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Analysis of Forced Convection Enhancement in a Channel

Using Porous Blocks

P. C. Huang* and K. Vafait
Ohio State University, Columbus, Ohio 43210

This work presents a detailed investigation of forced convection enhancement in a channel using multiple
emplaced porous blocks. The Brink Forchhei ded Darcy model is used to characterize the flowfield
inside the porous regions in order to account for the inertia effects as well as the viscous effects. Solution of the
coupled governing equations for the porous/fluid composit is obtained using a stream function-vorticity
approach. Important fundamental and practical results have been presented and discussed. These results thor-
oughly document the dependence of the streamline, isotherm, and local Nusselt number distributions on the
governing parameters defining the problem, such as the Reynolds number, Darcy number, Prandtl number,
inertial parameter, and two pertinent geometric parameters. An in-depth discussion of the formation and
variation of the recirculation caused by the porous medium is presented, and the existence’of an optimum porous
matrix is d ated. It is sh that altering some parametric values can have significant and interesting

effects on both the flow pattern as well as heat transfer characteristics.

Nomenclature
dimensionless geometric parameter, W*/H*
dimensionless geometric parameter, D*/W*
spacing between blocks, m
Darcy number, K/L?
function used in expressing inertia terms
height of the porous blocks, m
convective heat transfer coefficient, W/m*K
permeability of the porous medium, m?*
thermal conductivity, W/mK
length of the channel as shown in Fig. 1a, m
length of the channel upstream of the blocks, m
length of the channel downstream of the blocks, m
number of blocks
Nusselt number
Peclet number, u, L/a
Prandtl number, v/a
height of channel
Reynolds number, .. L/v
temperature, K
x-component velocity, m/s
velocity vector, m/s
width of the porous block, m
horizontal coordinate, m
vertical coordinate, m
thermal diffusivity, m?/s i
effective thermal diffusivity, kq/p.c, ,, m*/s
x-direction width of the control volume
y-direction width of the control volume
distance in the x direction between two adjacent
grid points
8y = distance in the y direction between two adjacent
grid points
porosity of the porous medium
dimensionless temperature, (T = T)(T, — T,)
inertial parameter, FLeIVK
dynamic viscosity, kg/ms
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Subscripts

av average

eff effective

fluid

interface

bulk mean
porous

local

wall

condition at inlet

W nmwwnnnd

Sz RT3~

Superscript
* = dimensionless quantity

Introduction

ORCED convection heat transfer in a channel or duct

fully or partially packed with a porous material is of con-
siderable technological interest. This is due to the wide range
of applications such as direct contact heat exchangers, elec-
tronic cooling, heat pipes, etc. It has been demonstrated that
insertion of a high-conductivity porous material in a cooling
passage can have a positive effection convective cooling. Koh
and Colony' performed a numerical analysis of the cooling
effectiveness of a heat exchanger containing a conductive po-
rous medium, while Koh and Stevens? conducted an experi-
mental investigation for the same problem. It was shown that
for the case of a fixed wall temperature the heat flux at the
channel wall can be increased by over three times by using a
porous material in the channel. Rohsenow and Hartnett* pre-
sented a constant Nusselt number for the fully developed
region in a porous medium bounded by two parallel plates,
based on the Darcy flow model. To account for the effect of
a solid boundary, Kaviany* performed a numerical study of
laminar flow through a porous channel bounded by isothermal
plates based on the generalized model developed in Vafai and
Tien.* Poulikakos and Renken® have investigated the effect
of flow inertia, variable porosity, and a solid boundary on the
fluid flow and heat transfer through porous media bounded
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by constant-temperature parallel plates and a circular pipe.
They found that boundary and inertial effects decrease the
Nusselt number where variable porosity effects increase the
Nusselt number.

