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ABSTRACT

This chapter presents a critical review and comparison of a carefully selected set of models for heat
and mass transfer in the presence of phase change in porous media. The selected models represent
the most generally applicable classical models of this subject. This study examines the details of
the transport phenomena and the relevant terms appearing in each model and makes qualitative
comparisons among the models. It poses the main assumptions and the consecutive simplifications
employed in each model. It is aimed to serve as a useful tool for researchers in this area as a number
of assumptions and simplifications employed in some models have not been discussed clearly if
mentioned at all. Based on analysis of the assumptions and transport details, the advantages and
deficiencies of each model are pointed out and the general applicability of each model is discussed.
The development of models with non-thermal-equilibrium assumption, which is a requirement for
some problems, is discussed. Conclusive comments are made on the present status of general for-
mulation of transport processes in the presence of phase change in porous media. And recommen-
dations are made on ways to cope with common difficulties encountered.

NOMENCLATURE

a volumetric air content

A1 diffusion coefficient of vapor, m? s™*
al, thermal vapor diffusivity, m? s~' K!
" diffusion coefficient of liquid, m? s™!
a5 thermal liquid diffusivity, m? s™! K™!
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67 specific heat of moist porous medium per unit dry mass, J kg™! K™!

D apparent mass diffusion coefficient of vapor in air, m? s™!

D.g gas-phase total effective diffusivity tensor, m? s~

Dy thermal liquid diffusivity, m? s™! K™!

Dr, thermal vapor diffusivity, m? s™! K™

Dy, isothermal liquid diffusivity, m? s~!

Do, isothermal vapor diffusivity, m? s

E rate of evaporation, s™!

g gravitational constant, m s>

h relative humidity

h; specific enthalpy of liquid, J kg™!

A, specific latent heat of vaporization, J kg™!

h, specific enthalpy of vapor, J kg™

j mass flux, kg m™2 s™!

K thermal conductivity, W m™! K™!

k unit vector in the vertical direction, m

ky filtration coefficient, kg m™' s™! Pa™!

kery —3(P.)/{TH), Nm 2 K"

ke —d(P,./deg, N m~>

K unsaturated hydraulic conductivity, m s

Kc liquid conductivity, m™! s

K; liquid conductivity, m? s

Ky vapor diffusivity, m? s

K single scalar component of permeability tensor for the liquid phase,
m?s™!

K, single scalar component of permeability tensor for the gas phase, m? s~

(m) mass rate of evaporation per unit volume, kg s™! m™3

Mey rate of evaporation, kg s™! m‘3>

P pressure, Pa

Py reference pressure, Pa

P capillary pressure, Pa

S porosity

t time (Luikov), s; temperature (Eckert), K

u total moisture content of body (Luikov); liquid content (Berger and Pei)

v velocity vector defined as the volume flow rate per unit soil cross section,
ms! : .

p velocity of the liquid phase, m s™*

Uy velocity of the gas phase, m s™!

w ratio of vapor mass to mixture (air and vapor) mass

X length coordinate, m

z length coordinate, m

Greek Symbols

€ void fraction of solid

& phase-conversion coefficient for the liquid phase
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€p volume fraction of the liquid phase

0, volumetric liquid content

0, volumetric vapor content

Up coefficient of dynamic viscosity for the liquid phase, kg m~! 5!
Ly coefficient of dynamic viscosity for the vapor phase, kg m~' s™!
€ a function of the topology of the liquid phase

p density, kg m™3

Pa density of dry soil, kg m ™3

Po density of saturated water vapor, kg m™>

T time, s

be capillary potential, m> s—2

Subscripts

[ liquid

v vapor

1 vapor

2 liquid

Special Symbol

{ )  volume-averaging symbol

1 INTRODUCTION

The pioneering works in the area of fluid transport as well as some aspects of heat
transport in porous media go back to the beginning of this century [1-6]. The
subject of transport processes with change of phase in porous media has been studied
extensively during the past two decades. Some of the current problems involving
transport processes in porous media include drying phenomena of porous materials
such as wood and food products, nuclear waste disposal processes, heat pipe ap-
plications, and phase change (condensation ) in fibrous building-insulation materials.
The subject has applications in hydrological, petroleum, and geothermal engi-
neering [ 7-14].

The early works of chemical engineers in drying processes were characterized
by representing the fluid motion by diffusion equations [2, 4, 15-17], while re-
searchers in other disciplines such as hydrology, colloid chemistry, and ceramics
were the first to recognize that surface tension forces (capillary action) are also
important in explaining moisture movement in porous media [1, 5, 18].

