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1.1 INTRODUCTION

The application of computational methods in modeling biological systems has
been a topic of interest for various physicians and engineers. This interest stems
from the rapid advancement of computational technology. Many medical opera-
tions have sought the help of engineering methods to ascertain the safety and to
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determine the risk levels involved in any surgery. Further, the accurate descrip-
tion of the thermal interaction between vasculature and tissues is essential for
the advancement of medical technology in treating fatal diseases such as tumors
and breast cancer. At present, mathematical models have been used significantly
in the analysis of hyperthermia in treating tumors, cryosurgery, laser eye surgery,
fetal-placental studies, and many other applications. For example, the success of
hyperthermia treatment strongly depends on knowledge of the heat transfer pro-
cesses in blood-perfused tissues. As such, accurate thermal modeling is essential
for effective hyperthermia treatment.

1.1.1 Hyperthermia

Hyperthermia treatment has been demonstrated effective as a cancer therapy
in recent years. Its objective is to raise the temperature of pathological tissues
above cytotoxic temperatures (41°C to 45°C) without overexposing healthy tis-
sues [1-4]. Conventional hyperthermia in conjunction with radiation has dem-
onstrated increased effectiveness in the treatment of certain types of cancer, such
as those of liver metastases (the spread of a disease from one organ or part to
another noncontiguous organ or part) [5-7]. Uniform temperature distributions
are significant to achieve and maintain during hyperthermia treatment [8] since
the use of temperatures above 55°C may directly destroy tissues through thermal
coagulation, as was illustrated by Beacco et al. [9]. For safety consideration in
clinics, it is essential to ensure necrosis (the death of living cells or tissues) of the
total tumor cells within the desired volume of treatment while minimizing the
thermal damage to healthy tissues surrounding the tumor. Temperature varia-
tions, which may be associated with the mechanisms of heat removal by the body
and inadequate heating technologies, are often heterogeneous, and can lead to an
undesired heating of the tissues, hot spots, and potential burning.

An important source of temperature nonuniformity is the presence of large
vessels entering the heated volume and carrying blood at a low systemic tempera-
ture (37°C). Blood flow is found to have a profound influence on the efficiency of
thermal therapy treatment. The design of delivered power devices and numer-
ous theoretical, experimental, and clinical studies have demonstrated that large
blood vessels may produce localized cooling regions within heated tissues during
hyperthermia treatment [10-15]. Thus, for process control, it is essential to obtain
a temperature field of the entire treatment region in order to deliver an adequate
amount of energy to the treatment target volume and raise its minimum temper-
ature above 42°C, while controlling the temperatures in the normal tissue to pre-
vent damage. Since it is important to determine accurately the temperature field
over the entire affected region, many numerical and experimental methods have
been developed to solve the bioheat equation. Tang et al. [16] and Dai et al. [17]
developed a numerical method for obtaining an optimal temperature distribu-
tion in a triple-layered skin structure embedded with two countercurrent, multi-
level blood vessels: an artery and a vein. The authors concluded that their results
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could be useful for certain types of hyperthermia cancer treatments, such as for
skin cancer.

He et al. [18] developed a two-dimensional (2D) finite element thermal model
of a human breast with a tumor to study the variation of the blood perfusion
rate and distribution of oxygen partial pressure (PO,) in human tumors. Laser
irradiation was used as an adjunct method in the treatment of cancer. The blood
circulation inside the breast was modeled using one-dimensional nonlinear equa-
tions of pulsatile fluid flow. The distribution of PO, inside the capillaries, tumor
vessels, and surrounding tissue was obtained by the Krogh analysis model (the
Krogh model predicts a biphasic relationship between O, delivery and the rate
of O, uptake per unit tissue volume). Shih et al. [19] used the explicit finite dif-
ference method to solve the transient equation for the temperature field within a
perfused tumor tissue encompassing a blood vessel in an axisymmetric configu-
ration during thermal therapy. Their results illustrated that short-duration high-
intensity heating was more effective for treating a tumor with a blood vessel of
200 um or less diameter, while neither longer heating duration nor higher heat-
ing power density was sufficient for complete necrosis of a tumor with a blood
vessel with a diameter larger than 2 mm. Zhou and Liu [20] developed a three-
dimensional (3D) time-dependent heat transfer model coupled with the Navier-
Stokes equation-based blood flow model to solve for temperature distributions
in laser-irradiated tissues embedded with large blood vessels and the flow field
within the vessels. A better understanding of the role of a large vessel in laser-
induced thermotherapy (LITT) was obtained.

Khanafer et al. [21] conducted a numerical study to determine the influence
of pulsatile laminar flow and heating protocol on the temperature distribution
in a single blood vessel and tumor tissue receiving hyperthermia treatment
using physiological velocity waveforms. Their results showed that the presence
of large vessels had a significant effect on temperature distributions. Further, a
uniform heating scheme was found to generate larger temperatures compared to
the pulsed heating scheme, which may induce areas of overheating (beyond the
therapeutic regions) that could damage normal tissues (Figure 1.1).

Craciunescu and Clegg [22] analyzed the effects of pulsating blood flow on
the temperature distribution of a heated tissue. They found that the pulsation
of blood flow rate yields an obvious change of the energy transport between the
vessel wall and the blood flow within large blood vessels. Their results were based
on the assumption that the vessel wall was a perfect thermal sink.

