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Macromolecular Transport in Arterial Walls:
Current and Future Directions

K. Khanafer and K. Vafai

Abstract Relevant mathematical models associated with the transport of macro-
molecules in the blood stream and in the arterial walls are reviewed in this work.
A robust four-layer model (endothelium, intima, internal elastic lamina and me-
dia) based on porous media concept and accounting for selective permeability of
each porous layer to certain solutes is presented to describe the transport of macro-
molecules in the arterial wall coupled with the transport in the lumen. The variances
in the current models are analyzed and discussed. Future direction in developing
a rigorous mathematical model for transport in arterial walls using porous media
theory and fluid-structure interaction approach is outlined in this study.

1 Introduction

Atherosclerosis, which comes from the Greek words athero (meaning gruel or paste)
and sclerosis (hardness), is a form of vascular disease that is commonly located in
the large- and medium-size arteries. Atherosclerosis is a slow, progressive disease
that may start in childhood. It can affect the arteries of the brain, heart, kidneys, and
the arms and legs. It is caused by the slow buildup of fatty substances, cholesterol,
cellular waste products, calcium and other substances found in the blood within the
arterial walls. This buildup is called plaque. It has been suggested that the transport
of the low-density lipoprotein (LDL) from the blood into the arterial wall and its
accumulation within the wall play an important role in the process of atherogenesis
(Ross 1993, Hoff et al. 1975, Schwenke et al. 1993, Newby and Zaltsman 2000).
This transport process is termed “arterial mass transport” and is influenced by blood
flow in the lumen and transmural flow in the arterial wall. '

Several mathematical models have been developed tomodel the transport of macro-
molecules, such as low density lipoproteins (LDLs), from the arterial lumen to the
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arterial walls and their accumulation in the wall (Fry 1985, Huang and Tarbell 1997,
Stangeby and Ethier 2002a,b, Karner et al. 2001, Karner and Perktold 2000, Ai and
Vafai 2006, Yang and Vafai 2006). Prosi et al. (2005) have classified these models in
three major categories. The simplest model is referred to as wall-free model in which
the arterial wall is described by simplified boundary conditions (Back et al. 1977,
Ehrlich and Friedman 1977, Rappitsch and Perktold 1996, Ethier 2002, Wada and
Karino 1999, 2000, 2002, Qui and Tarbell 2000). This model has been used to inves-
tigate oxygen and LDL transport in idealized and physiological arterial models. This
model has the advantage of being computationally expedient and provides qualitative
information on mass transfer in the blood lumen. However, the main drawback of this
model is its limitation in computing concentration profiles within the arterial wall. A
more realistic approach is named lumen-wall models which approximate the complex
structure of the arterial wall by a simple homogeneous layer. Such models, originally
proposed by Moore and Ethier (1997), have been used to study the mass transport of
LDL within the arterial wall by Stangeby and Ethier (2002a,b). They used a model
that coupled transmural fluid flow to the motion of the flowing blood in the arterial
Tlumen. The most realistic models are multilayer models, which break the arterial wall
down into several layers, precisely the endothelium, intima, internal elastic lamina
and media, and model the transport within the wall, either at the microscopic (Yuan
et al. 1991, Huang et al. 1994, Huang and Tarbell 1997, Tada and Tarbell 2004) or
macroscopic (Fry 1985, 1987, Karner et al. 2001, Prosi et al. 2005, Ai and Vafai 2006,
Yang and Vafai 2006) levels. The multilayer model was found to provide the most re-
alistic information on the dynamics of chemicals (especially macromolecules) within
the wall.

2 Mathematical Models

2.1 Wall-Free Model

Rappitsch and Perktold (1996) and Rappitsch et al. (1997) presented a numerical
study for the simulation of blood flow and transport processes in large arteries.

Blood flow in the arterial lumen was described by incompressible Navier-Stokes :

equations for Newtonian fluids, while the solute transport was modeled by the
diffusion-advection equation. The resistance of the arterial wall to transmural trans-
port is described by a shear-dependent wall permeability model. At the wall-lumen
interface, two different transport models for the diffusive flux g,, were assumed. The
first model assumed constant wall permeability as follows:

dc
qw=-—D —8— =CaCy ¢Y)
M\ wall

where « is a constant wall permeability (Rappitsch and Perktold 1996) and ¢y, is the
wall concentration. In the second model, the permeability of the arterial wall was
assumed to be linearly dependent on the local wall-shear stress magnitude|t,|:
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qw=—Dj—C =acy=f(tl)cw=Blrlc, @
n lwall 4

where 8 is constant.

