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Abstract

The present work consists of an analytical investigation
of the effective thermal conductivity of microsphere and fi-
brous insulation media. Because of the statistical nature of
random packing patterns of microspheres and fibers, there ex-
ists a range of effective thermal conductivities for any given
solid fraction of the microsphere or fibrous insulation medium.
An analysis that applies two standard variational principles
to some model media simulating the microsphere and fibrous
insulation has been carried out to determine the statistical
upper and Tower bounds of the effective thermal conductivity.
The physical models composed of cells with different packing
configurations in case of microspheres and special fiber-matrix
arrangements in case of fibrous insulation significantly sim-
plify the evaluation of the statistical bounds. In general,
the pertinent parameters for determining the effective con-
ductivity are thermal conductivities of the constifuent phases,
the volume fraction, and a constant that is a function of the
cell geometry. Furthermore, contemplating the empirical re-
sults that particular types of packings occur more than others
in the microsphere case, a computer simulation imparting this
effect into determining the effective bounds has been devised.
The present microsphere resulis are in excellent agreement
with the previous analytical work using a regular-cell approach.

NomencTature

E Young's modulus of the solid sphere
FisF, = functions defined in Egs. (5} and (6)
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G = cell geometric factor

'k = thermal conductivity )

‘ke = effective thermal conductivity

k* = dimensionlesd effective thermal conductivity defined

€ in Eq. (10)

ke i axial effective thermal conductivity of fibrous in-

S sulation ! :

ke £ transverse effective thermal conductivity of fibrous

C 72 insulation

k, = effective thermal conductivity of a unit cell struc-

J ture of the jth kind

k0 = gas conductivity under continuum conditions at STP

kS = thermal conductivity of the solid sphere

kﬁe = dimensionless effective thermal conductivity defined
in Eq. (13)

k = larger of the two constituent thermal conductivities

k = smaller of the two constituent thermal conductivities

Kj = thermal conductivity parameter for cells of the jth
kind

P = Joading pressure

Sj = solid fraction parameter for cells of the jth kind

o = ratio defined by ki/k, (a2 1)

65 = s0lid fraction of the material with property k-I
8 = volume fraction of the material with property k1
U = Poisson’s ratio of the solid sphere

Introduction

Microsphere insulation, which represents a special type. =
of packed beds, is basically a stagnant agglomerate of small .
unconsolidated spherical particles.] These beds, possessing
a large ratio of solid surface area to their volume, provide
excellent thermal insulation characteristics for a variety of
industrial app1ications.2,3 Determination of the thermal char-
acteristics of such beds, especially the conduction contri-
bution, long has been the subject matter of numerous stud-
jes.4-6 However, previous works have dealt mainly with the
regular arrangement of solid particies throughout the bed, thus.
implementing the idea that the thermal conductivity of a pack-:
ed bed is a unique function of the solid fraction. That this:
is not the actual case was indicated first by Nayak and Tien
showing a range of thermal conductivities at each solid frac
tion./ Nevertheless, the random nature of packings in the
bed was not takenm into account. The present work accommodates




STATISTICAL BOUNDS 137

the random arrangement of solid particles by assuming the pack-
ed bed to be composed of four different packing structures,
randomiy dispersed throughout the bed. Furthermore,';he prob-
ability}of occurrence of a certain packing over another has
been inéorporated into the analysis by a computer simblation.

Another widely employed insulation system is the fibrous
insulation.2,3 Previous works'on the effective thermal con-
ductivity of the fibrous insulation have been mostly empirical,
but a few analytical studies have been made on fiber-reinforced
materials.8:9 “The present work, which extends these previous
studies, considers the fibers suspended in a continuum matrix
of gas or solid phase. By devising two different models for
the arrangement of fibers in the matrix, the resulting bounds
on the effective thermal conductivity at different concentra-
tions of fibers are presented for some typical values of the
ratio of fiber to the interstitial-phase conductivity.