1.1.2 Bioheat Transfer in the Human Eye

With the growing interest in the bioengineering field, the area of ophthalmol-
ogy, in particular laser eye surgery, has become better known in the last 20 years
[23]. This field has gained increasing popularity with the advancement of com-
putational technology. The popular employment of laser technology for surgical
applications has given rise to a new area of burn studies, that is, the change in
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Figure 1.1 Influence of the heating protocol on the temperature distribution at various flow conditions.
(Reprinted from Khanafer et al. [21]. With permission from Elsevier.)

temperature of the bio-organ associated with the absorption of high-intensity
irradiation of light. As early as the 1960s, when lasers were first introduced in
the medical field, there was immediate concern over the potential of incurring
injury to the eye owing to the absorption of energy causing elevated tempera-
tures. Injury to the eye can be severe when the blood flow cannot regulate the
heat loading within the ocular tissues. The tissues most vulnerable in the eye are
the cornea and the aqueous humor, as the infrared radiation raises the overall
temperature of the aqueous eye [23,24]. Invasive or direct-contact techniques ini-
tially used in measuring the eye temperature are now confined to animal experi-
ments due to the damaging nature of the test procedures [25]. The application of
military technology in medical sciences has a way for measuring human body
temperature utilizing infrared imaging. Infrared (IR)-imaging techniques have
been widely used in measuring the temperature of the eye ever since. The human
eye is very sensitive, and any direct contact with foreign objects is intolerable.
Computational modeling of the human eye is thus very important for estimating
the eye temperature during an eye procedure. A mathematical model can be use-
ful for the doctors in enabling them to optimize their surgical protocol. This will
lead to a reduction in intraocular tissue thermal damage.

Ooi et al. [26] used the boundary element method to analyze the 2D steady-
state bioheat model of the human eye. The human eye was modeled as compris-
ing four distinct homogeneous regions. The boundary condition on the outer
surface of the cornea was nonlinear due to heat radiation. An iterative approach
was used to treat the nonlinear heat radiation term. The authors showed that the
calculated heat flux results were more accurately obtained using the boundary
element method than the finite element method on the corneal surface. Ng and
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Ooi [27] developed a 2D finite element model to simulate the thermal steady-state
conditions of the human eye based on the properties and parameters reported in
the open literature. Their results were verified against previous studies on human
as well as animal eyes. Their results compared favorably with images from IR
screening and another finite element model. Extending earlier work, Ng and Ooi
[28] also developed a 3D model of the human eye to simulate the steady-state
temperature distribution during standard conditions and during electromag-
netic (EM) wave radiation. Their results were in good agreement with the experi-
mental results in the open literature.

A mathematical model of the human eye based on the bioheat transfer equa-
tion was developed by Scott [29]. The intraocular temperature distribution was
calculated using the Galerkin finite element method. A mathematical model to
predict the temperature distribution within the human eye when subjected to
a laser source was presented by Chuak et al. [30]. The model was developed by
employing the Pennes bioheat transfer equation. The intraocular temperature
distributions were calculated using the finite volume method. To compute the
intraocular temperature distribution, Amara [31] presented a thermal model of
the human eye exposed to laser irradiation. The physical system was described by
a set of partial differential equations consisting of the heat equation that included
the laser heat source, and the boundary and initial conditions. The analytical sys-
tem was transformed to an integral formulation where a Galerkin function was
applied. The results illustrated that decreasing the laser wavelength increases the
adverse effects on the eye. This was due to the production of higher temperatures
that can lead to the denaturation of the ocular tissues.

Long-term industrial exposure to low levels of infrared radiation has for many
years been associated with the development of cataracts, which is considered
to be a thermally related injury. A finite element model of the human eye was
employed to calculate the temperature rise experienced by the intraocular media
when exposed to infrared radiation [32]. The model was used to calculate tran-
sient and steady-state temperature distributions for various exposure times and a
range of incident irradiances. The effect of the eye’s natural cooling mechanisms
on the heating was investigated. Hirata et al. [33-35] applied the finite difference
time domain method to study the temperature rise in the human eye exposed to
electromagnetic waves. Hirata [33] investigated the effect of frequency, polariza-
tion, and angle of incidence of an electromagnetic (EM) wave on the specific
absorption rate (SAR) and maximum temperature increase in the human eye at
900 MHz, 1.5 GHz, and 1.9 GHz. In particular, the temperature increase in the eye
was compared for near-field and far-field exposures. The results illustrated that
the SAR and temperature increase in the eye were found to be largely dependent
on the separation between the eye and a source, and the frequency, polarization,
and angle of incidence of the EM wave. Lagendijk [36] conducted measurements
on rabbit eyes and used the results to predict the thermal properties of the rabbit
eye using a finite difference method. The measured temperature at the cornea
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surface was in good agreement with the calculated temperature using the finite
difference method (FDM) mathematical model at the same location.

1.2 THERMAL MODELS FOR BLOOD-PERFUSED TISSUES

Heat transport in biological tissues, which is usually expressed by the bioheat
equation, is a complicated process since it involves thermal conduction in tis-
sues, convection and perfusion of blood (delivery of the arterial blood to a capil-
lary bed in tissues), and metabolic heat generation. Therefore, several authors
have developed mathematical models of bioheat transfer as extended and modi-
fied versions of the original work of Pennes [37], as reported by Charny [38] and
Arkin et al. [39]. An example of the applications of the bioheat equation exists in
the fetal-placental studies. The existence of a thermal gradient between fetal and
maternal tissue has been considered a medical subject of research interest. This
gradient is found to play a significant role in dissipating heat produced by the
fetus during its metabolic processes. The magnitude of this temperature differ-
ence is determined by the fetal metabolic rate and the rate of heat exchange from
fetal to maternal tissues [40-46)].

