Þþ1
2
A1B2þA2B1ð Þ 1�x2

� �
þ1
6

e
k
A2
1þ2A2B2þ

B1P
Da

� 	
1�x3
� �þ1

2
e
3k

A1A2þ
B2P
4Da

� 	
1�x4
� �

þ 1
30

e
k

7
4
P
Da

A1þA2
2

� 	
1�x5
� �

þ 1
48

e
k
P
Da

A2 1�x6
� �þ 1

336
e
k

P
Da

� 	2

1�x7
� �

(65)
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for Model A and:

yf;b
��
Model B ¼ A3C4

o2�d2
ocosh dxð Þsinh oxð Þ�dcosh oxð Þsinh dxð Þ½ �

þ 1
4ko

A2
3 1þgð Þ
o2�d2

1�Bi
o2

� 	
2oxþsinh 2oxð Þ½ �

�A3P 1þgð Þ
2 1þkð Þ

1
o3 2þo2x2
� �

sinh oxð Þ�2ox cosh oxð Þ� �
þA3

o
1

1þk
P 1þgð Þ
kd2

þC3

� 	
�P
k

1�Bi
o2

� 	
1þg

o2�d2


 �
sinh oxð Þ

�C4
P
d
sinh dxð ÞþP2 1þgð Þ

6 1þkð Þ x
3� P

1þk
P 1þgð Þ
kd2

þC3

� 	
x

þA1B1 1�xð Þþ1
2
A1B2þA2B1ð Þ 1�x2

� �
þ1
6

e
k
1þgð ÞA2

1þ2A2B2þ
B1P
Da


 �
1�x3
� �

þ1
2

e
3k

A1A2 1þgð ÞþB2P
4Da


 �
1�x4
� �

þ 1
30

e
k

7
4
P
Da

A1þA2
2

� 	
1þgð Þ 1�x5

� �

þ 1
48

e
k
P
Da

A2 1þgð Þ 1�x6
� �þ 1

336
e
k

P
Da

� 	2

1þgð Þ 1�x7
� �

(66)

for Model B.

3. Results and discussion
To validate the present analytical solutions, we investigated both the partial and full
filling cases in the absence of rarefaction effect (Yang and Vafai, 2011a; Mahmoudi
et al., 2014). In the validation, ξ¼ 0.5 is selected for the position of the porous-fluid
interface for the partial filling case and ξ¼ 1 is done for the full filling one.
As highlighted by some researchers (Bhargavi et al., 2009; Satyamurty and Bhargavi,
2010), the optimal thermal performance for a partially filled system usually occurs at
the porous substrate thickness faction of 0.8 with the larger Darcy numbers (e.g.
Da¼ 10−3). Except Figure 2(b) for the validation and Figures 4(b) and 6(b) for
regarding the effect of Darcy number on the studied thermal system, therefore,
Da¼ 10−3 is chosen in all the following calculations. Meanwhile, ε¼ 0.9 is considered
for the porosity of porous medium throughout this study. It is worth noting that in the
present work, the fluid and solid temperatures for both Models A and B are normalized
with respect to the channel wall temperature Tw. However, the dimensionless
temperatures for Models A and B obtained by Mahmoudi et al. (2014) and the ones for
Model B derived by Yang and Vafai (2011a) are defined based on the solid phase
temperature at the porous-fluid interface Ts,i. Thus, in the comparison all the results
(except for Model A-based full filling case reported by Yang and Vafai, 2011a) using
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Comparison of the
present analytical
temperature
distributions at
k¼ 0.1, Bi¼ 0.5,
ε¼ 0.9 and Kn→0
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Equations (44), (46), (48), (56), (58) and (60) are modified utilizing the solid phase
temperature at the interface as θf1−θs(ξ), θf2−θs(ξ) and θs−θs(ξ). Additionally, the
viscosity ratio M¼ 1 is assumed for comparison with the results obtained by
Mahmoudi et al. (2014). As stated by Mahmoudi et al. (2014), the case ofM¼ 1 leads to
good results which agree fairly well with the experimental and numerical ones and so
M¼ 1 was utilized in the analysis. It should be noted that the effective viscosity of the
fluid inside the porous medium strongly depends on the geometry of porous structure
and the porosity. Due to very few works on the validity ofM¼ 1, numerous researchers
have employed the relationM ¼ mef f =m ¼ e�1 which is only a function of the porosity.
As shown in Figure 2, the present analytical solutions of temperature distributions for
Models A and B agree well with the available results in the literature (Yang and Vafai,
2011a; Mahmoudi et al., 2014). It is noteworthy that the common continuum flow
(no-slip flow), which corresponds to the limiting case of Kn→0, is only a special case of
the slip flow.

