Modeling and Analysis of an Efficient Porous Media for a Solar Porous Absorber With a Variable Pore Structure

A theoretical mathematical model that considers the continuous linear porosity or pore diameter distribution is established to develop a novel porous absorber with variable pore structure, which will result in a thermopressure drop improvement. Efficient performance can be achieved based on reconstruction of the velocity, temperature, and radiation fields. Collimated and diffusive radiative heat fluxes and the heat loss mechanism from the irradiated surface are analyzed in the presence of the volumetric effect. This study analyzes three typical linear pore structure distributions: increasing (I), decreasing (D), and constant (C) types, respectively. In general, the D type porosity (ϕ) layout combined with the I type pore diameter (d_p) distribution would be an excellent pore structure layout for a porous absorber. [DOI: 10.1115/1.4037161]

Keywords: variable pore structure, modeling, thermal efficiency, pressure drop, solar absorber

1 Introduction

Despite various designs, all the receivers can be divided into two types according to the basic heat transfer element of the absorber, which is either tubular or volumetric. With the gas tubular absorber, the glass window is easily maintained due to the low heat transfer coefficient [2].

Roldán et al. [3] studied and experimented with the heat transfer processes of a cavity solar furnace and the data were compared with the numerical simulation results. A computational model has been developed to study the influence of wind and the effect of return-air conditions on the efficiency of a previously tested volumetric receiver [4]. Some in-house numerical research has also been carried out. Cheng et al. [5] coupled the heliostat field with the windowed volumetric solar receiver (VSR) using the developed Monte Carlo ray tracing code. The optical efficiency of the heliostat field and the local heat flux distribution within the silicon carbide (SiC) absorber is calculated, and the same method is applied to a cylinder VSR in a dish system [6]. Furthermore, Fend et al. developed a flow-scheme and temperature distribution of a modular single cup absorber [7]. The influence on the temperature distribution and efficiency from slight geometric changes to the absorber was then analyzed. A solar receiver integrated with a small-scale (10 kWel) gas turbine system has been designed with a special focus on the tradeoffs between efficiency, pressure drop, material utilization, and economic considerations [8].

The critical advantage of the VSRs derives from the heat-resistant porous absorber (over 1300 °C) under the “volumetric effect,” the pore structure enhancement of radiative energy transfer into a vertical channel was analyzed in an earlier work [9]. We also presented a unified theoretical model [10] in a windowed VSR as well as a small-scale experiment [11] to validate the model. Some researchers also found this effect during the optimization design. Roldán et al. [12] proposed configurations depending on the porosity in the radial and depth directions. They proposed using a set of porous slabs with different porosities as an alternative to a previous design. Chen et al. [13] investigated a double layer effect on the thermal performance of an absorber. The results indicate that the thickness of the first porous layer has a significant effect on the temperature field and pressure drop. Wang et al. systematically revealed this unique phenomenon of the porous absorber under the initial collimated irradiation [14]. We found out that the thermal performance of the absorber is significantly dependent upon the distribution of the incoming radiation on the porous media.

We propose a novel porous absorber with a variable pore structure, with a linear porosity or pore diameters distribution in the flow direction. The fluid and radiation fields will be reconstructed taking into account that the volumetric effect, the thermal performance, and the pressure-drop improvement can be carried out accordingly.

2 Model

A picture of the schematic diagram of a porous absorber with a variable pore structure medium we have proposed is shown in Fig. 1. The length in the flow direction (x) is L, and the height H in the vertical direction is assumed to be sufficient so that a one-dimensional approximation in the direction of the incoming irradiation can be invoked. We also assume that the solid matrix in the vertical direction is homogeneous and isotropic.

