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Abstract

Purpose — The purpose of this paper is to analyze two different approaches (Models A and B) for an
adiabatic boundary condition at the wall of a channel filled with a porous medium. The analytical
solutions for the velocity distribution, the fluid and solid phase temperature distributions are derived
and compared with numerical solutions. The phenomenon of heat flux bifurcation for Model A is
demonstrated. The effects of pertinent parameter C on the applicability of the Models A and B are
discussed. Analytical solutions for the overall Nusselt number and the heat flux distribution at the
channel wall are derived and the influence of pertinent parameters Da and k on the overall Nusselt
number and the heat flux distribution is discussed.

Design/methodology/approach — Two approaches (Models A and B) for an adiabatic boundary
condition in porous media under local thermal non-equilibrium (LTNE) conditions are analyzed in this
work. The analysis is applied to a microchannel which is modeled as a porous medium.

Findings — The phenomenon of heat flux bifurcation at the wall for Model A is demonstrated.
The effect of pertinent parameter C on the applicability of each model is discussed. Model A is
applicable when C is relatively large and Model B is applicable when C is small. The heat flux
distribution is obtained and the influence of Da and k is discussed. For Model A, @ag, increases and
Pasuby Pacover decrease as Da decreases and k is held constant, @agy, increases and @agin, @acover
decrease as k increases while Da is held constant; for Model B, @gg;, increases and @pgy, decreases
either as Da decreases or k decreases. The overall Nusselt number is also obtained and the effect of
Da and k is discussed: Nu increases as either Da or k decrease for both models. The overall Nusselt
number for Model A is larger than that for Model B when Da is large, the overall Nusselt numbers for
Models A and B are equivalent when Da is small.

Research limitations/implications — Proper representation of the energy equation and the
boundary conditions for heat transfer in porous media is very important. There are two different
models for representing energy transfer in porous media: local thermal equilibrium (LTE) and LTNE.
Although LTE model is more convenient to use, the LTE assumption is not valid when a substantial
temperature difference exists between the solid and fluid phases.

Practical implications — Fluid flow and convective heat transfer in porous media have many
important applications such as thermal energy storage, nuclear waste repository, electronic cooling,
geothermal energy extraction, petroleum processing and heat transfer enhancement.

Social implications — This work has important fundamental implications.

Originality/value — In this work the microchannel is modeled as an equivalent porous medium. The
analytical solutions for the velocity distribution, the fluid and solid phase temperature distributions are
obtained and compared with numerical solutions. The first type of heat flux bifurcation phenomenon,
which indicates that the direction of the temperature gradient for the fluid and solid phases is different
at the channel wall, occurs when Model A is utilized. The effect of pertinent parameter C on the
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applicability of the models is also discussed. The analytical solutions for the overall Nusselt number
and the heat flux distribution at the channel wall are derived, and the effects of pertinent parameters
Da and k on the overall Nusselt number and the heat flux distribution are discussed.

Keywords Adiabatic boundary condition, Local thermal non-equilibrium, Heat flux bifurcation,
Porous media, Microchannel