In the initial phases of research on drying, heat transport was not considered
to have a significant influence on drying processes. Krischer [6,19] and Krischer
and Rohnalter [20] were the first to seriously consider the effect of energy transport
in drying processes.

Relatively complete studies considering both heat and mass transfer with phase
change and capillary action in porous materials started in the 1950s. Among the
classical studies are the works of Philip and DeVries [21] and DeVries [22], who
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modeled moisture movement in porous materials under temperature gradients,
and formulated simultaneous heat and mass transfer in porous media. Berger and
Pei [7] improved the pioneering work of Krischer with a model for drying of hy-
groscopic capillary porous solids. In Soviet research, Luikov [23, 24] established a
system of equations for heat and mass transfer in capillary porous media; this work
included considerable detail. Papers by Eckert and Pfender [25] and Eckert and
Faghri [ 26 ] reported studies on combined heat and mass transfer with phase change
in porous media and migration of moisture due to temperature gradients in un-
saturated porous media. The model describing drying processes in porous media,
developed by Whitaker [27], uses volume-averaging technique and provides a Sys-
tematic way of obtaining the governing equations.

In all the abovementioned investigations, as is the case for most work in this
area, local thermal equilibrium among the different phases at any location within
the system was assumed. The same emphasis is given to such models in this chapter.
However, one class of problems does not allow the local-thermal-equilibrium as-
sumption; fixed-bed heat-storage systems and catalytic reactors in packed-bed form
as well as packed beds used for heat transfer, adsorption, and absorption processes
fall into this category. Most of the relevant investigations in this category use ex-
perimental methods, and this area lacks rigorous models and numerical simulation
work. Almost all the analytical work in which no local-thermal-equilibrium as-
sumption is made uses rather simplified models, mostly for comparing experimental
data with analytical results.

The main difficulties encountered in the modeling of transport processes in
porous media are due to the large number of transport coefficients required for
formulation of the physical phenomena. Experimental findings show that these
coeflicients may vary to different orders of magnitude within the range of temper-
ature and the range of moisture content of interest for any particular problem. For
instance, the hydraulic conductivity depends not only on the liquid content but
also on the temperature of the system. Likewise, the thermal conductivity of each
phase depends on the temperature, and the effective thermal conductivity of the
moist porous system depends on both the temperature and the volume fractions
of the different phases. Moreover, for an accurate representation, the effective ther-
mal conductivity should also include dispersion effects. These reasons make it dif-
ficult, if not impossible for some cases, to determine such transport coefficients.

Due to the complexity of the structure and the internal transport processes, a
number of simplifying assumptions are usually made in modeling heat and mass
transfer in porous media. The most common assumptions are

The solid matrix is incompressible and free of chemical reaction.

No liquid or gaseous component is contained in the solid phase, that is, the
system contains no bound moisture.

Local thermodynamic equilibrium exists between the different phases in the mul-
tiphase porous system.

Viscous dissipation and compressional work are negligible.

Water vapor and noncondensable gas components can be treated as ideal gases.



MULTIPHASE TRANSPORT MODELS IN POROUS MEDIA 149

e The liquid component is incompressible.
¢ Radiative heat transfer and free convection are negligible.

Depending on the physical conditions, the following assumptions are also fre-
quently made:

Gravity effects are negligible.

Noncondensable gas components are stagnant.

The vapor-phase moisture content is negligible compared to that of the liquid
phase.

Boundary and inertia terms are negligible in momentum transport.

2 ANALYSIS AND COMPARISON OF MULTIPHASE
TRANSPORT MODELS IN POROUS MEDIA '

A large number of studies dealing with specific problems related to heat and mass
transport with phase change in porous media may be found in the literature. A
considerable number of these studies analyze drying of different porous materials.
Some examples are those reported by Plumb et al. [8], Harmathy [28], and Haber
et al. [29]. Studies on phase change with simultaneous heat and mass transport in
porous insulation materials have been reported by Vafai and Sarkar [30], Vafai
and Whitaker [10], and Ogniewicz and Tien [9]. Recent studies on heat pipe
applications were reported by Udell [11] and Udell and Fitch [31], and studies on
boiling and two-phase flow in a porous medium have been reported by Chuah and
Carey [32]. Most recently, White and Tien [33, 34] reported analytical and ex-
perimental studies on film condensation in porous media.