2.1 Local Thermal Nonequilibrium (LTNE) Model. Continuity equation

$$\frac{d(\rho \mu)}{dx} = 0$$

(1)

Momentum equation

For the one-dimensional flow, the momentum equation can be simplified to

$$\frac{d(P)}{dx} = -\frac{\mu_1}{K}(u) - \frac{\mu_1 F \varphi}{\sqrt{K}} (u)^2$$

(2)
incident collimated irradiation is removed from the intensity field, the remnant intensity can deviate only slightly from the isotropic condition. Similar to the classic P-1 model, we treat the remnant portion as fairly diffuse, which is the result of emission from the boundary and within the medium as well as the radiation scattered away from the collimated irradiation. We thus express the diffuse radiative flux q_d and the incident radiation G_d as follows:

$$\frac{d q_d}{dx} = \kappa (4 \sigma \langle T_i \rangle^4 - G_d) + \sigma_c G_c$$ \hspace{1cm} (10)$$

$$q_d = -\frac{1}{3 \beta} \frac{d G_d}{dx}$$ \hspace{1cm} (11)$$

Combining the expressions for q_d and G_d from Eqs. (10) and (11), the differential equation for G_d is obtained as

$$0 = \frac{1}{3 \beta} \frac{d^2 G_d}{dx^2} + \kappa (4 \sigma \langle T_i \rangle^4 - G_d) + \sigma_c G_c$$ \hspace{1cm} (12)$$

Meanwhile, q_r, the remnant collimated radiative flux after partial extinction through absorption and scattering along its path in a direction perpendicular to the boundary, is given by the exact solution

$$q_r = s G_c = q_0 e^{-\tau}$$ \hspace{1cm} (13)$$

where s is the unit vector. The extinction coefficient β is the sum of the absorption κ and the scattering coefficients σ_c, and the initial incoming collimated flux q_0 at $x = 0$ is 1 MW/m^2. The trend of the change of extinction coefficient can be represented as

$$\beta = \frac{\Psi}{d_p} (1 - \varphi)$$ \hspace{1cm} (14)$$

where the value of Ψ is a constant 3 based on the properties of reticulated porous ceramic (RPC) [17]. The expressions for the absorption and scattering coefficients are given as follows:

$$\kappa = (2 - \varepsilon) \frac{3}{2 d_p} (1 - \varphi)$$ \hspace{1cm} (15)$$

$$\sigma_c = \varepsilon \frac{3}{2 d_p} (1 - \varphi)$$ \hspace{1cm} (16)$$

2.3 Variable Porous Structure

Considering the linear distribution of the porosity φ and pore diameter d_p in the x direction, the optical thickness τ is given by $\tau = \int_0^L \beta(x) dx$. The variation of the porosity in the x direction is defined by a linear function

$$\varphi = \varphi_i + \frac{\varphi_o - \varphi_i}{L} x$$ \hspace{1cm} (17)$$

where the φ_i and φ_o are the porosity of the porous absorber at the inlet and outlet, respectively. The porosity gradient is defined as $G_p = (\varphi_o - \varphi_i)/L$. L is selected as 0.05 m, which is a typical thickness for solar absorbers. Similarly, the variable pore diameter d_p distribution in the x direction is given as

$$d_p = d_i + x G_{d_p}$$ \hspace{1cm} (18)$$

Thus, the derivative of the collimated irradiation q_0 for the variable porosity and pore diameters can be given, respectively, as
\[
\frac{d\phi}{dx} = -\beta(x)q_0e^{-\tau} = \begin{cases}
\frac{3(1 - \varphi_a)x - 1.5Gp_x^2}{d_p}, & \varphi = \text{const} \\
\frac{3(1 - \varphi)}{G_d}\ln \left(\frac{G_d\varphi x + d_x}{d_x}\right), & \varphi = \text{const}
\end{cases}
\]

(19)

2.4 Boundary Conditions

2.4.1 Irradiated Surface. The entrance of the fluid flow is the irradiated surface and the only source of radiative heat loss. In the model, we disregard the effect of the porous structure on the inlet fluid flow and irradiation at the boundary wall. The wall is treated as a transparent virtual surface; it is homogeneous and diffusely gray with emissivity \(\varepsilon_0 \). Under this assumption, the total incoming irradiation \(\varepsilon_{\text{eff}} \) entering the porous medium is constant. The remnant part of the incoming irradiation after absorption and scattering is treated as a volumetric phenomenon; its distribution in the incident direction can be expressed as \(q_s = \varepsilon_{\text{eff}}\sigma T^4 \).