Figure 3 depicts the effect of Knudsen number on the velocity distribution for
different porous medium thicknesses ξ¼ 0.2, 0.4, 0.6 and 0.8. As it is seen from all the
subfigures, by increasing the porous substrate thickness more fluid particles escape to
the clear region with less resistance, which leads to an increase in the maximum
velocity. On the other hand, an increase in the Knudsen number leads to an increase in
the velocity slip and consequently shifts the velocity peak toward the microchannel
wall. As expected, this velocity peak is found to be located in the clear region.
Additionally, in the porous region that is relatively far away from the interface, the
velocity profile becomes flatter. At higher porous medium thickness, say ξ¼ 0.8, the
narrow clear region causes an abrupt change in velocity in the vicinity of the interface.

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Kn=0
Kn=0.05
Kn=0.1

u

ξ=0.2

(a)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Kn=0
Kn=0.05
Kn=0.1

u

ξ=0.4

(b)

0

1

2

3

4

5
Kn=0
Kn=0.05
Kn=0.1

u

ξ=0.6

(c)

0.0 0.2 0.4 0.6

�

� �

�
0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

Kn=0
Kn=0.05
Kn=0.1

u

ξ=0.8

(d)

Figure 3.
Effect of the

Knudsen number on
the transverse

velocity distribution
at Da¼ 10−3

869

Gaseous slip
flow and heat

transport



The velocity gradients near both the wall and the interface for the slip flow regime
decrease as compared to those obtained in the no-slip flow limit (Kn→0). This reveals
that higher Kn reduces the retarding effect of the wall surface and yields more flow
passing through the microchannel.

Figure 4 illustrates the effect of porous medium thickness on the heat flux
distribution at the porous-fluid interface for Models A and B. As it is shown, an
increase in the porous medium thickness leads to an enhancement in the amount of
interfacial heat flux. For a given Da value (Figure 4(a)), the heat flux ratio γ decreases
with increasing the Knudsen number while for a given Kn value (Figure 4(b)), the heat
flux ratio increases with increasing the Darcy number. It is seen from both subfigures
that the amount of interfacial heat flux transmitted from the clear fluid to the porous
medium depends on the employed interface model, and interestingly, Model A predicts
a higher heat flux ratio than Model B does. Similar trends with different Darcy numbers
were also reported by Mahmoudi et al. (2014) without taking the rarefaction effect into
account. With a reduction in Da, the difference between the amounts of heat flux at the
interface predicted by Models A and B decreases. As expected, in the Darcy flow limit
(Da→0), the amounts of heat flux predicted by both interface models will be equal.

Figure 5 delineates the dimensionless temperature distributions for the fluid and
solid phases in the porous region with Da¼ 10−3. It is seen that increasing Kn gives
rise to an increase in the temperature jump at the wall. This is due to the reduction in
the interaction between the gas molecules and the heated wall. For a given value of Kn,
both models can predict substantial temperature difference between the fluid and solid
phases within the porous region except Figure 5(c) and (d) with κ¼ 0.01 and Bi¼ 10.
Higher Bi implies the strong internal heat exchange between the two phases within the
porous region. As expected, this temperature difference would vanish when Bi→∞,
which corresponds to the LTE case. Figure 5(a) and (e) clearly demonstrates that the
less the effective thermal conductivity ratio the larger would be the chance to make
marginal temperature difference. An interesting conclusion can be reached by
comparing Figure 5(g) and (h). At larger effective thermal conductivity ratio, say
κ¼ 10, the solid phase temperature in the porous region predicted by Model A is lower
than the wall temperature whereas that predicted by Model B is higher than the wall
temperature. This reveals that the partially porous system is sensitive to the interface
models as the pertinent thermo-physical parameters vary. Therefore, choosing a more
plausible interface model for splitting the heat flux between two individual phases
within the porous substrate is heavily problem dependent (Mahmoudi and Maerefat,
2011; Yang and Vafai, 2011a, b, Vafai and Yang, 2013; Mahmoudi et al., 2014).
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Figure 6 shows the variation of pressure drop fRewith the porous thickness together with
the Darcy and Knudsen numbers. For a given Darcy number, say Da¼ 10−3 as shown in
Figure 6(a), the pressure drop decreases as the Knudsen number increases. As is well
known, an increase in the Knudsen number would result in an enhancement in Re due to
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an increase in the flow velocity and a reduction in f due to the velocity slip at the walls.
However, the Fanning friction factor predominates in the competition with the Reynolds
number and thereby leads to the reduction in fRe. For a given Knudsen number, say
Kn¼ 0.05 as shown in Figure 6(b), the pressure drop is increased by increasing the porous
thickness for different values of the Darcy number. At larger values of Da⩾ 1, fRe is
almost independent of ξ due to the similar influences of f and Re on their product.