Paper type Research paper

Nomenclature
a interfacial area per unit volume of s channel cover plate height (m)
the porous medium (m™) t channel base plate height (m)
Bi Biot number, hjaH?/k,. T temperature (K)
C Keover/Ks u velocity (m/s)
Ct heat capacity of fluid (J/kg K) Up, mean velocity (m/s)
Da Darcy number, pK/uH? U dimensionless velocity, <u > guy,
Ey relative error of dimensionless w total width of channel and channel
velocity fin (m)
Eum relative error of mean velocity We channel width (m)
Eu relative error of velocity
hy interstitial heat transfer Greek sy ”?b"k .
coefficient (W/m? K) o aspect ratio of the microchannel, H/w,.
. € porosity
H channel height (m) . ; . .
. . n dimensionless vertical coordinate, y/H
k effective thermal conductivity . .
ratio, ke/ke. 0; d1rpens1onless temperature of the
ke thermal conductivity of fluid fluid (<T > ~Tu)awHke)
(W/mK) 0, dimensionless temperature of the
Ko effective thermal conductivity S(.)hd (.< T> S_TW.) V(awtkse)
of fluid (W/mK) e v1sc0§1ty of the_ fluid
ks thermal conductivity of solid He effecFlve VISCOSW 3
W/mK) s density of the fluid (kg/m°)
Kee effective thermal conductivity of o dimensionless heat
solid (W/mK) 5 Subscripts
K permeability (m®) f fluid phase
L length of the REV (m) S solid phase
Nu overall Nusselt number W wall
Ny interstitial Nusselt number, h;Dy/k¢
p pressure (Pa) Other Symb()ls
P dimensionless pressure (K/ ey fum) < >f VOl‘ume'a:Veraged value over the
d<p>ddx) fluid region
a heat flux (W/m?) < > volume-averaged value over the
G heat flux over the bottom surface solid region
(W/m®)

1. Introduction

Fluid flow and convective heat transfer in porous media have many important

applications such as thermal energy storage, nuclear waste repository, electronic cooling,

geothermal energy extraction, petroleum processing and heat transfer enhancement.
Proper representation of the energy equation and the boundary conditions for heat

transfer in porous media is very important. There are two different models for



representing energy transfer in porous media: local thermal equilibrium (LTE) and local
thermal non-equilibrium (LTNE). Although LTE model is more convenient to use, the
LTE assumption is not valid when a substantial temperature difference exists between
the solid and fluid phases (Vafai, 2005). Nield and Kuznetsov (1999, 2010) and Kuznetsov
and Nield (2010, 2011) analyzed the effects of LTNE on convection in porous media. For
the constant heat flux boundary condition under LTNE model in porous media, Amiri
et al. (1995) presented for the first time two primary approaches: the first is based on
considering the heat flux is divided between the two phases relative to the physical
values of their effective thermal conductivities and temperature gradients. The second
method is based on the fluid heat flux being locally equal to the solid phase heat flux.
Martin et al. (1998), Lee and Vafai (1999), Kim and Kim (2001), Jiang and Lu (2007), Yang
and Vafai (2010, 2011c), Imani ef al. (2012), Ouyang et al. (2013a, b) have further analyzed
these approaches. Yang and Vafai (2010, 2011a, b, ¢) analyzed three types of the heat flux
bifurcation phenomenon which can occur near boundaries or interfaces and they are
discussed further by Nield (2012) and Vafai and Yang (2013). It is should be noted that
there is no work related to analyzing the adiabatic boundary condition in porous media.

The main objective of the present study is to analyze two approaches (Models A
and B) for an adiabatic boundary condition in porous media and the heat flux
bifurcation phenomenon. Since a porous medium has a complex structure, it is difficult
to investigate the microscopic heat and fluid flow in the porous medium. Koh and
Colony (1986) pointed out that the heat and fluid flow in a microchannel heat sink is
similar to that in a porous medium. Kim and Kim (1999, 2001) and Kim et al (2000)
obtained analytical solutions for the velocity distribution and temperature distributions
of the microchannel though the equivalent porous medium model. In this work the
microchannel is modeled as an equivalent porous medium. The analytical solutions for
the velocity distribution, the fluid and solid phase temperature distributions are
obtained and compared with numerical solutions. The first type of heat flux bifurcation
phenomenon, which indicates that the direction of the temperature gradient for the
fluid and solid phases is different at the channel wall, occurs when Model A is utilized.
The effect of the ratio of the thermal conductivity of the cover plate to the thermal
conductivity of the solid, C, on the applicability of the models is also discussed.
The analytical solutions for the overall Nusselt number and the heat flux distribution at
the channel wall are derived, and the effects of pertinent parameters Da and k on the
overall Nusselt number and the heat flux distribution are discussed.