Another example of the bioheat equation is related to the presence of the
global system mobile (GSM) electromagnetic fields in the environment due to
cellular phones and base stations, which have been causing increasing public con-
cern regarding the possible adverse health effects of these fields. Electromagnetic-
thermal analysis of human exposure to base station antenna radiation was
presented by Poljak et al. [47]. The formulation was based on a simplified cylin-
drical representation of the human body. The electromagnetic analysis involved
incident and internal field dosimetry, while the thermal model was based on
the Pennes bioheat transfer equation for solving thermal processes inside the
human body. In what follows, a concise summary of the pertinent thermal mod-
els and their limitations for blood-perfused tissues that best categorize different
approaches in modeling the bioheat transfer is presented.

1.2.1 The Pennes Bioheat Equation

The Pennes model [37] was initially developed for predicting heat transfer in the
human forearm. Due to the simplicity of the Pennes bioheat model (it assumes
uniform thermal conductivity, perfusion rate, and metabolic heating), it was
implemented in various biological research works such as for therapeutic hyper-
thermia for the treatment of cancer [48-50]. The equation that Pennes developed
is expressed in its simplest form as

o7,
(pcp)tg—zv'(ktvﬂ)'i_qp-i_qm (11)




SYNTHESIS OF MATHEMATICAL MODELS REPRESENTING BIOHEAT TRANSPORT

where p,c,,T;, k;,and q,, are tissue density, tissue-specific heat, tissue tempera-
ture, tissue thermal conductivity, and uniform rate of metabolic heat generation
in the tissue layer per unit volume, respectively. The heat transfer from the blood
to the tissue, ¢,,is assumed to be proportional to the temperature difference
between the arterial blood entering the tissue and the venous blood leaving the
tissue. This quantity is presented as

qp = mpbcb(Ta,in - Tv,out) (12)

and T

v,out

where T

a,in

are the temperature of the blood upon entering and leaving
the tissue via the arteriole-venule network, respectively; p, is the blood density;
¢, is the blood-specific heat; and ® is the volumetric rate of blood perfusion in
the tissue per unit volume. The Pennes model assumed thermal equilibrium
between the venous blood and the tissue temperatures (i.e., T, ,, =T,), yielding
the familiar Pennes perfusion heat source term:

qp = (Opbcb(Ta,in - Tvt) (13)

1.2.2 Wulff Continuum Model

Due to the simplicity of the Pennes model, many authors have looked into the
validity of the assumptions used to develop the Pennes bioheat equation. Wulff’s
study [51] was one of the first that questioned the assumptions of the Pennes
model. Wulff [51] assumed that the heat transfer between flowing blood and tis-
sue should be modeled to be proportional to the temperature difference between
these two media rather than between the two bloodstream temperatures (i.e., the
temperature of the blood entering and leaving the tissue). Thus, the energy flux at
any point in the tissue should be expressed by

q=-k VT, +p,hyv, (1.4)

where v, is the local mean blood velocity and 7T, is the tissue temperature. The
specific enthalpy of the blood ,, which accounts for both the sensible enthalpy
plus the enthalpy of reaction, is given by

T,
* * P
hb:Jcb(Tb I+ AH, (1-0) (1.5)
b

T,

where P is the system pressure, AH is the enthalpy of formation of the meta-
bolic reaction, and ¢ is the extent of reaction, respectively. T, and T, are the
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reference and blood temperatures, respectively. Thus, the energy balance equa-
tion can be written as

T,
PCy %:_V"]:‘V'(‘ktvﬂ +phv,)=Vel kVT, —p,v, J‘Cb(’n:)dT;

T,

(1.6)
+p£+AHf(1—¢)

b

Neglecting the mechanical work term (P/p,), setting the divergence of the
product (p,v,) to zero, and assuming constant physical properties, Equation
(1.6) can be simplified as follows:

oT,
pcpa*tt:ktVZTt —PVi(,VT, —AH V) (1.7)

Since blood is effectively microcirculating within the tissue, it will likely be in
thermal equilibrium with the surrounding tissue. As such, Wulff [51] assumed
that T, is equivalent to the tissue temperature T,. The metabolic reaction term
(Pyv»AH (V) is equivalent to g,,; therefore, the final form of the bioheat equation
that was derived by Wulff [51] is

oT,
(pcp)ta*tt:ktVZTt_(PC)th'VTr T m (1.8)

The main challenge in solving this bioheat equation is in the evaluation of the
local blood mass flux p,v,.