Figure 7 shows the variation of Nusselt number predicted by Models A and B
with the porous substrate thickness. As it is well known and expected, for a given
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value of ξ, an increase in the Knudsen number causes a reduction in the Nusselt
number due to rarefaction. For all considered combinations of κ and Bi, Figure 7(a),
(c) and (d) illustrates that there exists a critical porous thickness ξcr below which the
Nusselt numbers monotonically increase for both Models A and B while above which
the values of Nu decrease monotonically except those obtained for Model A as
shown in Figure 7(a). The Nusselt number for Model A κ¼ 0.01 and Bi¼ 0.1 exhibits
a complicated increase-decrease-increase behavior. As for Figure 7(b) with κ¼ 0.01
and Bi¼ 10, a monotonical increase in the Nusselt number occurs for both interface
models from the clear fluid limit (ξ→0) to the full filling limit (ξ→1). Table I compares
the critical values of porous substrate thickness for both interface models. The
tabulated results clearly illustrate that the maximum enhancement in heat transfer
occurs around at a porous fraction of 0.8 for Darcy number of 10−3. This coincides
the findings reported for the partially porous systems excluding the rarefaction
effect (Mohamad, 2003; Yang and Hwang, 2009; Satyamurty and Bhargavi, 2010;
Mahmoudi and Maerefat, 2011; Nimvari et al., 2012; Mahmoudi et al., 2014). By
comparing Figure 7(c) and (d), at higher κ the Nusselt number for Bi¼ 0.1 shows a
similar behavior with that for Bi¼ 10.

Although the porous media are helpful for heat transfer enhancement,
their insertion will impose large pressure drop within a composite thermal system.
Therefore, it is important to seek a compromise between the heat transfer and the
pressure drop in evaluating the thermal performance. Herein, a parameter which serves
as a thermal hydrodynamic measure of the heat transfer efficiency such that
Φ ¼ Nuð Þp f Reð Þo= Nuð Þo f Reð Þp

� �
(Cekmer et al., 2012; Mahmoudi et al., 2014) in which

the subscripts p and o denote the values for a microchannel with or without a porous
insert, respectively. Figure 8 depicts the variation of the heat transfer efficiency for
both Models A and B with the porous substrate thickness. In all subfigures, the value of
Φ¼ 1 represents the heat transfer efficiency for the clear fluid limit (ξ→0). It is
apparent that for lower κ, say κ¼ 0.01 as shown in Figure 8(a) and (b), the heat transfer
efficiency is not remarkably impacted by the Knudsen number only when ξo0.8.
However, for a fixed value of Bi, the dependence of Φ on the Knudsen number is not
significant over the entire range of ξ by increasing κ from 0.01 to 10.
As illustrated in Figures 6 and 7, the pressure drop obtained at around ξ¼ 0.8 is
relatively not serious while the corresponding Nusselt number is much higher than that
of the clear microchannel. Hence, the threshold value of 0.8 may be considered as an
optimal filling thickness ξopt for enhancing heat transfer in the partially porous
microchannels at a reasonable expense of pressure drop.