2. Modeling and formulation

The geometry of the microchannel heat sink is shown in Figure 1(a). The direction of
fluid flow is parallel to x. The bottom surface is uniformly heated. The following
assumptions are involved in analyzing the problem:

(1) the flow and the heat transfer are steady;

(2) negligible natural convection and radiative heat transfer;
(3) hydrodynamically and thermally fully developed flow;
(4) laminar and incompressible flow; and

(5) properties are assumed to be constant.

The microchannel is modeled as an equivalent porous structure (Figure 1(b)). The
governing equations are established by applying the volume-averaging technique.

Adiabatic
boundary
condition in
porous media

979




HFF
26,3/4

980

Figure 1.
Schematic diagram
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Notes: (a) Microchannel; (b) equivalent porous structure

According to Kim and Kim (1999) and Kim ef /. (2000), which is based on the work of
Vafai and Tien (1981), the REV in this work is a slender cylinder aligned parallel to the
wall but perpendicular to x as shown in Figure 1(a), where L is much longer than w. The
momentum and energy equations are (Vafai and Tien, 1981; Amiri and Vafai, 1994):

d<p>f+ﬂ nd2<u>f Uy

G & = 1
dx < dy? K St=s 0 @
F<T>
kngszhla(<T>s—<T>f) @
o<T>; F<T>

=ha(<T>,—<T>y)+ky ®)

EpfCr <uU> g £ ayz
where < > ;represents a volume-averaged value over the fluid region; < > ¢ represents
a volume-averaged value over the solid region; p pressure; ., i are effective and fluid
viscosity, respectively; u velocity; e, K are porosity and permeability; K., ks are effective
thermal conductivity of the solid and fluid, respectively; T temperature; hy, a are interfacial
heat transfer coefficient and interfacial area per unit volume of the porous medium,
respectively; and py, c; are the density and heat capacity of the fluid, respectively.
According to Kim and Kim (1999) and Kim ef al. (2000), for the microchannel heat
sink shown in Figure 1(a), the porosity, and effective conductivities can be written as:

8= ke = (=0l kye = ol @

2.1 Boundary conditions (Model A)

In the first approach the sum of the product of the effective thermal conductivity and its
corresponding temperature gradient at top of the fluid and solid phases is set equal to
the imposed heat flux, based on the work of Amiri et al (1995). The boundary
conditions of Model A are:

<u>y=0aty=0H 5)



0<T>; , 0<T>y Adiabatic
<T>¢=<T>r="Ty,— ks ks, =q, at y=0 (6
f EY Ty G At boundary
- T condition 1n
<T>;= <T>faksea<8y>s+kfea<6y>f=0 at y=H () porous media
2.2 Normalization 981

Combining the governing energy Equations (2) and (3), and integrating the resultant
equation across the channel and incorporating the boundary conditions given by
Equations (6) and (7), the following equation is obtained:

o<T>¢
ar = Qw
where u,,, represents the mean velocity in the fluid region.

To normalize the governing equations and boundary conditions, the following
dimensionless variables are introduced:

epscrumH @

U St>s Da:ﬂgKZ 17:1 p_ K d<p>y
U weH H ety dx
<T>,-T <T>/-T kfe - haH?
OSZQZTM szquw k:k—se Bi = T )

where U is the dimensionless velocity; P, the dimensionless pressure; and 0, the
dimensionless temperature.
The non-dimensionalized equations and boundary conditions are expressed as follows:

U

d?0 .
WZS = Bi(0,—0y) 1)
U = Bi(0,—0y) +k@ (12)

dn?
U=0=0,=0at n=0 13)
do; . do, B

U=0 0;=0; kd—”+d—_0 t = (14)

2.3 Velocity distribution
From Equation (10) and boundary conditions (13) and (14), the velocity distribution-based
porous medium model is obtained (Kim and Kim, 1999; Kim et al, 2000):

1—cosh(y)

U=P { cosh(yn)+ sm—h(y) sinh(yn)—1 } 15)
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The velocity distribution in the rectangular duct has already been published by Shah
and London (1978), it can be transformed to the dimensionless variables as follows

Zoo 1 1 cosh((2n + 1)ra(n—0.5))
U n=0 " (2n+1)* COSh(MTm)