1.2.3 Klinger Continuum Model

Since the Pennes model [37] neglected the effect of blood flow inside the tissues,
Klinger [52] considered the convective heat transfer caused by the blood flow
inside the tissue. Taking into account the spatial and temporal variations of the
velocity (v) and heat source, and assuming constant physical properties of tissue
and incompressible blood flow, the modified Pennes model was expressed as

oT,
(PCp)ter(PC)bV‘VTt =k VT, +q,, (1.9)

1.24 Continuum Model of Chen and Holmes (CH)

Similar to the analysis of Wulff [51] and Klinger [52], the bioheat transfer analy-
sis of Chen and Holmes [53] is a microvascular model. The Chen and Holmes
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(CH) model [53] assumes that the total tissue control volume is composed of
the solid-tissue subvolume (V,) and blood subvolume (V,). Using a simplified
volume-averaging technique, the energy balance equations for both the solid-
tissue space and vascular spaces can be written as follows:

Solid Phase

dT,
ot

OV, (pc),—=dQ,, +dQ, +dQ, (1.10)

where p, and c, are the solid-tissue density and specific heat, respectively; 6V,
is the differential volume of the solid phase; dQ,, is the energy transferred by
conduction; dQ,, is the heat gain from the blood subvolume; and dQ,, is the
metabolic heating energy.

The energy balance equation for the vascular space is similar to Equation (1.10)
except with an additional term associated with the bulk fluid flow in this space:

Fluid Phase

0T,
SVb(PC)ba—:dekb_des+J.(PC)bTV'dS (1.11)
S

where p, and ¢, are the blood density and specific heat, respectively; §V, is the
differential volume of the blood in the vascular space; dQ,, is the conductive
contribution; and the integral term in Equation (1.11) denotes the energy transfer
by convection as the blood flows across the surface area S at velocity v. Therefore,
the energy balance for the tissue space is derived by the addition of Equations
(1.10) and (1.11) and division of the result by the total control volume 8V, which
yields the following:

a7,
(PO "=+ an+4, (1.12)
where p and c are

p:(l_gb)p$+8bpb and CZé[(l—Sb)pSCS-Fprbe] (1‘13)

where €, is the porosity of the tissue where blood flows and T, is the local mean
tissue temperature expressed as

T =é[(l—eb>(pc)ﬂz+eb(pc>bm (1.14)

The quantity g, denotes the heat transfer by conduction per unit volume, g,, is
the metabolic heat generation per unit volume, and g, is the perfusion energy
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generated per unit volume. The total heat transfer by conduction per unit volume
(9¢) in the tissue control volume is expressed by

qk=ka+Vka:V°(keﬁVTt) (1.15)

where k ;. is the effective thermal conductivity of the combined tissue and vascu-
lar spaces. The effective thermal conductivity is written as

kg =€, k, +(1-¢,)k, (1.16)

Since ¢, = %}’ ~ %% <<1, it follows that k. is independent of blood flow and
equal to the conductivity of the solid tissue (ks =k,).

In Wulff’s formulation [51], thermal equilibrium was assumed between blood
and the solid-tissue medium at all locations within the control volume. However,
Chen and Holmes [53] allowed for the blood within the tissue matrix to flow at
a temperature different than the tissue temperature. Therefore, the convective
heat transfer across the surface (4,) due to blood flow was written as the sum of
the perfusion heating term (originated by Pennes), a contribution proportional
to local blood perfusion velocity as represented by the Wulff model [51], and a
contribution due to the perfusion thermal conductivity. Thus, the perfusion term
including all these terms is

1
%ZWI Pi6Tv e ds=(pc), 0 (T; = T.)~(pc),v, e VT, +Vek VT, (1.17)
S

where v, is the mean perfusion velocity; " is the total perfusion bleed-off to
the tissue only from the microvessels, while the Pennes term ® includes bleed-off
from all generations of the vasculature; T, isthe blood temperature; and T is the
solid-tissue temperature. Note that T, is different from T, (temperature of blood
entering the tissue), which was used in the Pennes model; see Equation (1.2). The
second term in Equation (1.17) is indicative of blood convective perfusion, and
the third term on the right-hand side of Equation (1.17) indicates the enhance-
ment of thermal conductivity in a tissue due to the blood flow within microves-
sels (i.e., the thermal dispersion effect).

Therefore, the bioheat equation based on the Chen and Holmes [53] model can
be written as

T .
(Pcp)t§=v'(keffvﬂ)+(96)bw (T, ~L)=(pc),v,eVT,+Vek VT, +q, (1.18)

where T, is replaced by the volume-weighted continuum temperature (7, ). This is
reasonable as long as €, <<1.
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‘ Wenbaum, Jiji, and Lemons (WJL) Bioheat Equation Model

and colleagues [54-56] modified the thermal conductivity in the
geation by means of an “effective conductivity,” which is a function of
 Sow rate and vascular geometry. The modified bioheat equation was
Swsed on a hypothesis that small arteries and veins are parallel and the
#we is countercurrent, resulting in counterbalanced heating and cool-
It should be noted that this assumption is mainly applicable within
«“uate tissue of the skin. Neglecting axial conduction, the artery and
Salances are written as

i B
(pc), E(mwzuTa)z—nqa—(pc)b(ZTcang)Ta (1.19)

d _
(pc), :i;(mmzuTv)z—nqv —(pc),(2mang)T, (1.20)

‘ s the heat loss from the artery by conduction through its wall, g, i

# ga = by conduction per unit length through the vein wall into the vein,
# U ase the bulk mean temperatures inside the blood vessel, 7 is the num-
Weeries or veins, 4 is the mean velocity in either the artery or vein, a
s and g is the perfusion bleed-off velocity per unit vessel surface
wecond term on the right-hand side of Equation (1.19) indicates heat
“ae arterial blood due to perfusion bleed-off, while in Equation (1.20)
s the heat gain by the venous blood from perfusion drainage. For an
srterv-vein pair, subtracting Equation (1.20) from Equation (1.19)