It is possible to extend the list of references in which practical applications of
heat and mass transfer with phase change in porous media have been modeled and
analyzed. Each specific problem has different dominant physical phenomena (e.g.,
diffusion, capillary action) due to different physical conditions (e.g., large or small
pressure and/or temperature gradients, funicular or pendular state for liquid). Ac-
cording to the prevailing physical conditions of the problem considered, a number
of transport terms may be neglected with respect to others. Moreover, the constitutive
equations used for the mass-flux terms may be different depending on the transport
mechanism (e.g., diffusion, capillary absorption). In addition, different thermo-
dynamic relations may be used as coupling relations in different models. Conse-
quently, the modeling of the governing equations for each specific application may
differ to some extent from the modelings used in other applications.

The fundamental conservation laws are the same for each practical application.
Therefore, a general model of simultaneous heat and mass transfer with phase
change in a porous medium should reduce to the form used in each application
after the relevant assumptions, transport mechanisms, and coupling relations used
in that particular problem are employed.

Only a limited number of studies on the general formulation of heat and mass
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transfer with phase change in porous media are available. Five models were selected
to be analyzed in this section. They were chosen because they represent the most
significant and classical models, the ones that are the fundamental backbone of
most of the work related to heat and mass transport with phase change in porous
materials. Although some of these models might be considered as being related to
particular applications, their different versions are used so widely that they can be
considered classical models. Each model is based on several references; however,
only the most pertinent references for each model are cited. The models considered
are those by Whitaker [27], Luikov [23, 24], DeVries [21, 22], Berger and Pei
[7], and Eckert [25, 26]. In the cases of DeVries’s and Eckert’s models, the references
cited for each case are complementary to each other for that case. In the case of
Luikov model, the second reference summarizes the first, with some differences.

Table 1 depicts the representations of the liquid and vapor mass-flux terms as
well as the phase-change term in each model with respect to the notations used in
each work.

A qualitative comparison of the details of momentum transport processes in
different models is summarized in Table 2. A similar comparison for heat transport
processes is given in Table 3. The differences between different models usually arise
either from simplifying assumptions made for actual physical phenomena, which
are stated explicitly or invoked implicitly, or from the combination of physically
different transport components into a single term by utilizing different heuristic
definitions for transport coefficients, for example, combining molecular diffusion
and capillary absorption into a single term and conditionally describing the two
transport processes as diffusion [23].

A question might arise as to whether it is possible to establish a correspondence
between the transport coefhicients listed in Table 1 for different models. Unfortu-
nately, this is not possible for several reasons. First, selection of the proper transport
potentials depends on the transport mechanism assumed to prevail (e.g., diffusion,
capillary action). This leads to different constitutive equations with entirely different
transport potentials (e.g., pressure, density), and thus, the physical meanings and
representations of the transport coefficients are different in each case. Second, the
effect of some transport potentials (e.g., temperature, gravity) has been neglected
in some models. Therefore, the flux terms in different models are not exactly equiv-
alent to each other, and hence, it is not possible to establish a one-to-one corre-
spondence between the transport coefficients of the models analyzed.

Whitaker’s model, which applies volume-averaging technique on the governing
point equations, is rigorous. It consists of a total thermal energy equation, continuity
equations for liquid and gas phases, equations of motion for liquid and gas phases,
a diffusion equation for the gas phase, a volume-constraint equation, and five ther-
modynamic relations that yield 12 equations for 12 unknowns. These are strongly
coupled equations, and they must be solved simultaneously. As may be seen from
Tables 2 and 3, Whitaker’s model considered a larger number of transport details
than did the others. His model takes into account diffusion, dispersion, convective
flow, and gravity effects in all phases in addition to capillary motion in the liquid
phase. By a systematic definition of the effective diffusion coefficient, dispersion is
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Table 1 Representations of the liquid and vapor mass flux terms and phase-change terms

Phase
Vapor flux Liquid flux change
1 . v )\ g = .
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“ Includes flux of noncondensable gases in the first term.

® Includes infiltration flux of liquid phase.

¢ Includes infiltration flux of vapor phase.

4 This model is based on an improved version of Krischer’s model.
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Table 2 Momentum transport details in different models

Berger
Whitaker Luikov DeVries and Pei Eckert

Vapor
Molecular transport (diffusion) Yes Yes Yes Yes Yes
Dispersion Yes No No No No
Darcy’s flow (convective) Yes Yes® No No No
Gravity Yes No Yes® No No
Liquid -
Molecular transport (diffusion) Yes Yes Yes No Yes
Dispersion Yes No No No No
Capillary motion Yes Yes© Yes Yes Yes
Darcy’s flow (convective) Yes Yes? Yes No Yes
Gravity Yes No Yes No Yes
Noncondensables
Molecular transport (diffusion) Yes Yes No No No
Dispersion Yes No No No No
Darcy’s flow Yes No No No No
Gravity Yes No No No No

* In the final formulation, the Darcy’s flow for both liquid and vapor is given in combined form in
terms of the external pressure gradient.