0 1 1 2 h 2n+1 (18)
Zn:O @n+1) [ @n+1)no tan ( TEO()}

where, « is the aspect ratio of the microchannel and:

o= H/w, 19

Comparing Equation (18) with Equation (15), the Darcy number, permeability and
effective viscosity can be characterized as:

1
Da=——
o)
2tanh (25-ny)
—_8 CZP 2
0 Z (2n+1)4 { @n+1Dma
2
ueH
e = (20)
Ko(o)
where:

o(a) = —1.52100" +8.00610°—15.82680° + 13.3804 .

—1.18200° +3.971162 +5.2327a
o(a) = 0.0029¢° +10.64584>—0.00930: + 1.4211
@(o) = 0.00560 +10.57620% 4 0.6672—1.0839 x> 10 1)

In the earlier works (Kim and Kim, 1999; Kim et al., 2000), the permeability, effective
viscosity and Darcy number were represented as follows

a<l

1<a<10

ew,2
12
_H

K=




To check the validity of Equations (20) and (22), we can define the errors of velocity Eyp, Adiabatic
(the error of the mean velocity), E, (the max error of the fluid velocity), Ey (the max boundary
error of the dimensionless velocity) as follows: condition in

E — |um,eq,(15)—um,eq_(1g)| porous media
o Um.eq.(18) 083
<u> —<u>
E,, = max ( feq.15) fea.19) )
Uf eq.(18)
U, -U
Ey = max (—‘ 20— e ) 23)
Ueq.18)

where, the subscripts eq.(15) and eq.(18) stand for velocity obtained from Equations (15)
and (18), respectively. Substituting Equations (20) and (22) into Equation (15), the
values shown in Figure 2 are obtained.

In Figure 2, Eu,, obtained from Equation (20) is zero. Therefore, the Eu; and Eu
obtained from Equation (20) will have the same value. It can be found that, Eus obtained
from Equation (20) is much smaller than Eu; obtained from Equation (22). Furthermore,
Eu obtained from Equation (20) is smaller than Eu obtained from Equation (22) within a
large range of o, except in the range of (0.6,1), where the errors of mean velocity and fluid
velocity obtained from Equation (22) are both large. Therefore, the velocity based on
Equation (20) presented in this work is more accurate than that based on Equation (22).

2.4 Temperature distributions
From Equations (11) and (12) and boundary conditions (13) and (14), the temperature
distribution is obtained as:

Pl inh
=1 {_énz + Catn+ Caz—Cag cosh(i)—Coassinh (i)

1—cosh(y)

1 .
+ (Da _E> { cosh(yn)+ Th(y)smh(“/ﬂ) H

0; =P {_%,72 +Cain+Cas +Da{cosh(w/) —i—lsi(r:lo—;(};()y)sinh(yn)}] —k0;  (24)
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2.5 Analytical solutions for the second primary adiabatic boundary condition (Model B)
The second approach presented in this work is based on assuming the heat fluxes of the
fluid and solid phases at top wall are zero, respectively, which is also based on the work
of Amiri et al. (1995). The heat flux is equal to the product of the thermal conductivity and
its corresponding temperature gradient at the top. As such, the temperature gradients
for the fluid and solid phases will be zero. Therefore, the boundary conditions for
Model B are:

<u>;=0aty=0H

o<T > o<T>
<T>s=<T>r=Ty, ke > kfe > f:qwaty:O
T T
0<T>,_0< ) at y=H (26)
oy oy

The momentum equation and boundary conditions for Model B are the same as
Model A, so the analytical solution for velocity distribution of Model B is the same
as Model A. The analytical solutions for temperature distributions of Model B can be
found as (Kim and Kim, 1999; Kim et al, 2000):