- s ul, ) - d%(nnamT,,)}:—n(qa —q,)—(pc),2rang (T, -T,)  (1.21)

" Sest term on the right-hand side is the net heat transfer by conduction
W “wswe into the paired vessels, and the second term is the net heat depos-
* tusue due to the perfusion bleed-off. The first term on the left-hand

the total blood heat exchange in the countercurrent vessels and
g tissue. This term can be balanced by conduction and metabolic

-

~
a1

s Sollows:
fd, .\ d;
pc 7 ( mtazuTa)— d—(mc azuTv) =Ve(kVT,)+q, (1.22)
_das S
cemtinuity equation [4(na?u)=-2nag] is used, the second terms in the

. wuie of Equations (1.19) and (1.20) can be eliminated, yielding the

11
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following equations:

_.dT _.dT
4o =—(pc)y(ma’)—= & g, =—(pc),(ma’u) = (1.23)
ds ds

Therefore, the rate of the energy entering and leaving the tissue control vol-
ume can be expressed as

G4, = (pc);,(naza)%m =] (1.24)

Thus, the final form of the bioheat equation can be obtained by substituting
Equation (1.22) for the left-hand side of Equation (1.21) and substituting Equation
(1.24) for the first term on the right-hand side of Equation (1.21) as

(PC)b(nﬂ?azﬁ)%[Ta —T]=(pc)(n2ma g)(T,~T,)=Ve(kVT)+q, (1.25a)

or

(pc)b(nnazﬁ)d%[Ta ~T,]=Ve(kVT)+(pc),0 (T,~T,)+q,, (1.25b)

where ®'=(n2na g). Equation (1.25) includes a perfusion bleed-off term that

apparently resembles the Pennes perfusion term. This term is proportional to
(T, —T,) rather than (T, — T;).

1.2.6 'The Weinbaum-Jiji Bioheat Equation Model

Since both T, and T, are unknowns in Equation (1.23), the tissue temperature
T; cannot be determined. Therefore, Weinbaum and Jiji [57] derived a simplified
single equation to study the influence of blood flow on the tissue temperature
distribution. The mean tissue temperature can be approximated as

T,+T,

=

n

(1.26)

Thus, the magnitude of the difference (g, — 4,) is much smaller than the mag-
nitude of either g, or g,. Moreover, Weinbaum and Jiji [57] assumed that the tis-
sue surrounding the vessel pair is a pure conduction region such that

4. =4, :th(Ta_Tv) (127)
where G is a geometrical shape factor given by

L

c= m (1.28)
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The ratio (L,/a) indicates the ratio of the vessel spacing to vessel diameter.
Equations (1.23), (1.26), and (1.27) are solved to obtain an equation for the artery-
vein temperature difference and the tissue temperature gradient by adding the
g, and g, terms from Equation (1.23):

_ma*u(pc), dT;
Ck, ds

a_Tv=

(1.29)

Substituting Equation (1.29) in the original WJL model, Equation (1.25a),
yields a new bioheat equation proposed by Weinbaum and Jiji [57] as follows:

nTczakae 2gPe th__d{a_Peﬂ
4k, cu ds ds| ¢ ds

D=V-<ktvm+qm 50

where Pe is the Peclet number; which is defined as Pe = 3—“5%;—)”—5

Table 1.1 illustrates a summary of variants within the previously discussed
models.

1.3 MATHEMATICAL MODELING OF BIOHEAT
EQUATION USING POROUS-MEDIA THEORY

1.3.1 Energy Equation

Although Pennes’s bioheat equation is considered to be a useful model to predict
temperature distribution in the human body due to its simplicity, it is still ques-
tionable. Based on the previous section, one can note that the summarized bio-
heat transfer models in Table 1.1 are extended or modified versions of the original
work of Pennes’s model. They were based on improving the main flaws of Pennes’s
equation. An accurate description of the thermal interaction between vasculature
and tissues is essential for the advancement of medical technology through effec-
tive modeling of arteries, tissues, and organs. Therefore, it is crucial to develop a
more robust bioheat model that incorporates the effects of blood thermal disper-
sion, porosity variation, effective tissue conductivity, and effective tissue capaci-
tance, and a more precise representation of the heat exchange between the blood
and the tissue. Since the compound matrix of tissues, arteries, veins, and capil-
«ary tubes can be considered as a porous medium, porous media theory is very
well suitable for developing a rigorous model of a bioheat equation.
Transport phenomena in porous media have received continuing interest
n the past five decades. This interest stems from their importance in many
ndustrial and clinical applications [58-60]. Examples include computational
mology, tissue replacement production, drug delivery, advanced medical imag-
2. porous scaffolds for tissue engineering, and transport in biological tis-
wues [61-65]. Porous media theory may also be utilized in biosensing systems
“6-69]. Some aspects of transport in porous media were also discussed in the

13
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two editions of the Handbook of Porous Media [69,70] and in Hadim and Vafai
[71] and Vafai and Hadim [72]. Complicated and interesting biomedical aspects
can be modeled using the porous media concept. Xuan and Roetzel [73,74] uti-
lized the porous media approach to model a tissue-blood system composed
mainly of tissue cells and interconnected voids that contain either arterial or
venous blood. The thermal energy exchange between the tissue and blood was
modeled using the principle of local thermal nonequilibrium as described in
the works of Amiri and Vafai [75,76]; Alazmi and Vafai [77]; Lee and Vafai [78];
Vafai and Sozen [79-81]; and Sozen and Vafai [82,83]. Thus, two energy equa-
tions were derived that represent the blood phase and the solid matrix phase,
as given below:

Blood Phase
a(pc)b(—afaTTib+<\7>b ~V<T>bj:V-(kg-V<T>b)+hbs[<T>5—<T>b]
(1.31)
Solid Matrix Phase
1—¢)(pc), a<aj; > =V-(k&-V<T>)=h,[<T> -<T>]+(1-¢)g,, (1.32)

where <T >b,<T >, k¢,ks, <V >Pand h,, and € are the local volume-averaged
arterial blood temperature, local volume-averaged solid-tissue temperature, blood
effective thermal conductivity tensor, solid-tissue effective thermal conductivity
tensor, blood velocity vector, and interstitial convective heat transfer coefhicient,
respectively. The interstitial convective heat transfer coefficient is a function of
nlood velocity and properties and geometric structure of the solid phase. The heat
exchange between the blood and the tissue is expressed as h, [<T > —<T >t].
For isotropic conduction, the effective thermal conductivity k¢ of blood and
solid tissue k?can be expressed as

t=¢k,+ki and k¢=(1-¢)k, (1.33)

where ki is the thermal dispersion conductivity. The concept of thermal disper-
won is well established in the theory of porous media as presented in the works

¢ Amiri and Vafai [75,76]. Due to insufficient knowledge about the thermal and
snatomic properties of tissue, the velocity field of the blood, and interstitial con-
vective heat transfer coefficients, the local thermal equilibrium model represents
¢+ good approximation for determining the temperature field in applications
avolving small-sized blood vessels (€ <<1). This implies that blood flowing in
“hese small vessels will be completely equilibrated with the surrounding tissue.

15
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Therefore, Equations (1.31) and (1.32) reduce to the following equation [21,85]:

o<T
ot

[(pe)e+1—e)pc), ] >+a(pc),,<\7>b-V<T>=V[(kg+kg)-V<T>]

+ qm(1 - 8)
(1.34)

The second term on the left-hand side of Equation (1.34) represents the heat
transfer due to the blood perfusion. Note that the perfusion source term in the
Pennes model was derived based on a uniform blood perfusion assumption and
was equal to wp,c,(T,,, —T,,.,). The representation of the blood perfusion in
Equation (1.34) is more consistent with representation in the Klinger and Wulff
models. In hyperthermia applications, tissue may absorb energy from an external
source such as electromagnetic or ultrasonic radiation, and, therefore, another
heat source term should be added to the right side of Equation (1.34) as follows:

o<T>
ot

[(pc),e+(1—g)(pc).] +e(p), <V>' V<T>=V[(ki+kj) V<T>]

+q,(1-€)+g,(1-¢)
(1.35)

Table 1.2 and Table 1.3 summarize the previously discussed bioheat transfer
models in this work.

Table 1.2 Main Characteristics of Bioheat Models Using the Porous Media Approach
Bioheat Model Main Characteristics

Porous media model (local thermal ~ This model modifies the Pennes equation by accounting for the
equilibrium principle)? following effects:
Variable tissue porosity
Effective tissue conductivity
Effective tissue capacitance
Blood dispersion

Porous media model (local thermal ~ This model requires more knowledge about the thermal and
nonequilibrium principle)® anatomic properties of the tissue, the velocity field of the
blood, and interstitial convective heat transfer coefficients.
This model considers the following effects:

Variable tissue porosity

Blood dispersion

Effective tissue conductivity

Effective tissue capacitance

¢ Amiri and Vafai [75,76]; Marafie and Vafai [84].
> Amiri and Vafai [75,76]; Alazmi and Vafai [77]; Lee and Vafai [78]; Vafai and Sozen [79-81]; Sozen
and Vafai [82,83].
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Table 1.3  Main Characteristics of Bioheat Models Using a Simplified Approach

Bioheat Model

Assumptions

Main Characteristics

Pennes [37]

Wulff [51]

Klinger [52]

Chen and Holmes
[53]

Uniform physical properties and

metabolic heating

Heat transfer from the blood to the

tissue is proportional to the
temperature difference between the
arterial blood entering the tissue and
the venous blood leaving the

tissue

Thermal equilibrium between flowing

blood and the surrounding tissue

Uniform mean blood velocity inside the

tissue

Constant physical properties

Utilized two separate volumes: one for

solid tissue and one for blood in the
vascular space

Simple model

Not valid for all tissues

Modified version of the Pennes
model

Considers the convective heat
transfer caused by the blood flow
inside the tissue

Considers the spatial and temporal
variations of the velocity field and
heat source

The total heat transfer by
conduction relates to heat
transfer by conduction in the
solid tissue and in the vascular
space

The total perfusion term
corresponds to the effect of
blood flow on tissue temperature
around large vessels, heat
transfer that takes place as a
result of the blood flow, and heat
transfer due to the small
temperature changes
(microvessels)

Introduce perfusion conductivity
tensor in the bioheat equation.