® This is taken care of indirectly in the density gradient term for the vapor phase.

¢ The capillary motion of liquid is accounted for in combined form with molecular diffusion.

accounted for in the diffusion term. Likewise, the effective thermal-diffusion tensor
represents conduction in all phases as well as thermal dispersion in liquid, vapor,
and noncondensable gas phases, that is, thermal dispersion is modeled in a dif-
fusive term.

Luikov, in establishing the set of transport equations, described the molecular
diffusion and capillary diffusion as a single diffusive term, which is then decomposed

Table 3 Heat transfer details in different models

Berger
Whitaker Luikov DeVries and Pei Eckert

Conduction

Solid phase Yes Yes Yes Yes Yes

Liquid phase Yes Yes Yes No Yes

Vapor phase Yes Yes Yes No Yes

Noncondensables Yes Yes No No No
Convection

Liquid phase Yes Yes Yes No No*

Vapor phase Yes Yes Yes No No?

Noncondensables Yes Yes No No No
Dispersion Yes No No No No
Heat sources or sinks Yes No No No No

“ These terms have been taken into account in Eckert and Faghri [26].
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into temperature-gradient and moisture-content-gradient components. Although
the model is capable of accounting for noncondensable gas constituents, the as-
sumption stating that no chemical conversion is connected with producing non-
condensable gas components and the assumption stating that the mass of noncon-
densables is negligible compared to the mass of liquid phase eliminate the need for
considering noncondensables in the system of equations. Another major assumption
made by Luikov in deriving a definition for the liquid-phase conversion factor is
that in addition to the mass of noncondensables, the mass of water vapor is negligible
compared to the mass of liquid in the porous medium. Hence, the rate of change
of vapor content is approximated by 0, and the set of governing equations is based
on total moisture content, which is approximated by the liquid content only. Al-
though molecular diffusion and capillary motion in all phases except the inert-gas
phase are considered, dispersion and gravity effects are neglected. There seems to
be a discrepancy and some ambiguity in the infiltration terms defined in [23] and
[24]. While in [23] it is stated that a pressure gradient causes filtration of vapor
and liquid, in [24] it is stated that filtration of vapor and inert gases takes place.
Both of these formulations, however, seem to be misleading since Darcy’s law
should be applied to the liquid and gas or vapor components separately, and the
Darcy’s flux term for each component should be proportional to the negative pres-
sure gradient of that individual component only.

In Luikov’s model, the energy transport equation was essentially derived by
an energy balance on a control volume. With further simplified definitions for
combined transport coefficients, Luikov obtained a system of coupled differential
equations for three dependent variables, namely, total moisture content, temper-
ature, and pressure. An additional thermodynamic relation was given for the vapor
pressure in the system by a sorptional isotherm relation for the case when the
moisture content of the porous matrix was less than the maximum sorptional value,
and by the Clausius-Clapeyron equation for the case when the moisture content
of the body was greater than the maximum sorptional value.

DeVries’s model includes two mass-balance equations for liquid and vapor
phases, an energy equation, a volume-constraint relation, and a thermodynamic
relation relating vapor density to saturation vapor density, pressure, and temper-
ature. The unknown parameters are 6, 0,, E, T, and p,. The liquid mass flux is
defined by Darcy’s law. The breakdown of the pressure component of the total
liquid-flux potential into temperature-gradient and liquid moisture-content-gradient
parts in the capillary condensation region allows description of the liquid motion
in terms of thermal-diffusion and isothermal-diffusion components in addition to
the gravity component. The vapor flux is also defined in a diffusion equation as
being proportional to the vapor-density gradient. A thermodynamic relation for
the vapor density leads to breakdown of the density gradient into temperature- and
moisture-content-gradient parts. Gravity effects for the vapor phase are taken into
account in an indirect way by the vapor-density-gradient term. Although this is not
seen directly as in Darcy’s law, in which pressure and gravity components are
defined explicitly, the thermodynamic relation used for defining the vapor density
mmplicitly takes care of the gravity effects in the vapor motion. There is also an
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implicit assumption that considers the noncondensables to be immobile. The energy
equation is derived by an energy balance on a control volume after the heat-flux
density and the total heat content per unit volume of the moist porous system have
been described. The definition of the heat-flux density is based on a hypothetical
conduction term for the case when no moisture is moving in the system, a latent
heat transfer term due to vapor movement, and sensible heat transfer terms due to
vapor and liquid motion. However, no quantitative definition is provided for the
thermal conductivity of the system for the hypothetical conduction case considered
in defining the heat flux. The approach in defining the total heat content per unit
volume of the moist porous system is different from the corresponding definitions
of all other methods. In this approach, the concept of differential heat of wetting
is introduced to distinguish between the heat of vaporization at saturation vapor
pressure and the heat of vaporization at a vapor pressure different from the saturation
vapor pressure.