The above-referenced investigations were based on filling
the entire channel with a porous medium. This method, while
beneficial in augmenting the heat transfer rate, can signifi-
cantly increase the pressure drop inside the channel. Fur-
thermore, the results of those investigations cannot be ex-
tended to parts of other applications such as electronic cooling,
fin configurations, solidification of castings, and geothermal
applications. An important and fundamental problem in heat
transfer augmentation in a channel is related to forced con-
vection through a channel with multiple porous emplaced
blocks. The flow over the fluid region is governed by the
Navier-Stokes equation, and the flow through the fluid-sat-
urated porous medium is governed by a volume-averaged
generalized momentum equation which is referred to as the
Brinkman-Forchheimer-extended Darcy model.* These two
flows are coupled through the interface boundary conditions
at the porous/fluid interface. The interactions of flow and
temperature fields between the porous-saturated region and
the fluid region have a significant influence on the convection
phenomenon in these systems. Several investigations were
devoted to the problem of finding the proper set of boundary
conditions at the interface between a fluid flow in a porous
medium and the adjacent region without a porous medium.
Beavers and Joseph? experimentally reported the mass efflux
of a poiseuille flow over a naturally permeable medium based
on Darcy's law. They found that when a viscous fluid passes
through a porous solid, tangential stress entrains the fluid
below the interface with a velocity which is slightly greater
than that of the fluid in the bulk of the porous medium. Levy
and Sanchez-Palencia® found that when the typical length
scale of the external flow is large compared with the micro-
scopic scale, the velocity field transition at the interface from
the porous media to the free fluid region occurs over a thin
region of the order of the pore scale. They also showed that

depending on the direction of the pressure gradient in the
porous medium, two different kinds of phenomena may ap-
pear at the interface.

Due to the mathematical difficulties in simultaneously solv-
ing the coupled momentum equations for both the porous and
fluid regions, very little work has been done on internal forced
convection on the porous/fluid composite system. Vafai and
Thiyagaraja® have performed an analytical investigation of
fully developed forced convection for three basic types of
interface composites. They obtained analytical solutions for
the velocity and temperature distributions as well as analytical
expression for the Nusselt numbers for all three classes of
interface composites investigated in their work. Poulikakos
and Kazmierczak'" have presented a theoretical study of forced
convection in a channel with a porous region attached at its
wall, based on the Brinkman-extended Darcy model. Some
features of the heat transfer enhancement in a narrow flow
passage was investigated by Ichimiya and Mitsushiro.'"

In the present study, a numerical investigation of forced
convection in a parallel plate channel with porous blocks em-
placed at the bottom wall is presented. The analysis is based
on the use of Brinkman-Forchheimer-extended Darcy model
in the porous media and the Navier-Stokes equation in the
fluid region. The use of the porous medium generally en-
hances the mixing within the fluid region resulting in a higher
heat transfer than that obtained in the corresponding smooth
channel. In the present investigatiop the basic interaction phe-
nomena between the porous substrate and the fluid region
for these types of composite systénis as well as the method-
ology for enhancing the heat transtér rate within the channel
have been analyzed. Furthermore, the effects of various pa-
rameters governing the hydrodynamic and thermal charac-
teristics of the problem are analyzed.

Analysis
A schematic diagram of forced convection enhancement in
a channel using porous blocks is displayed in Fig. 1a. The
fluid enters at ambient temperature T, with a parabolic ve-
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Fig. I Schematic diagram of a) force convection in a parallel plate channel with porous block obstacles and b) grid system for the computatio™

domain.



HSUNG AND VAFAL: ENHANCEMENT IN A CHANNEL 565

locity profile. The plate walls are maintained at constant i i
The flow is assumed to be steady, incompressible and two-
dimensional. In addition, the thermophysical properties of
the fluid and the porous matrix are assumed to be constant,
and the porous medium is considered homogeneous, iso-
tropic, nondeformable, and in local thermodynamic equilib-
rium with the fluid. In this study, the Brinkman-Forchheimer-
extended Darcy model, which accounts for the effects of
inertia as well as friction caused by macroscopic shear,™!? is
used to demonstrate the flow inside the porous region. The
equations governing momentum and energy conservation for
the present problem will be separately written for the porous
and fluid regions in dimensionless forms.
For the porous region