Subfigure Interface model Kn¼ 0 Kn¼ 0.05 Kn¼ 0.1

Figure 7(a) A – – –

B 0.75 0.80 0.80
Figure 7(b) A – – –

B – – –

Figure 7(c) A 0.70 0.75 0.75
B 0.80 0.75 0.80

Figure 7(d) A 0.70 0.75 0.75
B 0.75 0.75 0.80

Table I.
Comparison of the

critical porous
thickness for Models

A and B at
Da¼ 10−3
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4. Conclusions
Gaseous slip flow and heat transfer analysis is analytically performed within a parallel-
plate microchannel partially filled with a centered porous medium under LTNE
condition. Both Models A and B are utilized to consider the heat flux splitting for the
fluid and solid phases at the porous-fluid interface. Analytical solutions for the fluid
and solid phase temperature distributions and the Nusselt number are derived. In the
no-slip flow limit (Kn→0), the present analytical solutions are validated by the partially
and fully filled cases available in the literature. In other words, the continuum flow
(no-slip flow) is only a special case of the slip counterpart. Meanwhile, the effects of
pertinent parameters such as κ, Bi,Kn, Da and ξ on the heat transfer are also discussed.
An increase in the Knudsen number leads to an increase in the velocity slip and
consequently shifts the velocity peak toward the microchannel wall. Higher Kn reduces
the retarding effect of the wall surface and yields more flow passing through the
microchannel. The difference between the amounts of heat flux at the interface
predicted by Models A and B decreases by reducing the Darcy number. As expected,
when Da approaches zero, the amounts of heat flux predicted by both models will be
equal. At larger effective thermal conductivity ratio, say κ¼ 10, the solid phase
temperature in the porous region predicted by Model A is lower than the wall
temperature whereas that predicted by Model B exhibits an opposite trend. Compared
with the results obtained for the continuum flow regime, the gas rarefaction negatively
impacts the heat transfer efficiency and has little influence on the optimal porous
thickness of 0.8. Actually, this work is an extension of our previous studies on the fully
filled porous structures (Wang et al., 2015b, c).
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Appendix
The constants A1, A2 and A3 involved in Equations (32) and (33) are given by:

A1 ¼
Φ1

Φ4
P; A2 ¼

Φ2

Φ4
P; A3 ¼

Φ3

Φ4
P (A1)

where:
Φ1 ¼ 2x 1það Þ�2a�1½ �cosh oxð Þ�M x x 1það Þ�2a�1½ �þ2 1það ÞDa� 

o sinh oxð Þ (A2)

Φ2 ¼ �2xcosh oxð ÞþM x2þ2Da�2a�1
� �

osinh oxð Þ (A3)

Φ3 ¼ 1�xð Þ x�2a�1ð Þþ2Da (A4)

Φ4 ¼ 2 cosh oxð ÞþM 1�xþað Þosinh oxð Þ½ �Da (A5)

The following compatibility: Z x�

0
ûf2dZþ

Z 1

xþ
ûf 1dZ ¼ 1 (A6)

which is obtained by substituting Equation (25) into Equation (17) must be satisfied identically. Thus,
substituting Equations (32) and (33) into Equation (A6) leads to the dimensionless pressure gradient:

P ¼ 1
Φ4

Φ1 1�xð ÞþΦ2

2
1�x2
� �þΦ3

o
sinh oxð Þ


 �
þ1�x3

6Da
�x

( )�1

(A7)
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The constants B1, B2, B3 and B4 involved in Equations (44), (46) and (48) can be determined by
applying the boundary conditions given by Equations (42) and (43) as:

B1 ¼ � e
6k

b 6A1þ3A2þ
P
Da

� 	
þ3A1þA2þ

P
4Da


 �
� 1þbð ÞB2 (A8)

B2 ¼
e
k

1�1
6

6A1þ3A2þ
P
Da

� 	
 �
(A9)

B3 ¼ 1þkð Þ B1þB2xþ
e
6k

3A1x
2þA2x

3þ P
4Da

x4
� 	


�B4cosh dxð Þ�A3

k
1�Bi

o2

� 	
cosh oxð Þ
o2�d2

þ P
1þk

x2

2
� 1

kd2

 !#
(A10)

B4 ¼ � 1
k 1þkð Þcosh dxð Þ

A3cosh oxð Þ
o2�d2

þ P

d2


 �
(A11)

The constant B0
3 involved in Equation (49) is given by:

B0
3 ¼ 1þkð Þ B1þB2xþ

e
6k

3A1x
2þA2x

3þ P
4Da

x4
� 	
 �

�A3

o2cosh oxð Þ�P
2
x2 (A12)

The constants C1, C2, C3 and C4 involved in Equations (56), (58) and (60) can be determined by
applying the boundary conditions given by Equations (54) and (55) as:

C1 ¼ �e 1þgð Þ
6k

b 6A1þ3A2þ
P
Da

� 	
þ3A1þA2þ

P
4Da
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� 1þbð ÞC2 (A13)

C2 ¼
e
k

1� 1þg
6

6A1þ3A2þ
P
Da

� 	
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(A14)

C3 ¼ 1þkð Þ C1þC2xþ
e 1þgð Þ
6k

3A1x
2þA2x

3þ P
4Da

x4
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�C4cosh dxð Þ �A3

k
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(A15)

C4 ¼
1

dsinh dxð Þ
g
k
�A3

k
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osinh o xð Þ
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(A16)
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