A more physical boundary condition, which is a function of blood-side solute
concentration at the wall and an endothelial permeability parameter, was used by
Wada and Karino (1999, 2002) and Ethier (2002) at the blood-wall interface which
states that the amount of LDL passing into the vessel wall is determined as the
difference between the amount carried to the arterial wall by a filtration flow and the
amount which diffuses back to the mainstream. Mathematically, this takes the form:

dc

e =Kc, 3
on o )

wall

CylUy — D

where u,, is the filtration velocity at the vessel wall (transmural velocity) which
was assumed to be 4 x 10~ mm/s for a natural artery (Tedgui and Lever 1984,
Wilens and McCluskey 1952). The permeability coefficient of LDL (k) at the arte-
rial wall was about 2 x 10~7 mm/s as reported by Truskey et al. (1992). Qui and
Tarbell (2000) analyzed numerically oxygen mass transfer in a compliant curved
tube model of a Coronary artery using a finite element method. They showed that

' OXygen can be transported from the lumen to the vessel wall by convective-diffusive
mechanism which depends on the fluid phase mass transfer coefficient (hm) as
follows: '

9 =D g2
D = ) = = v “
on wall (Cb —Cy)

where ¢, and c,, are bulk concentration of oxygen in lumen and the wall concentra-
tion, respectively.

2.2 Fluid-Wall Model

Fluid-wall model is a single-layer formulation which models the arterial wall as one
single layer of porous medium with homogeneous transport properties. As such,
it takes into account transport processes within the arterial wall without excessive
computational expense (Moore and Ethier 1997, Stangeby and Ethier 2002a,b, Sun
etal. 2006). Either (2002), Stangeby and Ethier (2002a,b) developed a mathematical
model to study the transport of macromolecules, such as low density lipoproteins
(LDLs), across the artery wall and their accumulation in the wall as related to
atherosclerosis. Coupled analysis of lumenal blood flow and transmural fluid flow
was achieved through the solution of Brinkman’s model. The authors assumed that
the concentration field of LDL species does not affect the velocity field in the artery
and therefore, the Navier—Stokes and continuity equations for the lumen can be
written for an incompressible flow of a Newtonian fluid as follows:
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The velocity field in the porous wall region is computed using Brinkman’s model
which is a limiting case of the generalized equation in porous media (Vafai and
Tien 1980, 1981, Khanafer et al. 2003, Khanafer and Vafai 2006, Khaled and
Vafai 2003) and can be expressed as:
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where K is the Darcian permeability of the porous medium. Assuming constant
diffusivity, the concentration field is computed via the solution of the mass transport
equations as:
dc - 2

E—l—V-Vc:DVc—}-r (8)
Where D is the diffusivity of the species of interest in blood, ¢ is the concentration
of the species, and r is the reaction term. A suitable boundary condition must be
applied at the blood-wall interface. Ethier (2002) assumed that the amount of the
species passing into the wall was determined as the difference between the amount
carried to the wall by transmural filtration and the amount that diffuses back to the
mainstream:

Cylhy — DE =KCy 3)
on
Sun et al. (2006) utilized the fluid-wall model to treat the arterial wall as a single-
layer of porous medium assuming shear-dependent endothelial transport properties
. to study the effects of wall shear stress on the transport of LDL and oxygen from
blood to and within the wall in an idealized model of a stenosed artery. The trans-
mural flow in the arterial wall was modeled by Darcy’s Law: :

Uy — V- (fpw) =0 ©)

Kp

Where u,, is the velocity of transmural flow, p,, is the pressure in the arterial wall
and p, is the viscosity of the blood plasma. Mass transfer in the arterial wall is
coupled with the transmural flow and modeled by the convection-diffusion reaction
equation as follows:

V- (_Dwvcw = Kslcwuw) = kyCy (10)
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Where D,, is the solute diffusivity in the arterial wall, K is the solute lag coeffi-
cient, and k,, is the consumption rate constant. Transport processes in the arterial
wall were coupled with the blood flow in the lumen by Kedem and Katchalsky
(1958) equations:

J, = L, (Ap — 04AT) : (11)
o= Phe -l =op) e (12)