s aEr 1 1
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> alvzl alvz|
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Note that the field variables in the porous region are volume-
averaged quantities as described by Vafai and Tien.® The
approach here is based on Vafai and Tien® in which the shape
of the averaging volume is chosen for physical interpretation
of the relevant averaged quantities. In effect, our averages
will correspond to the line averages of the physical quantities
in the transverse direction. Therefore, our results are valid
(as mentioned in Vafai and Tien®) for a two-dimensional flow.
By choosing a cylindrical volume, one can satisfy the criteria
for selecting three distinctive length scales in a porous media,
ie.,

d<<h<<L

where d is some microscopic characteristic length which is
representative of the distance over which significant variations
in the point velocity takes place, h a characteristic length for
the averaging volume, and L is some macroscopic character-
istic dimension representative of the process under consid-
eration.

For the fluid region

at; a&; 1
y* 2L s 2L _ _—_mire
R ay* Re’,v S @
Vp = —§f (5)
a6, a6,
u;_L+ut,_£=Lv23! (6)

where the operator V* is the Laplacian. The following di-
mensionless variables used in Eqgs. (1-6) are defined as

x y u
Xt == yt ==, e
R R e ()
vt = _u_‘ Iv*| = Vu*? + v*2
U,
u, R U, u, R
Pey = ——, Pe; = ——, Rey = =—
Doqp @y Uenr (8)
u, R
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K FRe v
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RV = L
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¢ u,, Lo

The stream function and vorticity are defined in the usual
way

v av
aeoh e (10)
dv  du
é—g-a (11

The appropriate boundary conditions for the present problem
are

1) atx* = 0,0 < y* < 1 (the inlet)
ut = 6y*(1 = y*),

v, §* = 6(1 — 2y*)

vt =0

=0

Il

2)atx* = L*, 0 <y* <1 (the exit) "

et
v =0
v ag* a6*

=0, 3Z=0, zx=0

3)at0 <x* < L*® y* = 1 (upper plate)

u*=20 vt =0, ¥ =1
&= ay*?’ 6=1

4)at0 < x* < L*, y* = 0 (bottom plate)

=0 =0 V¥=0
e
P 00

The above boundary conditions correspond to a fluid entering
the domain with a fully developed profile, along with the
application of the no-slip condition on the two parallel walls.
At the channel exit, axial diffusion is set equal to zero to
satisfy the closure for the elliptic problem, and u is calculated
to satisfy conservation of mass. The exit boundary conditions
were evaluated very carefully by choosing two different re-
gions corresponding to the physical and computational do-
mains. The location of the exit boundary condition was sys-
tematically moved further downstream until it was ensured
that the exit boundary condition has no detectable effect on
the physical domain. The upper and bottom plates of the
channel are maintained at a constant temperature.

At the porous/fluid interface, the following quantities eval-
uated in both the porous and fluid regions are matched: hor-
izontal and vertical velocities, normal and shear stresses, tem-
perature, pressure, and heat flux. The matching conditions
for the present governing equations can be expressed as

¥y =¥/, £ =&, o0r=2¢0

Based on the above coupled governing equations, boundary

conditions, and the shape of porous/fluid interface, it is seen
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that the present problem is governed by six dimensionless
parameters. These are the Darcy, Reynolds, two Prandtl num-
bers, inertia parameter, and A and B, where

i w* B = D*
Ha' w* (12}
H D w
= = — - —
¢ R’ - R’ W R

To evaluate the effects of the porous material on the heat
transfer rate at the wall, the local Nusselt number is evaluated
as follows:

— hR - k(T — T,) a0
T = T O s

Kot 1 a0

= = 13
kf (L= sm) ay- ¥ ( )
where 6,, = (T,, — T)/AT,. — T,) is the dimensionless form
of T,, defined by .
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Here, the absolute value of the velocity is used as in Kelkar
and Patankar'® so that the regions of recirculating flow are
properly represented. Note that the definition of the Nusselt
number, based on the conductivity of the fluid, permits a
direct comparison between the smooth and blocked channels.