0 = 1L_;k [—%772 + Cp1n + Cp2—Cpscosh(An) — Cpysinh(4dn)
+ <Da —;) {cosh(yn) + l;cnohs(};()y) sinh(yn) H
0, =P [—;172 +Cpin+Cpo +Da{cosh(yn) +1g§)kls(};;@ sinh(yn)H —k0; (27)
where:

c _ Bi(1+k)y{1—cosh(y) } +f=Asinh(y)sinh(2) 28
b= Bi(1+k)icosh(Z)sinh(y)B @8)




3. Numerical simulations
3.1 Geometric model

A numerical model was formulated to solve the three-dimensional heat transfer in
microchannels. The simulation was performed for four different sets of parameters,

which are shown in Table I, for each model.
The computational domain, chosen from symmetry considerations, is shown in Figure 3.
The following dimensionless variable was introduced to show the geometrical condition: 985

' =t/Hs =s/H

3.2 Mathematical model for numerical simulation

The following set of equations were solved within the numerical simulations:

ou o0 ow_
ox oy o0z
P\ "ox oy oz)  ox a2 o2 622
u@—kv@—kw@ = _8_1) @—F@—i—@
P\ "ox o o0z) oy a2 o2 o2
P\"ox o o0z) oz H\ow o2 o2
Ty 0T, Ty FTy Ty Ty
G s ) g
pcp(u ox v oy tw 0z I\ o2 + oy? + 022

T, T, T,
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(29)

=0 30
ox: oy 072 (30
The flow boundary conditions are:
y=00<z<w/2) u=v=w=0
y=H(0<z<w/2) u=v=w=0
z2=00<y<H)u=v=w=0
ou oOv ow
z=w./20<y<H) —=—=—= 31
JA0SY<H) Ti=T= Gl
Da k C t' s’
Case 1 0.001 0.005 1 0.2 0.2
Case 2 0.05 0.005 1 0.2 0.2 Table 1.
Case 3 0.001 0.005 0 0.2 0.2 Different cases of
Case 4 0.05 0.005 0 0.2 0.2 numerical simulation
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Figure 3.
Computational
domain
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The thermal boundary conditions are:

y=—t —ks (0T /) = q,

y=s+H oT /oy =0

z=—(w—w,)/2 oT /oy =0 (2
z=1w./2 oT /oy =0

The convective terms were discretized using a second-order upwind scheme and
uniform grids were used in all three directions. Convergence criteria (absolute criteria)
for the continuity and momentum equations are 105, and convergence criterion
(absolute criterion) for the energy equation is 107'°. To check the grid independence of
the convective heat transfer results, three different meshes, 300 x 63 x 25, 300 X 63 x 35,
300x63x48, are used in the domain. The relative change for the temperature
difference between the top and the bottom in the fluid region is 0.5 percent from the
first to second mesh, and 0.5 percent from the second to the third mesh. Hence the
second mesh was used in the domain for the results in this work.

4. Results and discussion

4.1 Comparisons between the analytical and numerical solutions

To validate the equivalent porous medium model of the microchannel heat sink, the
analytical solutions are compared with the numerical solutions. Figure 4 shows that,
the analytical solutions for the velocity agree well with the numerical solution. When
C =1, the temperature distributions based on Model A agree well with the numerical
solutions. Also when C =0, the temperature distributions based on Model B agree well
with the numerical solutions.
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Figure 5.
Effects of Da
and k (Model A)

Figure 6.
Effects of Da
and k (Model B)

It is important to note that the direction of the temperature gradient for the fluid and
solid phases are different at the wall for Model A. This leads to a heat flux bifurcation
phenomenon. However, this phenomenon does not occur for Model B.

4.2 Effects of Da and k on temperature distributions

Figures 5 and 6 show the effects of Da and k on the dimensionless temperature
distributions of Models A and B. As shown in Figures 5 and 6, the temperature
difference between the two phases decreases as either Da decreases or k increases for
the two models. When Da=0.001 and k=1, the solid temperature is not
distinguishable from the fluid temperature, which means the LTE model is valid for
this case.