Berger and Pei defined the motion of both liquid and vapor by Fick’s law.
Vapor flow is taken to be proportional to the gradient of the partial vapor pressure.
With the assumption of small temperature changes, the gradient of partial vapor
pressure is expressed in the form of the gradient of vapor density by invoking the
ideal gas equation of state. The motion of liquid is defined to be capillary flow and
is expressed by a term that is proportional to the liquid-content gradient. The ad-
ditional assumption of constant transport coefficients, the vapor diffusivity K, and
the liquid conductivity K , simplifies the approach significantly. In Berger and Pei,
gravity effects are not considered, and noncondensables are not taken into account.
In establishing the energy equation, it is assumed that the heat-transport processes
in the porous medium consist only of conduction through the solid matrix and
transfer of latent heat by phase change. These also simplify the energy equation
since no convective heat transfer or heat dispersion are considered. Also, no need
arises for defining an effective thermal conductivity for the multiphase porous sys-
tem. For the unknown parameters u, p,, and 7', two coupling equations are suggested
for use. These are the Clausius—Clapeyron equation and the equation of sorptional
isotherm; respectively, these equations define the vapor density at the regions of
higher than maximum sorptional liquid content and lower than maximum sorp-
tional liquid content.

Eckert defines the liquid motion with an equation that looks like Darcy’s equa-
tion by taking the liquid mass flux to be proportional to the negative gradient of
liquid pressure. The assumption of constant air pressure in the system allows the
liquid-pressure gradient to be replaced by the gradient of the capillary potential.
Further manipulation with the assumption of homogeneous porous medium yields
a liquid-flux term proportional to the moisture-content gradient. Hence, the capillary
motion of the liquid is expressed by a diffusionlike equation. Gravity effects are
also taken into account in the liquid phase. The motion of the vapor is based on
the bulk motion of vapor and air as well as on diffusion of vapor, which is caused
by the gradient of the vapor pressure caused by a gradient in temperature. Another
simplification is the neglect of the difference between the vapor pressure over a
curved surface when air is also present and the saturation vapor pressure of pure
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vapor over a plane liquid surface. Hence, the vapor pressure is assumed to be the
saturation vapor pressure at that temperature. Gravity effects are neglected in the
vapor phase. Reference [ 25] does not provide a complete energy equation but gives
a definition for the heat flux per unit area of the system. This definition does not
take into account the transfer of sensible heat due to liquid and vapor motion. The
energy equation given in [26] seems to be incorrect; the correct form of this equation
should read

Pdcsg_i = V(kVt) = V-[(h + )], + hJ)]
A mass-balance equation is not provided in [25], but definitions of liquid- and
vapor-flux terms are available. '

It should be noted that in all of the models discussed in this section, local
thermal equilibrium was a major assumption employed. Therefore, these models
are applicable to problems in which fluid motion and thermal transport processes
are relatively slow so that the assumption of local thermal equilibrium between
different phases in the porous medium does not cause considerable inaccuracy.
Problems with relatively faster fluid motion and heat transfer processes with local
temperature-jump conditions between different phases cannot be modeled by the
local-thermal-equilibrium assumption. Therefore, this class of problems deserves
special attention and treatment since the models previously discussed in this section
will fail to solve these problems unless they are modified for the non-thermal-
equilibrium condition.

The earlier examples of problems requiring no local-thermal-equilibrium as-
sumption were those analytical and experimental investigations on heat transfer in
packed beds. The experimental work undertaken by a number of researchers was
aimed primarily at determining the fluid-to-particle heat transfer coefficient in
packed beds. This continues to be a fundamental issue. The mathematical modeling
of such problems requires more than one energy equation due to the different
temperature distributions in different phases, and the transfer of heat due to the
temperature-jump condition between the solid and fluid phases is modeled as a
convective heat transfer term that requires the fluid-to-particle heat transfer coef-
ficient. Numerous experimental investigations have been carried out for determining
the fluid-to-particle heat transfer coefficient in packed beds with a single phase of
fluid. The majority of these experiments were carried out with air or water as the
working fluid for different geometrical shapes and packing configurations for the
solid particles, including randomly oriented spheres, beds of spheres oriented in
cubic or rhombohedral arrays, cubes, cylinders, granular materials, and commercial
packings. The results of most of these studies have been presented in the form of
empirical or semiempirical correlations. For a limited review of the literature on
heat transfer between fluids and particulate solids in a packed bed, see Barker [35].