‘Numerical Method

To obtain the solution of the foregoing system of equations,
the region of interest is overlaid with a variable grid system.
Applying the central differencing for the diffusion terms and
a second upwind differencing for the convective terms, the
finite difference forms of the vorticity transport, stream func-
tion, and energy equations were derived by a control-volume
integration of these differential equations over discrete cells
surrounding any given grid point, as shown in Fig. 1b. This
results in a system of equations of the following form:

Ce = Cyby + Cs®s + Ce®p + C Oy + 5¢ (15)

where ® stands for the transport variables, C are coefficients
combining convective and diffusive terms, and 5 is the ap-
propriate source term. The subscripts on C denote the main
grid points surrounded by the four neighboring points denoted
as N, S, E, and W. The finite difference equations for £*,
¥*, and @ obtained in this manner were solved by the ex-
trapolated-Jacobi scheme. This iterative scheme is based on
a double cyclic routine, which translates into a sweep of only
half of the grid points at each iteration step.' The numerical
procedure for solving the finite difference equations is as fol-
lows: 1) overlay the computational domain with a variable
mesh; 2) assign values of Ra, Da, A, A, B, and initial values
for £*. ¥*, u, v, and 6 in Egs. (1-6), and the corresponding
boundary conditions; 3) calculate the new values of £* at each
node by using the finite difference.set of equations for £* as
given by Eq. (15); 4) calculate the new values of ¥* at each
node from Eq. (15) for ¥* by using the values of £* found
from step 3; 5) calculate the new values of the velocity from
w=WV*andv = —W¥?; 6) update new boundary values using
the new nodal values for ¥* and £*;.7) repeat steps 3-6, until
the following convergence criteria is satisfied: .

A

max < 10-* (16)

i

where & stands for £, ¥*, or @ and n denotes the iteration
number; 8) calculate @ by using the finite difference set of
equations for 8 as given by Eq. (15) with the assigned values
of Pr and the values of ¥* obtained from step 7, until the
criterion of convergence for 8 is satisfied.

The interfacial properties play very important roles in the
porous/fluid composite system. This is due to the abrupt change
of thermophysical properties, such as the viscosity, permea-
bility, porosity, and the thermal conductivity, across the in-
terface. These effects on the porous/fluid interface are rep-
resented by the nondimensional parameters Re, Da, A | and
Pr. The harmonic mean formulation recommended by
Patankar'® was used to treat these discontinuous character-
istics at the porous/fluid surface. This ensured the continuity
of the convective and diffusive fluxes across the interface
without requiring the use of an excessively fine grid structure.
For the present case Re, Da, A, and Pr at the interface of a
control volume were found as

2Re. Re, 2Da.,Da
Re, = —<4_  pg = L
Req +:Re, Da. + Da; an
Da, = 2Da qDay : Prm 2ProPr, g
Da.; + Da; Proq + Pr,

Instead of the momentum equations in Egs. (1) and (4), the
following were used across the interface: s
LA |

g L 1t
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Re, ay Da, Re, ox Da, ¥ (lgb)

3 a
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where Eqs. (18a) and (18b) are for the porous side, and Eqs.
(19a) and (19b) are for the Eﬁuid side of the interface. Note
that constant values of Da, and A were used for a specified
porous substrate. In the present work, due to lack of other
information, the effective viscosity of the fluid-saturated po-
rous medium is ‘sét equal to'the fluid;viscosity. It has been
found that this approximation provides a good agreement with
experimental data.'®"? .0 o b Seihe y oy
The vorticity at the wall is evaluated using the linear Taylor
series approximation, that is-~ - ZEBrOE a GE :

G T D)
o T e

where the subscript np denotes the first Teighboring point
next to the boundary and Ay,,, represents the normal distance
from the wall to the point np.
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In this study, the computational domain was chosen to be
larger than the physical domain to eliminate the entrance and
exit effects and to satisfy continuity at the exit. A systematic
set of numerical experiments was performed to ensure that
the use of a fully developed velocity profile for the outflow
‘boundary condition has no detectable effect on the flow so-
lution within the physical domain. That is, the downstream
length beyond the physical domain was determined by trial
and error to ensure that the effects of the outflow boundary
condition were well outside of the physical domain.