4.3 Effect of thermal conductivity ratio C

When Da =0.001 and k = 0.005, analytical solutions based on Models A and B, and
numerical solutions for different values of C are shown in Figure 7. It can be seen that
Model B is applicable when C is small and close to 0 and Model A is applicable when C
is relatively large.
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Notes: (a) Effect of k on temperature distributions (Da=0.001); (b) effect of Da on
temperature distributions (k=1)
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temperature distributions (k=1)
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4.4 Biot number
The Biot number Bi appearing in the above equations is related to the effective thermal
conductivity ratio (k), interstitial Nusselt number (Nu;) and aspect ratio ():

. h[(lH 2
- kse
In addition, a functional relationship of Nu; in terms of a can be deduced from the

values of h; a which are obtained from numerical solutions for various aspect ratios. For
Model A, variations of Nu; with respect to the aspect ratio, as shown in Figure 8, yields:

Bi = kNuwa(o+1) (33)

Nuy = 2.851+7.247 (0%1) : (34)
And for Model B, this variation is (Kim and Kim, 1999; Kim et al., 2000):
5 \ 15
Nu; = 2.253+-8.164 (fx——i-l> (35)

10— Equation (34)

®  Numerical result

\

Equation (34)

Interstitial Nusselt number
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Figure 7.
The effect of C

Figure 8.

Effect of the aspect
ratio on the
interstitial Nusselt
number (Model A)
variations
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4.5 Heat flux distribution

4.5.1 Model A. The heat flux, which is supplied from the bottom of the substrate,
interacts in three different ways with the fluid: first, heat transfer to the fluid though
the exposed channel base, qa«up; second, heat transfer to the fluid though the fin, qafip;
third, heat transfer to the fluid though the cover plate, qacover- The three heat flux can
be expressed as:

0<T>y

qAsub = _kfe Py

y=0

o< T >
_ —kseT
y=0 y

o< T >

Qafin = —kse >

)

6<T>f

4 Acover = kfe oy

y=H

Equation (36) can be non-dimensionalized by introducing the following variables:

9 Asub dafi da
(pAsub == ¢Afz'n = A (/)Acover = @37

Qo T4, Qw

The non-dimensionalized equations are expressed as follows:

005

00
¢Asub = _k% .

004
» d)Afm - 8’7

o

00
Do = g (38)

N lp=1

n n=0

After some manipulation using Equation (24), the dimensionless heat can be expressed
as follows:

Pk 1 ; 1—cosh(y)
5) st

P asup = 1% [CAl—CAM-l- (Dtl—— y Sinh()

¢Af in = 1- ¢Asub - ¢Ac(wer

Pk . : 1\ 1—cosh(y)
b doover = i k{ 14 Cy1—Cy3/sinh(4)—Cyyicosh(A) (Da B)/ sinh(y) }

(39)

As shown in Figure 9, @aqp, increases as either Da increases or k increases, @agin
decreases as either Da increases or k increases, and @acover iNCreases as either Da
increases or k decreases. As the aspect ratio of the microchannel o decreases,
Da increases. The decrease in « in turn results in a decrease in the interstitial heat
transfer coefficient as well as a decrease in the specific wetted area. It is responsible for
an increase in Qasyp, and Qacover aS Well as a decrease in @ag,. As k increases while
Da is held constant, the ratio of the conduction resistance through the fins to the
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convection resistance becomes larger, which leads to an increase in @aqu, as well as a
decrease in @ag, and @acover-

As shown in Figure 9(c), when Da is less than 107>, @ acover approaches 0, and @ asup
is almost equal to @agy,. This is because LTE model is valid for this case, as shown in
Figure 5(a).