More recent investigations in this category of problems are aimed at rather
specific applications that mostly use packed beds. One work aimed at the theoretical
formulation of volume-averaged energy equations for a fluid flow in a saturated
porous medium utilizing the non-thermal-equilibrium assumption is that of Wong
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and Dybbs [36]. An analytical and numerical investigation on the performance of
a heat exchanger containing a conductive porous medium that was used as a coolant
passage in simulating the convection cooling of a high-temperature environment
was reported by Koh and Colony [37]. Spiga and Spiga [38] also conducted an
analytical study on the heat transfer in porous media and packed beds for the non-
thermal-equilibrium case; they obtained analytical solutions for some simplified
cases for constant transport coefficients and for a constant fluid-to-particle heat
transfer coefficient. Studies on modeling of fixed-bed heat-storage systems using
phase-change materials, reported by Pitts and Hong [39] and Ananthanarayanan
etal. [40], are among the most recent investigations in this category. To our knowl-
edge, however, no analytical /numerical or experimental investigations have been
carried out for analyzing the problems of the non-thermal-equilibrium case in the
presence of phase change in the working fluid of the porous medium.

The modeling of any problem dealing with transport processes in porous media,
whether with the local-thermal-equilibrium assumption or the non-thermal-equi-
librium assumption, will not be complete without the specification of proper
boundary conditions.

The choice of boundary conditions is an essential part of the mathematical
modeling for any specific problem since they are used to formulate the physical
conditions at the boundaries of the system. The boundary conditions, however,
depend on the nature of the problem under consideration. Their choice depends
on selection of the transport potentials used in the governing equations of
the model.

The boundary conditions commonly employed in the problems dealing with
transport phenomena in porous media can be broadly divided into two categories:
permeable or impermeable boundaries. Three common types of boundary condi-
tions are used for energy equations: constant temperature, constant heat flux, and
convective heat transfer. The application of these conditions to impermeable
boundaries is relatively simpler. In the case of permeable boundaries in which there
may be a mass flux at the boundary, the proper boundary condition must be for-
mulated from an energy balance at the surface. For the governing mass transfer
equation(s) in the case of impermeable boundaries, the mass-flux term(s) should
be equal to 0 at the boundaries. For permeable-boundary cases, the boundary con-
dition should be established from a mass balance at the surface. Depending on the
problem, this can be a constant mass flux or a convective mass transfer condition.
For instance, a convective boundary condition is commonly employed in the drying
of a porous material. This is done by equating the total moisture flux, expressed in
the form of the gradient of the moisture content or saturation depending on which
is used in the governing conservation equation, to the product of the convective
heat transfer coefficient and the difference in the vapor density of the porous system
and the surrounding drying medium. For the momentum equation, the constant-
pressure boundary condition is commonly employed. In some models, such as
Whitaker’s, in which equations such as thermodynamic relations and volume-con-
straint relations have been used in addition to the conservation equations, additional
boundary conditions, such as pressure, density, or volume fraction, may be needed.
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3 DISCUSSION

Whitaker’s model is rigorously formulated and quite comprehensive. It contains a
great deal of detailed information on the physical phenomena and their formulations.
The approach of establishing the local volume-averaged conservation equations as
well as the volume-constraint and thermodynamic relations for the unknown pa-
rameters of the system is reasonable and quite systematic. By this model, detailed
studies of transient distribution of all different phases and the rate of phase change
can be accomplished. This is possible since many details of the physical phenomena
are formulated and a comprehensive system of coupled equations is formed. Thus,
the solution for many different phase variables is possible in contrast to the other
models, in which the solution of a limited number of variables is possible. Provided
that sufficient information is available on transport coefficients, a comprehensive
analysis can be accomplished by this model. By neglecting different transport terms
in turn, the effect of each transport phenomenon for the given specific problem
may be determined. Thus, this will enable one to invoke the appropriate simplifying
assumptions without significant loss of accuracy. The most important drawback of
this model, however, is perhaps the determination of the numerous transport coef-
ficients some of which are in the form of second-order tensors in the case of non-
homogeneous and anisotropic media (e.g., effective thermal-conductivity tensor,
gas-phase total effective diffusivity tensor). Whitaker’s work does not include in-
formation on determination of the transport coefficients. It should be noted that
determination of some of the transport coefficients given in Whitaker’s model 1s
very difficult and may be impossible for some cases. Therefore, complete applica-
bility of this model is not warranted at this time due to the lack of information on
a number of transport coefficients.