For the solid phase, convection on the boundary surface is considered to have been reached when the relative variation of temperature between consecutive iterations is smaller than 10\(^{-5}\). For the temperatures between 100 K and 2000 K. The density \(\rho_c \), the heat capacity \(c_p \), and the dynamic viscosity \(\eta_c \) the correlations are:

\[
\rho_c = 1.82161 \times 0.00000762955 \times 10^{-7} \cdot T_i^2 + 6.9492583 \times 10^{-11} \\
C_p = 1038.1 - 0.310926 \cdot T_i + 0.0000515625 \cdot T_i^2 \\
\eta_c = -8.36 \times 10^{-7} + 8.36 \times 10^{-8} \cdot T_i - 7.69429583 \times 10^{-11} \\
\cdot T_i^4 + 4.6437266 \times 10^{-14} \cdot T_i^5 - 1.06585607 \times 10^{-17} \cdot T_i^6
\]

(26)

\[\theta_1 = \frac{T_1}{T_e}\]

(27)

where \(L \) is the thickness of the porous medium, and \(T_e = 300 \text{K} \) is the ambient temperature. The conductive heat flux for the solid phase \(\Psi_s \) can be represented as:

\[\Psi_s = -\frac{\lambda_d d(T_s)}{q_0} \frac{d(T_s)}{dx}\]

(28)

and the diffuse radiative flux \(\Psi_d \) and the collimated radiative flux \(\Psi_c \) can be represented as follows:

\[\Psi_d = -\frac{1}{3\beta q_0} \frac{dG_d}{dx}\]

\[\Psi_c = G_c/q_0\]

(29)

(30)

For air, the thermal properties are fitted to data from Ref. [18] for the temperatures between 100 K and 2000 K. For the density \(\rho_c \), the heat capacity \(c_p \), and the dynamic viscosity \(\eta_c \) the correlations are:

\[
\rho_c = 1.82161 \times 0.00000762955 \times 10^{-7} \cdot T_i^2 + 6.9492583 \times 10^{-11} \\
C_p = 1038.1 - 0.310926 \cdot T_i + 0.0000515625 \cdot T_i^2 \\
\eta_c = -8.36 \times 10^{-7} + 8.36 \times 10^{-8} \cdot T_i - 7.69429583 \times 10^{-11} \\
\cdot T_i^4 + 4.6437266 \times 10^{-14} \cdot T_i^5 - 1.06585607 \times 10^{-17} \cdot T_i^6
\]

(31)

\[\frac{\partial T}{\partial y} \bigg|_{x=0} = T_e \]

(21)

The related dimensionless parameters can be defined as follows:

\[X = \frac{x}{L}\]

(25)

Journal of Solar Energy Engineering

OCTOBER 2017, Vol. 139 / 051005-3

the maximum solid temperature inside the porous medium due to the volumetric effect. It then converges to zero quickly, hence, the dimensionless length X is shown only before 0.2 in Fig. 2(b). For the D type layout ($\phi = 0.9–0.5$), the volumetric effect is enhanced, and the incoming irradiation can penetrate deeply into the porous medium compared to the I type. Hence, the maximum temperature point is put forward into the absorber. Consequently, a lower solid temperature at the irradiated surface is achieved.

Since the D type layout is better than the I type, two D type porosity layouts ($\phi = 0.8–0.5$ and $\phi = 0.9–0.5$) are compared for the same average porosity $\phi = 0.7$ It can be seen in Fig. 3(a) that the larger the gradient of the φ distribution, the lower the solid temperature θ_t at the irradiated surface, resulting in a larger outlet fluid temperature θ_f. In the absorber, the larger gradient porosity distribution results in less conductive heat loss and diffusive radiative loss at the irradiated surface (see Ψ_s and Ψ_d in Fig. 3(b)), which is beneficial for decreasing the total heat loss of the absorber.