4.5.2 Model B. The heat flux, which is supplied from the bottom of the substrate,
goes to the fluid in two ways: first, heat transfer to the fluid though the exposed
channel base, qpeover; Second, heat transfer to the fluid though the fin, qgg,. The two
heat flux can be expressed as:

0<T>y
oy

ABsup = _kfe
y=0

o< T>;

qBfin = _kseT (40)

y=0

And the equations can be non-dimensionalized by introducing the following variables:

— 4Bsup
Bsub —

qBfin
bprin = i 41)

w QW
The non-dimensionalized equations are expressed as follows:
00s 005

= —h— Y= 42
d)b’sub 877 nzod)Bfm 61’] 40 ( )

After some manipulation using Equation (27), the dimensionless heat can be expressed
as follows:

_ Pk P _ 1Y\ 1—cosh(y)
P =137 [CBI CB“”<D B)V sinh(y) ]

d)Bfin = 1_¢Bsub (43)

As shown in Figure 10, @ggyp, increases and ¢gg, decreases as either Da or k increases.
When the aspect ratio of the microchannel a decreases, Da increases. The decrease in o
in turn results in a decrease in the interstitial heat transfer coefficient as well
as a decrease in the specific wetted area. It is responsible for an increase in @ggy, and a
decrease in @gfy,. As k increases while Da is held constant, the ratio of the conduction
resistance through the fins to the convection resistance gets bigger. It leads to an
increase in @pgyp, and a decrease in Qg

Since LTE model is valid when Da is less than 107> and k = 1, as shown in Figure 6(z),
PBsub 1S equal to g, when Da is less than 107 and k = 1, as shown in Figure 10(c). The
analysis of heat distributions of the models explains why the phenomenon of heat flux
bifurcation at the wall is observed in Model A and not in Model B.
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4.6 Quverall Nusselt number
Using Equations (15), (24) and (27), the non-dimensional bulk mean temperature of the
fluid for Models A and B can be calculated as:

P? 1 sinh(y)+ acosh() y) 1 sinh(y)+ ocosh(y)—o
Ofb_/ UOfdn_lJrC[ 2y I P

Lo ( smh(y) + acosh(y)) LG <_ 1+ sinh(y) + aycosh(y)— a)

Cg sinh(y + 4)+acosh(y + 1)—o n sinh(y—2)+ocosh(y—A)—a 2sinh(4)
2 ) — 7
9 osinh(y+A)+cosh(y+4)—1 osinh(y—24)+cosh(A—y)—1 2(cosh(1)—1)
2 y+A y—A 2
+1 <Da—l) (1_02 N (14 ¢%)sinh(2y) +20(cosh(2y)—1)—4(sinh(y) + Cosh(y)—l)) ]
B 2y
(44)
_1—cosh(y) Cr— _(cosh(y)—l)
" sinh(y) 1= ysinh(y)
1 k
Co=-Ditpih @~ B+
kcosh(4)—1
C4 = Bid -tk DaBsinin o)
Bi(1+k)y{1—cosh(y) } +£ ) sinh(y)sinh(4)
Ci= Bi(1 7 %)Zcosh()sinh(1)B (ModelB) 2
The overall Nusselt number can be determined as:

kee(Tw—Trp) kOr

In order to show the effects of Da and k on the overall Nusselt number, the
contour map of the overall Nusselt number with respect to Da and k is presented in
Figure 11. In this figure, Nu increases as either Da or k decreases for both two
models, which results from an increase in the interstitial Nusselt number or
a decrease in the thermal resistance of the fin. The overall Nusselt number for Model
A is larger than that for Model B for the same Da and k when Da is large enough.
This is because the heat exchange area for Model A is larger than that for Model
B as there is no transfer through cover plate for Model B. The overall
Nusselt numbers for Models A and B approach the same value when Da is
small, this is because the heat transferred to the fluid though the cover plate
approaches zero for Model A when Da is small. As Da approaches infinity (i.e. a — 0),
the two models are identical to fully developed convective flow between
parallel plates with different uniform heat fluxes on two sides, and the heat



1| @ Model A \‘&\
7750 Model B )

log (k)

log (Da)

flux on the top side (the cover plate) is m times of that on the bottom side
(the channel base):

. 1400+ 1)
o N = 2o+ ) @7)

where, for Model A, m =1/(1 + 2k) and for Model B, m =0.