Luikov’s model is also a comprehensive one when the primitive forms of the
governing transport equations established in the model are considered. In this model
too, provided that the primitive forms of the transport equations are used for all
phases with relevant information on transport coefficients and sufficient coupling
constraints and thermodynamic relations, a comprehensive analysis of transient
solution for distribution of different phases as well as rate and location of phase
change will be possible.

Luikov, after some simplifying assumptions, reduces the whole system of gov-
erning equations to three coupled differential equations on temperature, total mois-
ture content, and pressure. This system of equations, however, may not be sufficient
for a detailed and accurate analysis of the actual physical phenomena. One cannot
compute the distribution of liquid and vapor phases or determine the rate and
locations of phase change by this system of equations. The assumption of constant
transport coeflicients for a small range of temperature and moisture content may
not be reasonable for all problems. Rather than neglecting the value of du,/dt
compared with du, /9t in order to define €, (the phase-conversion factor for liquid),
&, should be kept as one of the unknown parameters to be determined. Nevertheless,
a simplified analysis of moisture migration due to a temperature gradient in a
porous medium, in which the noncondensables have a negligible effect, may be
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carried out by this system of equations provided that the transfer coefficients, in-
cluding the phase-conversion coefficient, are known.

It should also be noted that some of the transport coefficients used in this
system of equations have rather ambiguous physical meanings due to the combi-
nation of the liquid and vapor-flux terms by heuristic definitions for combined
transport coefficients. For a more accurate study, the primitive conservation equa-
tions should be used simultaneously with relevant thermodynamic relations such
as the Clausius—Clapeyron and Kelvin equations as well as the volume-constraint
relation in order to form a more complete coupled system of governing equations.
Luikov’s work contains limited information on empirical correlations for some of
the transport coefficients. However, a definition for effective thermal conductivity
of the moist porous medium is not given in his work.

Although DeVries’s model does not consider noncondensables, it still forms a
complete, solvable system of equations for problems in which capillary condensation
is the dominant mode of transport in the liquid phase. It is possible to solve nu-
merically for the liquid and vapor distributions as well as the phase-change rate
and location. For practical cases in which either no noncondensables are available
or the noncondensables are present but have no significant influence on the transport
phenomena, DeVries’s model is reasonable. In the relation between 0; and 0, given
in Eq. (7) of [22], a factor seems to be missing. With the implicit assumption that
S = 0, + 0,, the correct form of the equation should read

0P _ (5 0) P2 = (5 0) &
(Y (Y P
However, this is still not quite correct since S = a + 0, + 0,, and therefore 0, =
S — a — 0,should have been used rather than 6, = S — 8,. Although some empirical
correlations are provided for the transport coefficients for the specific problem con-
sidered, those for the liquid phase are based on the capillary condensation region
only. Therefore, these cannot be generalized for any problem since, depending on
whether the liquid in the system is in the pendular or the funicular state, diffusion
or capillary action, respectively, will be the dominant transport mechanism. The
differential heat of wetting introduced in this model does not appear in any other
model. This term is introduced as a correction for the latent heat of vaporization.
It is required due to the fact that the heat of vaporization in a porous medium with
a certain amount of liquid, where the vapor pressure is different from the saturation
vapor pressure at-that temperature, will be different from the latent heat of vapor-
ization of free pure water evaporating at the same temperature. In other models,
either this detail is not mentioned or the dependence of the heat of vaporization
on vapor pressure has been neglected.

Berger and Pei’s model seems to be oversimplified. The assumption of small
temperature changes in the system limits the applicability of this model to more
general physical processes. Another major simplification is the neglect of heat con-
duction in the liquid and vapor phases as well as the neglect of transport of sensible
heat by the liquid and vapor movement. Moreover, the noncondensables are not
considered in this model. Another important deficiency of the model is that it
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mentions nothing about the dependency of the liquid conductivity K; and the
vapor diffusivity Ky on either the moisture content or the temperature. The as-
sumption of constant K; and K cannot be generalized since these transport coef-
ficients depend very much on the temperature and the moisture content in the
medium as well as on capillarity. The mass-flux terms should generally consist of
a temperature-gradient term and a mass-concentration-gradient term to account
for the so-called thermal and isothermal diffusion processes. This model too, al-
though very much simplified by the assumptions made, forms a solvable system of
equations. It will be reasonable to use this model for the practical applications in
which there are no large temperature gradients and no significant noncondensable
effects. Solutions for distribution of the liquid and vapor phases and the rate of
evaporation are possible.