Where J, is the transmural velocity, J; is the solute flux, L is the hydraulic con-
ductivity of the endothelium, Ac is the solute concentration difference across the
endothelium, Ap is the pressure across the endothelium, A is the osmotic pressure
differential, o, and o are the Staverman filtration and osmotic reflection (which
accounts for the selective permeability of the biological membranes to certain so-
lutes) coefficients respectively, and ¢ is the mean endothelial concentration. Shear-
dependent hydraulic conductivity was assumed by Sun et al. (2006) for LDL and
oxygen transport, respectively, as follows: '

L, (J7wl) = 0392 x 10721n (|7, | + 0.015) + 2.7931 x 107" (13)

From the above, it is noted that the fluid~wall model approximates the wall struc-
ture by a simple homogeneous layer. It is better than the wall-free model. However,
it is still quite inaccurate as it ignores the major wall components which are crucial
to atherosclerosis (Stangeby and Ethier 2002a,b).

2.3 Multi-Layers Model

Karner and Perktold (2000) and Karner et al. (2001) developed a mathematical
model for the description of the mass transport process in the arterial wall cou-
pled with the mass transport in the arterial lumen. Volume-averaged stationary
convection-diffusion equation with a reaction term describing metabolic’ process
was used for the description of the mass transport processes in the intima and media.
The filtration velocity in the intima and media was calculated using Darcy’s law.
Kedem—Katchalsky equations, which describe the convective and diffusive flux
across the endothelium and internal elastic lamina (IEL) were utilized to couple the
transport equations in the lumen, intima, and media. The physical parameters of
the intima and media were obtained from fiber matrix models (Curry 1984, Huang
et al. 1992, Huang and Tarbell 1997). Pore theory equations (Curry 1984, Crone and
Levitt 1984) were utilized to determine the transport parameters of the endothelium
and IEL. The filtration velocity in the wall layer was determined using Darcy’s law.
The description of the mass transport processes in the intima and media uses the
" volume-averaged stationary convection-diffusion-reaction equation:

V- (—Dwvcw 4 Kslcwuw) - kwcw (10)
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The transport parameters in the above equation (D,,, K, k,,) were calculated using
an appropriate fiber matrix model (Curry 1984, Huang and Tarbell 1997, Huang
etal. 1992). The transport processes in the lumen, intima and media were coupled by
the flux across the endothelium and IEL which was mathematically modeled using
the Kedem—Katchalsky equations. The continuity of convective-diffusive flux at
the interfaces between lumen, endothelium, intima, IEL, and media was assumed as
follows:

9 dc
“D— 4 ve=Jy=—D, 2 fuc. (14)
on on

2.4 Other Models

Several analytical and numerical works have explored the mechanism of transport
of macromolecules within the artery wall. Huang and Tarbell (1997) studied the
transport and reaction processes for ATP (Adenosine triphasphate) and LDL in the
media, which they modeled as a heterogeneous material consisting of a continuous
interstitial porous media phase and an array of cylindrical SMCs embedded in the
interstitial phase. They did not consider the entrance effects associated with the dis-
tribution of material in the media through fenestral pores in the internal elastic lam-
ina (IEL). Tada and Tarbell (2004) developed a two-dimensional numerical model to
analyze the effect of the IEL on convective-diffusive transport of macromolecules
in the media. The IEL was modeled as an impermeable barrier to both water and
solute except for the fenestral pores that were assumed to be uniformly distributed
over the IEL. The media was modeled as a heterogeneous medium composed of an )
array of smooth muscle cells (SMCs) embedded in a continuous porous medium
representing the interstitial proteoglycan and collagen fiber matrix (Fig. 1).

The governing equation for the fluid flow in the media is the Brinkman’s equation:

uu
Bp

VP =uViu— (15)

and the continuity equation
V-u=0 (16)

where K is the Darcian permeability of the extracellular matrix. Solute transport
through the extracellular matrix is described by a convective-diffusion equation

Kefu-Ve = DfVic (17

where K is the lag coefficient for convective transport in the fiber matrix, c is the
interstitial macromolecule concentration, and D 7 1s the effective diffusivity of so-
lutes in the fiber matrix. The boundary condition on the surface of a smooth muscle
cell (SMC) is
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Fig. 1 Schematic illustration of the arterial media underneath the subendothelial layer. Internal
elastic lamina (IEL) has a single fenestral pore (Tada and Tarbell 2004)

krc=D¢Vc (18)

where k, is the rate constant associated with the rate of disappearance of solute by

surface reaction or cell permeation. In modeling solute uptake by SMCs, Adenosine
triphosphate (ATP) and LDL were chosen as substances representing a broad range
of molecular size. The degradation of ATP (hydrolysis of ATP to ADP: adenosine
diphosphate) on the surface of SMC can be modeled using Michaelis-Menten kinetics
with a rate