Allows for the blood within the
tissue matrix to flow at a
temperature different than that of
the tissue temperature

(Continued)
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Table 1.3 Main Characteristics of Bioheat Models Using a Simplified Approach (Continued)

Bioheat Model Assumptions Main Characteristics
Weinbaum, Jiji, Based on a hypothesis that small Coupled energy equations for
and Lemons arteries and veins are parallel and the artery—vein pair and tissue

[54-56] flow direction is countercurrent,

resulting in counterbalanced heating
and cooling effects

Isotropic blood perfusion between the Utilizes the effective conductivity
countercurrent vessels

Weinbaum and Jiji  The mean tissue temperature is Valid when arteries and veins are
[57] approximated by an average close, leading to negligible blood
temperature of the bulk mean perfusion effects
temperatures inside the blood vesse|
Assumes that the tissue around the Utilizes the effective conductivity

vessel pair is a pure conduction region

1.3.2° Mathematical Model of Velocity Field and Macromolecule
Transport within the Arterial Wall and Arterial Lumen

In order to solve Equations (1.31), (1.34), and (1.35), the velocity distribution within
a tissue should be determined first. Khanafer et al. [21] modeled the arterial wall
as a homogeneous porous medium. The velocity distribution within the tissue was
determined using the volume-averaged governing equations of porous media cou-
pled with the velocity field in the blood vessel. Vafai and coworkers [61-65] had
developed a new fundamental and comprehensive four-layer model for the descrip-
tion of the velocity field and mass transport in the arterial wall coupled with the
velocity field and mass transport in the arterial lumen. The endothelium, intima,
internal elastic lamina (IEL), and media layers were all treated as macroscopically
homogeneous porous media and mathematically modeled using proper types of
the volume-averaged porous media equations, with the Staverman filtration and
osmotic reflection coefficients employed to account for selective permeability of
each porous layer to certain solutes. The typical anatomical structure of an arterial
wall is shown schematically in Figure 1.2,

1.3.2.1 Lumen

Assuming incompressible and Newtonian fluid flow, blood flow in the arterial
lumen was modeled using Navier-Stokes and continuity equations as follows:

V-V=0 (1.36)

aa—‘t/+V-V\7:—iVP+vv2V (1.37)
p
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Flow direction Intima Media Adventitia

Connective tissue

Glycocalyx

Endothelium

Smooth muscle cell

Lumen
1 :"f-':
| /Connective tissue
Symmetry ; . Vasa vasorum
Internal
elastic lamina __ Interstitial phase
Intercellular ol
junction 0 ©
o,
Fenestral pore 4 '
¢ .
\
\
3
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ot
»* #f
\ ”’,
Lumen v -

Figure 1.2 Schematic illustration of the geometric artery wall. (Reprinted from Yang and Vafai [62].
Aith permission from Elsevier.)

The concentration field in the arterial lumen is computed using the mass
transport equation:

Be
a—§+V-Vc=DV2c (1.38)

2

1.3.2.2 Endothelium and Internal Elastic Lamina

The endothelium and IEL were modeled as biological porous membranes [61-65].

The Staverman filtration and osmotic reflection coefficients were employed to

account for selective rejection of species by the membranes and for the effects of
smotic pressure. The volume-averaged governing equations were given by

V-<V>=0 (1.39)

—

%&:—-V<p>f +%V2<\7>—%V>+RuTGdV<C> (1.40)

ot
d<c>

T+(1~cf)<V>-V<c>=DeV2<c> (1.41)
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where K is the permeability, and D, is the effective macromolecule diffusivity
in the medium. The symbol <> denotes the local volume average of a quantity
[86,87], and the superscript f refers to the local volume average inside the fluid.
The parameters & s and o, are the Staverman filtration and osmotic reflection
coefficients (to account for the selective permeability of biological membranes to
certain solutes), respectively; T is the absolute temperature of the medium; and
R, is the universal gas constant.

1.3.2.3 Intima and Media

The intima and media were also modeled as macroscopically homogeneous
porous media. Since the layers comprising the arterial wall are selectively per-
meable to certain species such as low-density lipoprotein (LDL), the Staverman
filtration reflection coefficient has to be introduced here as well to account for
this effect. The osmotic effect in the transport modeling is not included in this
part since the maximum osmotic pressure gradient in the media layer is far below
the hydraulic pressure gradient [88]. Therefore, the volume-averaged governing
equations of the intima and media layers are as follows [61-65]:

V.<V>=0 (1.42)
po<V> M - u<Vs>
= =-V<p>/+=V2cV>-—
P p . 4 . (1.43)
d<c> ~
> +(1-0,)<V>-V<c>=D,V2<c>+k(c) (1.44)

where k is the effective volumetric first-order reaction rate coefficient. Table 1.4
shows various momentum equations used in modeling flow in the arterial wall.
Yangand Vafai [62] presented an analytical solution for a robust four-layer porous
model for description of the LDL transport in the arterial wall coupled with the
transport in the lumen. The analytical results were found consistent with the
numerical data for different physiological conditions, as depicted in Figures 1.3
and 1.4.