Theoretical Basis

The most fundamental bounds for the effective thermal
conductivity of muitiphase media are based directly on the
information about their volume fractions and properties of
constituent phases.10 These bounds are acquired by assuming
the series connection of the constituents as the Tower bound
and their parallel connection as the upper bound. Through
such an analysis, the effective thermal conductivity ke of a
heterogeneous material with spatially varying thermal conduc-
tivity k falls into the range

<1k>T ek < <k (1)

where < > denotes spatial average of any quantity. However,
this range is relatively wide, and the model, which will be
called the volume fraction model, neglects any pertinent pack-
ing information other than the volume fractions. Therefore,
an improved model carrying more information and thus providing
a set of narrower bounds is needed,

By using two standard variational principles and applying
the perturbation series expansion of heat flux and temperature
gradient as trial functions into these principles, statistical
bounds can be established in a more detailed manner for the
effective thermal conductivity of a statistically homogeneous

. and isotropic multiphase medium.11,12 These bounds are given as

K <<k> - < k'2 >3 < k> / (2)
1+ (3<k>d/< Kl )
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L L < Kk o/3)m < kP ]T

k>§<—> ‘
€ K f< k > k'zlk >/3 + J2]

|

where the quantities Jy and J? are associated with the spatial
integrations of < k'(O}k'(r)k (3) > andZk'{¥)k'(5)/k'(0) >,
respectively, k' =k - <k >, or deviations of k from the spa-
tial average, and r and S denote positions in the vector space.
The quantity < k'(0)k'(r)k'(8) > or < k'(r)k'(s)/k'{0) > rep-
resents the so-called three-point correlation function, which
is related basically to the summation of terms representing
the probabilities of three points being in different combi-
nations of the two-phase material. As is clear from the pre-
ceding results, the success of this method is primarily de-
pendent upon the evaluation of J1 and Jg, which, in turn, re-
1ies on the success in determining these three-pnint correla-

tion functions.

/ (3)

A close examination of the two insulation media under
consideration leads to an important conceptual model, In the
case of microspheres, the bed can be considered to consist of
cubes of a certain size distribution, so that the whole bed is
covered with them. Each of these cubes is representative of
a certain type of packing (e.g., simple cubic, body-centered
cubic, etc.). In the case of fibrous insulation, the medium
consists of needle-shaped fibers suspended in gaseous or solid
matrix, which, in turn, can be regarded to consist of needles .
of gas or solid, both of which are of a certain size distri-
bution so that they will cover the whole fibrous medium, The
significance of this model is evident, In both cases, the
media can be assumed to consist of cells, each of which has a
material property independent of any other cell. This cell
concept results in a remarkable simplification in the analysis
by following an approach devised by Miller!3 in evaluating ,
these three-point correlation functions. Instead of summation
over quantities that are related to the probability of three
points being in different combinations of the phases, summa-
tion now is over terms that are related to the probability
of three points in different cells, thus creating some spec-

jfied simple boundaries.

By pursuing the foregoing procedure, the spatial inte-
grals of the correlation functions are cast in terms of a new:=
factor, which is purely dependent upon the geometry of the
cells, and the evaluation of which is quite simple for the
cell geometries in the two cases considered here, Therefore,
after adopting the foregoing procedure into the analysis, the
following bounds can be established for the three-dimensional
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cell-type models !

F1(Sj,a,G) > (ke/w?;ig) > F;(av,a,a)
1+ 6, (0-1) |
- 2
BRI CobY +6§i?éj:) f];?;ji)(l—Z SV)GI£ 7 (5)

[4(a-1)2(1-6, )5, ] } o

E‘ ﬂi[&a—6v(a-]) TITFaF32 8,-T){a-T)G]

(6)

where 8y is the volume fraction of the material with property
Ky, a = ki/kz with ky > kp or o > 1, and G is the cell geo-
metry of the cells. For three-dimensiona] geometries, G is
1/9 for spherical cells and 1/3 for platelike cells, repre-~
>senting two Timiting cases.

Microsphere Insulation

_Evacﬁated Packed Béd of Microspheres

. The conductance of a packed bed is dependent on the pack-

ing pattern and the applied load. When considering spheres of

_-uniform size, the three basic packings are body-centered cubic
(bec), face-centered cubic (fcc), and simple cubic (sc). These
hree ‘packing structures, along with another type of packing,
amely, simple cubic with.a defect in the structure {scp) rep-
esenting the structural defects in packing behavior, have

been considered in the analysis so as to provide some conven-

t physical modeling for the conduction phenomena in the

packed bed. The thermal conductivities of these basic unit-

11 packing structures are given by Chan and Tien? as

) 2 1/3
Ky = Ky kgLO-OP/ET T 5 5 = 1,2, L, (7)

where Ky.1s a thermal conductivity parameter characteristic
different packing structures, P is the Toading pressure,
nd E'are Poisson's ratio and Young's modulus of the
d.sphere,*respect1Ve1y. Table 1 gives the values of Ky
S3 (a’solid fraction parameter to be introduced later)
he four basic packing structures.
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Table 1 Values of the thermal conductivity and solid
fraction parameters for various types of packing