When Da approaches infinity and 2— 0, it can be seen that m — 1 in Figure 9.
Thus Model A is identical to fully developed convective flow between parallel plates
with the same uniform heat flux on two sides, and the overall Nusselt number is 16.47.
When Da approaches infinity, Model B is identical to the fully developed convective
flow between parallel plates with uniform heat flux on the bottom side and insulated on
the top side; and the overall Nusselt number is 5.385. These values are the same as
those given in the literature (Bejan, 2013).

When both Da and k are small, the overall Nusselt number is independent of k for
both Models A and B, as shown in Figure 11. When k approaches 0, Model A will be
equal to a fully developed convective flow in a rectangular channel with uniform
temperature on the channel walls, which linearly increases along the direction of the
flow. To show this, the overall Nusselt numbers obtained from Model A and that for a
rectangular channel are compared in Figure 12(a). The Nusselt numbers for rectangle

(@) o ®)

3

Model A Model B

——= Equation (48) ——~ Equation (50)

log (Nu)
log (Nu)

1 " " N . " " " "
-0.7 -0.4 -0.1 0.2 0.5 0.7 -0.7 -0.4 -0.1 0.2 05 07

log (cr) log (o)
Notes: (a) Obtained from Model A and Equation (48); (b) obtained from Model B and
Equation (50)
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the overall

Nusselt numbers




HFF
26,3/4

996

channel can be presented as:

1 & 1 @n+1)na
= 2n+1)n%o tanh® |- 2=
Nu 16%02;:;(2%1)1%3053{( 7+ Dnotan [ 2 }

9 9| @n+1)ma 30 9 9 Zn+1)no 3
+ 7na” tanh [ 5 }+ [(2714—1) (2n+1)n“o” |tanh — 157

48)
where:

&1 2 @+l
MO_Z(2n+1)4{1 (2n+1)mlanh[ 5 ]} 49)

n=0

It can be seen that these two results agree very well when « is larger than 0.6.

Also, when k approaches 0 and Da is small, Model B will approach that of a fully
developed convective flow in rectangular channel with insulated condition on the top
wall and uniform temperature on the left, right and bottom walls, which linear
increases along the direction of the flow. To show this, the overall Nusselt numbers
obtained from Model B and the cited rectangular channel are compared in Figure 12(b),
where the Nusselt number for rectangular channel can be presented as:

o [(2n+1)no 22 [@n+Dno
16%022(271—}—1)1071:30(3{ motanh [ 2 } (2n+1)Lanh 2

2matanh? [(2” gl)““} +2(2n+1)n2o2tanh |:(2n + 1)71(1 o

sinh? [(271+2 1)7w.i| n cosh? {(2n+2 1)m}

—1lna

4 3|@2n+1) 2[@n+1) On+ Do
+(2”“’tanh [ 2 M] Amertanh [ : m} +(2n+1)ual’lh{ 2 m} (50)
1+ tanh? [M}

It can be seen that these two results agree very well when o is larger than 0.4.

5. Conclusions

Two approaches (Models A and B) for an adiabatic boundary condition in
porous media under LTNE conditions are analyzed in this work. The analysis is
applied to a microchannel which is modeled as a porous medium. The phenomenon of
heat flux bifurcation at the wall for Model A is demonstrated. The effect of the ratio
of the thermal conductivity of the cover plate to the thermal conductivity of the
solid, C, on the applicability of each model is discussed. Model A is applicable
when C is relatively large and Model B is applicable when C is small. The heat
flux distribution is obtained and the influence of Da and k is discussed. For Model A,
Pafin Increases and @ aqub, Pacover decrease as Da decreases and k is held constant, @asu
increases and Qafin, Pacover decrease as k increases while Da is held constant; for
Model B, @ggi, increases and @ggyp, decreases either as Da decreases or k decreases.
The overall Nusselt number is also obtained and the effect of Da and k is discussed:
Nu increases as either Da or k decrease for both models. The overall Nusselt



number for Model A is larger than that for Model B when Da is large, the overall
Nusselt numbers for Models A and B are equivalent when Da is small. This
work would benefit to the research on the heat transfer in porous media under
LTNE condition.
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