- Vmax CS

= 19
E.+C 19)

where Vinax is the maximum rate, ¢, is the surface concentration, and k,, is the
Michaelis constant. For pseudo-first order reaction rate (¢s <<ky,), theabove equation
reduces to
Vmax

Vmasz
V= S0 =l 20
kn+Cs  kn &l

The effective reaction rate coefficient for ATP was taken as k, =1.25 x 10~*cm/s
based on experimental data for V., and k,, (Gordon et al. 1989) and the effective
diffusivity (D) was set at D ¢ =2.36 x 1075 cm?/s (Gordon et al. 1989).

3 Physiological Parameters

The physiological parameters of the various wall layers used in the transport equations
were calculated using pore and fiber matrix models, in vivo and in vitro experiments.
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3.1 Endothelium and Internal Elastic Lamina

Traditionally, transport characterization across the endothelium and IEL is repre-
sented by the Staverman-Kedem—Katchalsky membrane transport equations given as

I
Jy=—
n

Jo = DiAc+ (1 = 0p)J,& = PAc + (1 — 0,)J,2 22)

(Ap —o4Ar) = L, (Ap — o4A7) 21

where Dj, is the effective diffusivity per unit length and K’ is the permeability
per unit length. Using pore theory, some researchers (Prosi et al. 2005, Karner
et al. 2001) have derived L endoshetium = 3 x 107 mm?s/g, Lpier = 3.05 x
107" mm?s/g, D, goshetiwm = 3 % 107°mm/s, and D}, = 1.59 x 10~ mm/s
for LDL.

3.2 Intima and Media

The subendothelial intima was modeled as an extracellular matrix of randomly dis-
tributed fibers (proteoglycan and collagen). Curry (1984) demonstrated that the par-
tition coefficient ¢ ¢ (space available to the solute relative to the space available to

water) was given by:
y) . '
éf = exp [—(1 —¢) (l 4 r—zl)} ©3)
rf rf

Where ¢ is the porosity defined as:
e=1-mr}l 24)

Where r f, Tsol are the radii of fiber and solute respectively, and /; is the total length
of fibers per unit volume. The Staverman reflection coefficients o r and oy for the
convective transport in the fiber matrix can be expressed as (Curry 1984):

Of =04 = (1—¢f)2 (25)

The diffusivity coefficient in the intimal extracellular fiber matrix was calculated as
follows (Ogston et al. 1973):

Dy = Dexp [— a-e% (1 + fﬂ)] (26)
Ty

The Darcy permeability K was given as (Vafai and Tien 1980, 1981, Vafai 1984,
Huang et al. 1992):
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4G (1 —¢)

Where G is the Kozeny constant. Similar to the intima, media was modeled as a
medium composed of smooth muscle cells (porosity = esp¢) and an extracellu-
lar fluid phase with fibers (porosity = ¢). Therefore, the porosity of the media is
given by

em =¢€(1 — &syc) (28)

4 Mathematical Model of Macromolecule Transport
within the Arterial Wall

Multilayer model is the most complex model which takes into account the het-
erogeneous properties of the layers constituting the wall. Due to its complexity,
a larger number of parameters are required to characterize the physical properties of
each layer (Fry 1985, Karner et al. 2001). Most of the previous multilayer models
were based on the assumption that the physical properties of the porous wall can be
identified by the pore theory. However, this approach does not provide logical esti-
mations. Prosi et al. (2005) proposed a new methodology which starts from a set of
data that can be more easily determined by experimental measurements. However,
some of the assumptions made in this model give substantial errors. For example,
the Kedem—Katchalsky equations used for endothelium and IEL do not take into
account the boundary effects associated with the flow across these two layers. In
fact, these effects are large due to the thinness of these two layers. Also, they take
into account the effects of the reaction inside the media layer by approximating the
loss of mass flux upstream of the layer. This simplification can lead to an over or
underestimation of the influence of the chemical reaction

Yang and Vafai (2006, 2008), Ai and Vafai (2006), and Khakpour and Vafai (2008a,
b) developed a new fundamental four-layer model for the description of the mass
transport in the arterial wall coupled with the mass transport in the arterial lumen. The
endothelium, intima, internal elastic lamina (IEL) and media layers were all treated
as macroscopically homogeneous porous media and mathematically modeled using
proper types of the volume averaged porous media equations with the Staverman
filtration and osmotic reflection coefficients employed to account for selective perme-
ability of each porous layer to certain solutes. The typical anatomical structure of an
arterial wall is shown schematically in Fig. 2.