Packing type K S
Fody-centered cubic 1.96 0.68
Face—centered cubic i 12.89 0.74
Simple cubic 1.3 0.524
Simple cubic with a structural defect 1.21 .0.393

Previous analyses on microspheres4s5 have been based on
the assumption that the packed ped is filled with just one
type of unit-cell packing, which is not very realistic. In
contrast, the present work considers the packed bed to be a
mixture of two different packing stryctures. Two different
approaches are pursued. The first approach is to consider
the bed to consist of only two specific types of packings and
then to find the upper and lower bounds for all possible pair
mixtures of the four basic unit cells considered. The re-
quired thermal conductivities of different types of packings
are obtained from Eq. (7). By designating the two different
packing conductivities as k] and k2’ there follows

2 1/3
"E}EZ = Viz]Kz kS [(T-u )P/E] (8)

Substituting Eq. (8) into Eq. (4) gives the upper and Tower
bounds for the effective thermal conductivity of a packed bed

of microspheres:

where ki is the dimensionless effective thermal conductivity
defined by
* 2 1/3 :
K = ko/kg [(1-45)P/E] (10)

For the three-dimensional cubic cells under consideration,
G = 1/3. In many instances, the solid fraction 8¢ is spec-
ified instead of GV, but they are related as follows: :

8 = 3, S1 + (1-5V)52 (11)
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Fig. 1 Effective thermal conductivity of packed microspheres,

where S7 and Sp are the solid fraction parameters as given in
Table 1. Figure 1 presents the resuits of the dimensionless
- effective thermal conductivity as a function of the solid frac-
tion by mixing randomly any two of the four basic packing
cells. Also shown in the figure are those points obtained
from the simple volume fraction model as well as those from
Nayak and Tien's regular-cell analysis.”/

The second approach, which brings in the main feature of
-the analysis, is accomplished by incorporating the probability
f finding a certain kind of packing over another in the pack-
ed bed of microspheres. By utilizing the experimental results
f Bernal and Mason, 14 which give the probability of occur-
rence of different packings in a packed bed, a computer pro-
am is set up for incorporation of this probability distri-
ution. At"each step, two different unit-cell structures are
hosen according to this probability distribution. Then it is
ssumed that the bed is a random mixture of the chosen pack-
ngs, so that the bounds on the effective conductivity are
tained at the corresponding solid fraction. By numerous
petitions of this process, a new set of bounds is obtained,
s shown in Fig. 2, This result, which shows a band consis-
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Fig. 2 Effective thermal conductivity of packed microspheres

from the random-mixing model.

tent with but narrower than that in Fig. 1, should be a better
representation of the actual situation, since it incorporates
additional features of randomness in the bed.

Unevacuated Packed Bed of Microspheres

Gaseous conduction must be considered in an unevacuated
bed of microspheres. This case, however, can be incorporated
easily into the present analytical result. According to the
analysis of Ogniewicz and Yovanovich, which alse is based on
reqular-cell packings, the thermal conductivity of a unit cell
of microspheres can be expressed in the following form;

2 1/3 _
ky = I<J-[kS + ko IIL(-u")P/E] (12)

where ko is the gas conductivity under continuum conditions at
STP, and I is an integral function that has been evaluated
numerically for various values of the Knudsen number, the ra-
tio of sphere diameter to contact area diameter, and the ratio
of solid to gas conductivity, Following the same procedure
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N

as previously indicated and defining the dimensionless effec-
tive thermal c?nductfvity of an unevaguated bed as
' }2 1/3 1
kye/ Tks * ko TIL(1u")P/E] (13)

*
! !

I
! ¢ :
gives the identical bound as in Eq. (9); '

KKy Fr(8,5056) > kie > KKy Fal8yses6) (14) i

A recent study!® on unevacuated microsphere insulation,
however, showed that Kaganer's modell6 for computing the ef-
fect of an interstitial gas on the heat transfer in packed
beds of granular particles having an internal void structure
provides a better correlation with experimental data for hol-
Tow, thin-walled microspheres. The bounds in this case re-
main the same as given in Eq. (14), but the definition of kije
will be slightly different.