With the same porosity φ_i at the irradiated surface, the effect of the porosity at the back side (φ_o) of the absorber on the temperature distribution is also analyzed in Figs. 4(a) and 4(b). Three different values of φ_o were selected ($\varphi_o = 0.45$, $\varphi_o = 0.7$, and $\varphi_o = 0.8$) as can be seen in Fig. 4(a). The dimensionless temperature distributions of the fluid phase θ_i and the solid phase θ_t are also shown in Fig. 4(a). The temperature gradients are similar to each other at the irradiated surface because of the same value of φ_i. However, with an increase in the value of φ_o, the outlet fluid temperature on the back side increases. That is, with a larger inlet porosity ($\varphi_o > 0.8$), the larger φ_o is, the higher the thermal efficiency will be.

Figure 4(b) shows the distribution of the conductive heat flux Ψ_s and the radiative heat flux Ψ_d in the solid phase. Both conductive and radiative heat fluxes attenuate to zero at the back side of the absorber, which shows that the selection for the thickness of the absorber is appropriate. Before the “crossing point” (see the green point near $X = 0.1$) near the irradiated side of the absorber, there is a larger porosity gradient resulting in a more compact pore structure, hence the absolute value of the Ψ_s, i.e., the direct radiative losses are larger.

3.2 Effect of Variable Pore Size Distribution

The effect of a variable pore diameter distribution on the energy transport and the pressure drop is different than that of the porosity due to different heat transfer and radiation properties. Consequently, an analysis was carried out based on different pore diameter distributions:

- **D** type ($d_p = 3–1$ mm),
- **I** type ($d_p = 1–3$ mm), and
- **C** type ($d_p = 2$ mm) layouts (Fig. 5).

The premise of the comparison is that the average pore diameter is a constant $d_p = 2$ mm ($d_p = (d_p + d_p)/2$) with the same porosity $\varphi = 0.9$. The dimensionless temperature distribution shows that D type is better than the I type.

Fig. 2 Comparison between the I and D type porosity layout on the temperature and heat flux fields along the X axis: (a) dimensionless temperature θ and (b) dimensionless heat flux Ψ ($d_p = 2$ mm and $q_0 = 1$ MW/m²²)

Fig. 3 Effect of the porosity distribution gradient on the temperature and heat flux fields along the X axis: (a) dimensionless temperature θ and (b) dimensionless heat flux Ψ ($d_p = 2$ mm and $q_0 = 1$ MW/m²²)
The difference in the dimensionless outlet air temperatures between the D and I type is nearly 50 K, which shows that the variable distribution has a significant effect on the thermal performance.

The distribution of conductive heat flux W_s and radiative heat flux W_d in the solid phases is also given in Fig. 5(b). For the I type layout, the volumetric effect is weakened at the irradiated side. In this case, the heat transfer between the solid and fluid phases is enhanced due to the compact pore structure at the irradiated side. Considering the solid section area is constant under the same porosity between the two types of layouts, the absolute values of W_s and W_d near the irradiated surface for the I type are very close but slightly lower than that of the D type. Combined with the earlier results, the D type porosity layout simultaneously with the I type pore layout would be an excellent pore structure for energy transport along the X axis of the porous absorber.

Since the I type is better than the D type, three different pore diameters at the back side of the absorber are selected: $d_o = 1\, \text{mm}$, $2\, \text{mm}$, and $3\, \text{mm}$. With the same pore diameter at the irradiated surface ($d_i = 0.5\, \text{mm}$), the effect of d_o on the dimensionless temperature distribution is displayed in Figs. 6(a) and 6(b). The temperature distributions are similar to each other because of the same d_i at the irradiated surface. However, with a decrease in the value of d_o, the outlet fluid temperature at the back side increases, which is due to the smaller average value of d_p. As such, the interphase convection is enhanced, which is beneficial for improving the thermal performance of the absorber. The variable pore diameter influences the energy transport by a different mechanism than that of the variable porosity. That is, the former has a greater effect on the conductive heat flux Ψ_s, as compared to the radiative heat flux Ψ_d.