1.4 CONCLUSIONS

Most of the previous studies in the literature have assumed rigid walls for the
arteries, Newtonian blood flow, and steady flow when analyzing flow and heat
transfer characteristics in human tissues. Proper analysis of the arterial wall is
critical in accurate modeling of arterial transport. This must be done through
the use of a multilayer model that accounts for various physical attributes of the
vessel and interfacial aspects between the layers. The multilayer model describes
the arterial anatomy most accurately. In this model, the arterial wall is composed
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Table 1.4  Momentum Equations Using the Modeling Flow in the Arterial Wall

Model Remarks
B K Arterial wall modeled as single-layer porous medium
V —V-[—P]zo Darcy model
H Constant permeability
Arterial wall modeled as single-layer porous medium
- - Brinkman’s model
a—V+I7-VI7:——1—VP+VV2|7—X/?V— Constant permeability
el P ; Neglect the Staverman filtration and osmotic
reflection coefficients
- _ Endothelium and internal elastic lamina
po<V> — Veps bty <> B<V> " More realistic
e ot € The osmotic reflection coefficients were employed to
+R,Jo,V<c> account for selective rejection of species by the
membranes and for the effects of osmotic pressure
= 7 ~Intima and media
PIV>_ gepsiibveciis V> yoe realistic
e of & K Neglects the osmotic effect in the transport modeling
0.1
B0 Media ]
Intima IEL A 1. Numerical results: 9C/on = 0
0.08+ 0 2. Numerical results: C=0 ‘
o + 3. Numerical results: C = 0.01
§ 0.07+ -~~~ 4. Analytical solutions: C = 0.01 7
g — = 5. Analytical solutions: C = 0
§ 0.06 —— 6. Analytical solutions: 9C/on = 0f
s o}
S 4 k=
g 0.05r . - §
. . 2
2 0.04r -
Soaba s 4 6404 e
S 003f )\ 1,2 5
(@) A
0.02} : ' - .
0.01} 4
0 2 S S N . S WV i’*d
0 0.01 0.02 0.212

Radial Distance from the Endothelium Intima Interface : r (mm)

Figure 1.3 Calculated species profiles across the intima, IEL, and media layers. (Reprinted from Yang
and Vafai [62]. With permission from Elsevier.)
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Figure 1.4 Calculated filtration velocity profiles at the lumen endothelium interface along the axial
direction. (Reprinted from Yang and Vafai [62]. With permission from Elsevier.)

of four porous layers with different physiological characteristics. The multilayer
model requires a number of transport parameters (properties) for each layer and
in return provides an accurate profile for macromolecule distribution across the
arterial wall, illuminating the role and behavior of each porous layer in the trans-
port of macromolecules across the arterial wall. Another important factor in the
accurate modeling of arterial transport is the use of a proper set of governing
equations that take into account the dominant processes involved in the trans-
port phenomenon. The Staverman filtration and osmotic reflection coefficients
must be included to account for the selective rejection of species by the endothe-
lium and IEL porous membranes as well as the effects of osmotic pressure.

The interaction between blood flow and wall can involve a wide range of flu-
id-mechanical phenomena. When blood flows through the lumen, the flow may
deform the arterial walls and consequently alter the properties of the wall, which
in turn affect flow and heat transfer characteristics in the lumen and arterial
wall. Also, it will be beneficent to consider variations in the porosity and per-
meability of an arterial wall in future studies. In addition, the variations in the
physical properties of the arterial walls such as Young’s modulus and Poisson’s
ratio can be considered in future studies since the materials of the walls are
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nonlinear and nonhomogeneous. However, these variations at this time cannot
be properly described due to lack of pertinent data. For an accurate analysis of
heat transfer during a hyperthermia procedure in the treatment of fetal diseases
such as tumors, the porous media approach is highly recommended in order to
deliver the required amount of heat source to the target volume of cancer without
destroying the surrounding healthy tissues. This is because the porous media
approach takes into account many pertinent effects that were neglected or simpli-
fied in the existing bioheat equations. Therefore, the mathematical models based
on the porous media approach presented in the previous section are applicable in
various biomedical applications such as laser eye surgery.

NOMENCLATURE

radius
: concentration
c,: blood-specific heat
c,: tissue-specific heat
solid-specific heat
effective macromolecule diffusivity in the medium
g:  perfusion bleed-off per unit vessel surface area
AH,: specific enthalpy of the metabolic reaction
h,: specific enthalpy of the blood
h,: interstitial convective heat transfer coefficient
K: permeability
¢: blood effective thermal conductivity tensor
k: effective thermal conductivity
ke:  solid-tissue effective thermal conductivity tensor
k,: tissue thermal conductivity
n: number of arteries or veins
P: system pressure
Pe:  Peclet number
g.: heatloss from the artery by conduction through its wall
g.: heat transfer by conduction per unit volume
... rate of metabolic heat generation in the tissue layer per unit
volume
g,: heat transfer from the blood to the tissue
g.: heat gain by conduction per unit length through the vein wall into
the vein
R : universal gas constant
I. .. temperature of the blood entering the tissue
T blood temperature in the vascular space
temperature of blood
>":  local volume-averaged arterial blood temperature
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T,: reference temperature
T;: solid temperature

<T>*: local volume-averaged solid tissue temperature

T;: tissue temperature
temperature of the blood leaving the tissue

<V >P: blood velocity vector

v, local mean blood velocity

v,: mean perfusion velocity

GREEK SYMBOLS

p: tissue density

py:  blood density

ps:  solid-tissue density

®:  volumetric rate of blood perfusion in the tissue per unit volume
®: total perfusion bleed-off to the tissue only from the microvessels
¢: extent of reaction

€  porosity

O: geometrical factor

O;:  osmotic reflection

O, Staverman filtration
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