4.1 Lumen

Blood flow in the arterial lumen was described by the Navier—Stokes and continuity
equations assuming incompressible Newtonian fluid as follows:
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Fig. 2 Schematic illustration of the geometric artery wall
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4.2 Endothelium and Internal Elastic Lamina

The endothelium and internal elastic lamina

(IEL) were modeled as biological
porous membranes (Ai and Vafai 2006, Yang

and Vafai 2006). The Staverman fil-
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tration and osmotic reflection coefficients were employed to account for selective
rejection of species by the membranes and for the effects of osmotic pressure. The
volume averaged governing equations were given by:

-

Vo<V >=0 (30)

I<V " 1%
B——<——>=—V<p>f+EV2<V>—£L—i———>—+RuTadV<c> (31
£ at £ K

d<c> > 2
s +(1-0f)<V>V<c>=DV <c> (32)

where K is the permeability, and D, is the effective LDL diffusivity in the medium.
The parameters oy and o, are the Staverman filtration and osmotic reflection co-
efficients (to account for selective permeability of biological membrane to certain
solutes), respectively, T is the absolute temperature of the medium, and R, is the
universal gas constant. The symbol < > denotes the local volume average of a quan-
tity (Vafai and Tien 1980, 1981), and the superscript f refers to the local volume
average inside the fluid.

4.3 Intima and Media

The intima and media were also modeled as macroscopically homogeneous porous
media. Since the porous media are selectively permeable to certain species such
as LDL, the Staverman filtration reflection coefficient has to be introduced to ac-
count for this effect. The osmotic effect in the transport modeling is not included
in this part since the maximum osmotic pressure gradient in the medial layer is
far below the hydraulic pressure gradient (Huang and Tarbell 1997). Therefore, the
volume averaged governing equations of the intima and media layers are (Alazmi
and Vafai 2000, 2001)

V.<V>=0 (30)
9 <V o v
2-—<—V—i=——V<p>f+—l£V2<V>~L>- (3D
e . ot : e K
a -
<a:>+(1—af)<V>-V<c>=DeV2<c>+k(c) (32)

where k is the effective volumetric first-order reaction rate coefficient. To verify
the results obtained using this model, a comparison between the numerical result
for species profiles in the media and an exact solution was carried out by Yang and
Vafai (2006). This comparison is displayed in Fig. 3. The exact solution was derived
based on an assumption that the LDL transport in the media is one-dimensional,
with constant filtration velocity. It can be seen from Fig. 3 that the results of porous
model results are in excellent agreement with the exact solutions.
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Fig. 3 Comparison between the numerical dimensionless LDL profiles in the media for three dif-

ferent types of concentration boundary conditions at the media adventitia interface and the exact
solutions

An additional check on the accuracy of their model, Table 1 illustrates a com-
parison between the values of the filtration velocity and species concentration taken
from literature and the results obtained using porous medium approach. The numer-
ical species concentrations at each interface were found close to the experimental
data by Meyer et al. (1996) and numerical results by Prosi et al. (2005).

Tables 2 and 3 show a summary of different boundary conditions used at the
interface between the lumen and the arterial wall as well as various momentum
equations used in modeling the flow in the arterial wall.

Table 1 Comparison between the values of the filtration velocity and species concentration faken
from literature and the porous model (Nang and Vafai , 2006)

Meyer et al. Prosi et al. (2005) Porous Model

(1996) C=0 Cc=0
Filtration velocity (mm/s) 1.78 x 10—3 1.76 x 10— 2.31 x 1072
Species Concentration
Lumen-endothelium interface 1.026 1.0262 1.0246 e
Intima-IEL interface N/A 2.716 x 1072 3.983 x 1072
IEL-media interface 1.00 x 1072 8.58 x 10~3 1.033 x 1072
Media (r = 3.214mm) 2.5x%x 1073 2.23 x 1073 2.687 x 10~°