Two-Dimensional Parallel Fibers

In this model, it is assumed that the needle-shaped fi-
bers are all in a parallel arrangement with each other, re-
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Effective thermal conductivity of fibrous insulation

CEFFECTIVE




144 : C. L. TIEN AND K. VAFAI

sulting in a two-dimensional, anisotropic medium with two ef-
fective conductivities in axial and transverse directions.
The effectjve thermal conductivity in the axial direction
(e.g., parallel to the fibers) can be obtained readily from
simple one%dimensiona1 conduction!calcu1ation: 5

1

ke K, 6,8 + (1-8)//a - (15)

where k1 and ko refer to the conductivities of the fiber and
the interstitial material, respectively. For the transverse
conductivity, there is a random distribution of circular fi-
bers with a continuum matrix, which, in turn, can be consid-
ered as circles of medium composing the matrix. Both have a
certain size distribution, so that they will cover the whole
fibrous medium. For this two-dimensional cellular model, the
bounds on the dimensionless effective transverse conductivit¥
are obtained easily by reducing Beran and Miller's results9,13
from three- to two-dimensional space;

ket . 1+ 8 (a-1)
Kk, /s
s, (1-8,) (a-1)7]
1 - Vv \J (]6)
2[T+ 8 (a-T)IT + (a-1)8, F 2(a-T){T-25 )G}]
k 2 -
ﬂ>/& -3 (a—'i)- (]—OL) SV“-SV) ' (}7)
KKy Y 2(T-0)8, + Za + 4(a-1)(25-T)8

where G is 1/4 for circle-shaped cells and 1/2 for lamella-

shaped cells. For the present case of parallel fibers,
G = 1/4. The results of this model are shown in Figs. 3-5 for
different values of the ratio of fiber to interstitial-phase

conductivities.

Three-Dimensional Dispersed Fibers

Here, the medium 1is considered to consist of needle-
shaped fibers suspended randomly in a continuum matrix. It
can be seen that the bounds on the effective conductivity of
such a model are given by Eq. (4}, since the model is basi-
cally a three-dimensional isotropic one. The graphical dis-
play of the bounds so obtained also is given in Figs. 3-5,
The value of G used here is 1/6 for the needle-shaped cells.
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CONDULCTIVITY
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Discussion

* The most important finding of the present study is the
general existence of a well-defined band of effective thermal
‘conductivity values for a particular solid fraction of the
microsphere and fibrous insulation, This indicates the neces-
sity of having additional geometric information about the po-
rous medium other than the solid or volume fraction in order
to characterize better the effective properties, This in-
formation indeed is contained in the general mathematical for-
mulation and, theoretically speaking, can be extracted by car-
ying out more terms in the perturbation series expansion,
hereby introducing the n-point correlation functions. 1,
From ‘the practical viewpoint, however, these functions are
xtremely difficult to evaluate when n is greater than 3.
1so0.is not clear whether this complex operation would gen-
e any relevant geometric parameters that are physically
aningful and measurable. Given more geometric or packing
ation, the bandwidth of the effective value will de-
ease accordingly. If the complex geometric structure is
ibed completely, the problem becomes, of course, a de-

It
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terministic one, giving one unique vaiue of the effective
thermal conductivity. In general, it is not possible to have
such an exact description, but theoretically it is demon-
strated clearly in the 1imit of the close packing {ds = 0.74)
in the microsphere case, where the band converges to a single
point corresponding to the deterministic case of having the

closest packing.

The effect of additional geometric information also is
exhibited in the results of fibrous insulation. In the two-
dimensional model of parallel fibers, by specifying the ori-
entation of fibers in the axial direction and thus introducing .
more geometric information, the bandwidth fis indeed narrower
than that of the corresponding three-dimensional model, as
shown in Figs. 3-5. The concept of orientation also can be
introduced in microspheres by characterizing the orientation .
of contact points for the packed micros?here. The contact .
orientation and the coordination number!? (i.e., the number
of contact points for each sphere} appear to be logical geo-
metric parameters, in addition to the solid fraction; how- -
ever, both are not easily measurable quantities. More studies -
on the adequate geometric characterization of a porous medium .

are needed very much,
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_ No comparison of the present results with experimental

. data is made here because of the lack of data for the effec-

i tive thermal conductigity at one solid fraction but different
packings, as well as gt different solid fractions. Existing

| data normally are obtained for the temperature dependence of

* the effective thermal iconductivity of one particular packing.

The present analytical study does demonstrate what experi-

mental data should be ‘taken and how they should be interpreted.
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