4 Conclusions

A modeling work that considers the continuous linear porosity or pore diameter distribution is presented to develop a novel porous absorber with a variable pore structure. Three typical distribution layouts which were analyzed, included the I, D, and C types. The mechanisms for convective and radiative transport considering the variable pore structure distribution were discussed in detail.

The D type porosity distribution is better than the I type. Due to the enhanced volumetric effect, the incoming irradiation can penetrate deeper into the porous medium compared with the I type. Consequently, a lower solid temperature at the irradiated surface is achieved. The variable pore diameter influences the energy transport by a different mechanism than the variable porosity. The variable pore diameter has a greater effect on the distribution of conductive heat flux Ψ_s in the solid phase than the radiative heat flux Ψ_d. Comprehensively, the D type porosity layout combined with the I type pore layout could work well for energy transport along the X axis of the absorber.
with the \(I \) type pore distribution would be an excellent pore structure layout for a porous absorber.

Due to the absence of experimental correlations, one of the \(\varphi \) and \(d_p \) values is set to be a constant when the other one is considered to be a variable. The combination of these two parameters can be further analyzed and more detailed information of the energy transport can be revealed at a pore-scale level analysis focused on this variable pore structure.

Acknowledgment

The support of the National Natural Science Foundation of China (No. 51509076), Natural Science Foundation of Jiangsu Province (No. BK20150816), and Fundamental Research Fund for Central Universities under Project No. (2017B13814) is acknowledged. The authors also gratefully acknowledge the financial support from the National Basic Research Program (973 Program, No. 2010CB227102) of Chinese Science and Technology Department.

Nomenclature

\[c_p = \text{specific heat of fluid at constant pressure (J kg}^{-1}\text{K}^{-1}) \]
\[d_p = \text{pore diameter (m)} \]
\[F = \text{inertial coefficient} \]
\[G = \text{incident radiation/gradient} \]
\[h_f = \text{fluid-to-solid heat transfer coefficient (W m}^{-2}\text{K)} \]
\[K = \text{permeability (m}^2) \]
\[L = \text{thickness of a absorber (m)} \]
\[P = \text{pressure (Pa)} \]
\[Pr = \text{Prandtl number} \]
\[q = \text{heat flux} \]
\[q_0 = \text{initial heat flux (W m}^{-2}) \]
\[\delta = \text{unit vector in the direction of the fluid flow} \]
\[T = \text{temperature (K)} \]
\[u = \text{velocity (m/s)} \]
\[V = \text{velocity vector (m s}^{-1}) \]

Greek Symbols

\[\alpha = \text{specific surface area of the porous medium (m}^{-1}) \]
\[\beta = \text{extinction coefficient (m}^{-1}) \]
\[\varepsilon = \text{emissivity} \]
\[\zeta = \text{ratio of solid to fluid thermal conductivities} \]
\[\theta = \text{dimensionless temperature} \]
\[\lambda = \text{thermal conductivity (W m}^{-1}\text{K}^{-1}) \]
\[\mu = \text{dynamic viscosity (kg m}^{-1}\text{s}^{-1}) \]
\[\rho = \text{density (kg m}^{-3}) \]
\[\sigma = \text{Stefan–Boltzmann constant} \]
\[\sigma_s = \text{scattering coefficient} \]
\[\tau = \text{optical thickness} \]
\[\varphi = \text{porosity} \]
\[\Psi = \text{dimensionless heat flux} \]
\[\omega = \text{single scattering albedo} \]

Subscripts

\[a = \text{average} \]
\[c = \text{collimated} \]
\[d = \text{diffuse/pore diameter} \]
\[e = \text{effective/environment} \]
\[f = \text{fluid phase} \]
\[i = \text{inlet} \]
\[o = \text{outlet} \]
\[s = \text{solid phase} \]

References