Media-adventitia interface 1.00 x 10~2 0.00 0.00
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Table 2 Summary of the mass interface boundary conditions between lumen and arterial wall

Model Remarks
= S—Z Iwa” =0Cy -wall free model

-constant wall permeability
-D g—rcllwall =acy = f(tw)ecw =Bltwlcw -wall free model

cply — D &

an lwall =iy

_D ¥

9 = o
an lwall — hm (cp = cu)

-permeability is linearly dependent on the
local shear stress magnitude

-wall free model and fluid-wall model

-more realistic

-depends on the blood-side solute
concentration at the wall, endothelial
permeability parameter, and the filtration
velocity

-wall free model
-depends on the bulk concentration in the
lumen and the arterial wall concentration

*w: interface between the lumen and the arterial wall

Table 3 Summary of the momentum equation used in the arterial wall

Model

Remarks

@

W4 V.VV=—LvP 4y V2V 2L

§a<\7> =-V<p>' +%V2<‘7>

Rl p Ty

pa<V> _ _ fLIBET2 V<.
o =Y E P N <V >
_ p<V>
K

-fluid-wall model

-arterial wall modeled as single-layer porous
medium

-Darcy model

-constant permeability

-fluid-wall model

-arterial wall modeled as single-layer porous
medium : !

-Brinkman’s model !

-constant permeability

-endothelium and internal elastic lamina
-more realistic

-The Staverman filtration and osmotic
reflection coefficients were employed to
account for selective rejection of species
by the membranes and for the effects of
osmotic pressure

-intima and media

-more realistic

-accounts for Staverman filtration
reflection coefficient )

-neglects the osmotic effect in the transport
modeling :
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5 Future Directions

In the cardiovascular system, blood flow is under constant interaction with arterial
walls. The interactions between blood flow and wall deformation can involve a wide
range of fluid- mechanical phenomena. When blood flows through the lumen, the
forces associated with the flow may deform the arterial walls and consequently alter
the properties of the wall which in turn affect the flow structure in the lumen as well
as the transport process of macromolecules from the lumen to the arterial walls. This
will have an impact on the development of many diseases such as atherosclerosis.
Most previous studies have been carried out under different simplifying assumptions
such as steady flow, rigid boundary, Newtonian fluid, etc. The comparison between
the simulations considering rigid arteries and deformable arteries have shown a sub-
stantial increase in the wall shear stresses for a rigid artery. This indicates that as the
artery becomes more rigid, its wall shear stress increases leading to atherosclerosis.
Hence, simultaneous fluid-structure interactions (FSIs) should be considered when
studying the hemodynamics, flow structure, and the transport of macromolecules
from the Iumen to the arterial walls. Transient FSI simulations may provide physi-
cal insight to the mechanisms of the atherosclerosis. The solution of fluid-structure
interaction problems, coupling computational fluid dynamics analysis with finite
element stress analysis, is now becoming tractable through the accessibility of high
performance computing.

There is a need for an FSI approach in studying the transport of macromolecules
in the arterial walls under pulsatile flow condition and utilizing a porous media
approach to analyze the arterial walls. Since the wall of the artery is deformable,
a complex coupling exists between the flow in the lumen and the arterial wall.
Thus, the variations in the porosity and permeability of the deformable arterial wall
should be considered in such analysis. In addition, the variations in the physical
properties of the arterial walls such as Young modulus and Poisson’s ratio should
be considered in any future studies since the materials of the walls are nonlinear,
non-homogeneous, and anisotropic.

Nomenclature

D diffusion coefficient

D, effective diffusivity per unit length

¢ concentration

¢, bulk concentration

¢, surface concentration

¢, wall concentration (at the interface between
lumen and the arterial wall)

¢ mean endothelial concentration

h,, fluid phase mass transfer coefficient

Jy solute flux
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k, Michaelis constant - -

ky, consumption rate constant

K  Darcian permeability

K, solute lag coefficient

L, hydraulic conductivity of the endothelium
Dw Dpressure in the arterial wall

qy diffusive wall flux

r  reaction term

u, transmural velocity

Vimax Maximum rate

Greek Symbols

o constant wall permeability

B proportionality factor (shear-dependent wall
permeability model) '

Am osmotic pressure differential

k The permeability coefficient at the arterial

wall
Up viscosity of the blood plasma
& porosity

- 04 Staverman filtration
oy osmotic reflection
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