Eckert’s model, like Berger and Pei’s, uses the limiting assumption of small
temperature changes in the system. This is easily seen with the absence of a tem-
perature-gradient term in both the liquid and vapor mass-flux terms. For this reason,
the model should not be applied to processes with relatively high temperature
changes. As for the energy equation, the approach in [25] neglects sensible heat
transport in the liquid and vapor phases. It should be noted that [25] presents only
the definitions of heat- and mass-flux terms and not the conversation equations.
The effect of phase change in the heat-flux term is taken into account. On the other
hand, in [26] the model is developed for the case where there is no phase change
and the porous matrix is bound by impermeable walls so that the total amount of
moisture (liquid and vapor) in the system remains unchanged. This model is useful
for simultaneous heat and mass transfer analysis of problems with no phase change.
By this model, one can study the effect of temperature gradient on moisture move-
ment in a porous medium.

Of the models discussed, Whitaker’s seems to be the most rigorously formulated
and complete one from the theoretical point of view. Luikov’s model, on the other
hand, gives considerable insight as to what kind of simplifying assumptions may
be made in formulating multiphase transport processes in porous media. The other
three models discussed are classical examples of simplified models that are en-
countered mostly in the literature.

In modeling the problems with the non-thermal-equilibrium assumption, the
main difference occurs in the conservation of energy. Due to the different temper-
ature distributions in solid and fluid phases, there will be an additional mode of
heat transfer from the warmer phase to the cooler phase. This transfer mode can
be conceived of as convective heat transfer that can be formulated via a fluid-to-
particle heat transfer coefficient. One of the difficulties encountered in doing so is
that safe application of the empirical and semiempirical relations found for the
fluid-to-particle heat transfer coefficient is questionable because of the inconsistencies
among the existing results of many investigations. Moreover, if the fluid phase is
undergoing a phase change (e.g., condensation ), the heat transfer phenomena will
be much more complicated. An assumption of local thermal equilibrium between
the liquid and gaseous phases may be reasonable and will simplify the modeling to
some extent. However, empirical relations will still be needed for the fluid-to-particle
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heat transfer coefficients in the presence of two different fluid phases as will an
acceptable method of determining the surface areas subject to heat transfer among
different phases. In the presence of liquid and gaseous phases in the porous medium,
determining the effective thermal conductivity for the fluid phases will be compli-
cated too.

To our knowledge, no work has been done to determine an effective fluid-to-
particle heat transfer coefficient for the case when a vapor flowing through a porous
medium undergoes condensation or for the case when a vapor flows through a
porous medium that already contains some condensate. Likewise, no theoretical
or experimental investigation has been carried out to establish a reliable method
of determining the effective thermal conductivity for the fluid phases in a porous
medium containing a vapor and its condensate. At this time, numerical modeling
of such problems in porous media cannot be carried out very accurately due to
lack of the abovementioned quantities. However, parametric studies may be per-
formed with reasonable assumptions for these quantities.

4 CONCLUDING REMARKS

It can be seen from the models reviewed that the nature and extent of the simplifying
assumptions made in modeling heat and mass transfer with phase change in porous
media may vary widely. These assumptions are usually the consequences of the
prevalent physical conditions, which allow the neglect of certain transport terms
from an order-of-magnitude analysis, or the lack of information on transport coef-
ficients or their functional dependencies, which forces the researchers to make some
assumptions such as treating the transport coefficients as constants. As a result of
the need for the latter type of assumptions, the model that appears to be the most
attractive one from the theoretical point of view may be of little value from a
practical point of view.

In multiphase transport processes in porous media, although the physical phe-
nomena are relatively well understood, further work to establish a more generalizable
formulation of the transport processes in porous media is still needed. Universal
methods of definition of the transport coefficients will definitely facilitate the re-
alization of a generalized model. This requires proper identification of the transport
potentials. The adoption of such universal methods is strongly recommended; oth-
erwise, great difficulties may be encountered in distinguishing between the inter-
action of different physical phenomena expressed by gradient terms, At this juncture,
further theoretical and experimental work directed at establishing generalized em-
pirical correlations for transport coefficients seems to be a Very pressing issue in
the multiphase transport in porous media.

For the class of problems in porous media that have liquid and gaseous—vapor
phases available as fluid phases and in which the non-thermal-equilibrium as-
sumption is required, the abovementioned points are equally crucial. Moreover,
effective thermal conductivity for the fluid phases and the effective fluid-to-particle
heat transfer coefficient are crucial quantities that need to be explored further.
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