A nonuniform grid system with a large concentration of
nodes in regions of steep gradients, such as those close to the
walls and porous blocks, was employed. A grid independence
test showed that there is only a very small difference (less
than 1%) in the streamlines and isotherms among the solu-
tions for 218 x 69,258 x 158, and 300 x 69 grid distributions.
As this difference is small, our computations in this work were
based on a 218 x 69 grid system. These computations, per-
formed on a Cray Y-MP, took about 300-500 CPU seconds
depending upon the different governing parameters.

To validate the numerical scheme used in the present study,
comparisons with two relevant results were made. These com-
parisons were carried out for the problem of hydrodynami-
cally fully developed forced convection in a channel with a
porous medium partially covering the external boundary,"
and external forced convection over a flat plate embedded in
a porous medium (i.e., H* — = and W* — ), representing
the full porous medium case.® The result of these comparisons
(being similar to those presented in Vafai and Kim'®) showed
that the numerical model predicts very accurately the velocity
and temperature fields in a porous/fluid composite system.

Results and Discussion

As discussed earlier, the present problem is governed by
six dimensionless parameters. These are the Darcy, Reynolds,
two Prandtl numbers, inertia parameter, and A and B. In this
section, the effects of these parameters on the flowfield, tem-
perature field, and local Nusselt number distribution will be
examined. The fixed input parameters that were used for all
cases were R = 1, [, = 6, and k_/k, = 1. Note that for
illustrating the flow and temperature fields clearly, only part
of the figures were presented. However, at all times, the much
larger domain was used for numerical calculations and inter-
pretation of the results. Furthermore, in this study the con-
ductivity of the porous media is taken to be equal to that of
fluid in order to concentrate on the effects of geometric and
thermophysical variations. It should be noted that for the sake
of brevity, the main features and characteristics of some of
the results are only discussed and the corresponding figures
are not presented. Figure 2 displays the effects of rectangular
porous blocks on the fluid flow and convection heat transfer
for a case where the Reynolds number is 750, Darcy number
is 1 x 10-%, inertia parameter is 0.35, Prandtl number is 0.7,
the dimensionless height and width of the porous blocks are
0.25 and 1.0, respectively, and the spacing between the porous
block is 1.

It should be noted that in the energy equation the transverse
thermal dispersion has been embedded in the effective ther-
mal conductivity term. In other words, the effective thermal
conductivity in the energy equation is a combination of stag-
nant and dispersion transport mechanisms. Hence, the effec-
tive thermal conductivity can be decomposed into two parts;
one stands for the stagnant thermal conductivity of the fluid-
saturated porous medium, and the other incorporates the ad-
ditional thermal transport due to the transverse mixing.'

Several interesting features are observed from these plots.
The streamlines are considerably distorted in the channel due
to the presence of the porous block array (Fig. 2a). The ve-
locity distribution is parabolic at both the entrance and exit
of the two plates. However, this distribution changes rapidly
as the fluid encounters the porous block array, especially at
the corners of block. As seen in Fig. 2. the blocks have a
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more prominent effect on the flow conditions downstream
compared to the conditions upstream of the blocks. Another
interesting feature is the formation of relatively large vortices
behind each porous block separated by a small recirculation
region rotating in a direction opposite to that of the larger
vortices. The height of these recirculation regions is about
twice the height of the porous blocks. A weak eddy is gen-
erated on the smooth upper plate surface corresponding to
the reattached region on the bottom plate. The complicated
flowfield within the channel is the result of four interrelated
effects: 1) a penetrating effect pertaining to the porous me-
dium, 2) a blowing effect caused by porous media displacing
the fluid from the porous region into the fluid region, 3) a
suction effect caused by the pressure drop behind the porous
blocks resulting in a downward flow, 4) and the effect of
boundary-layer separation. Therefore, the characteristic of
the porous substrate plays a significant role on the flow and
temperature fields. It should be noted that the presence of
porous cavities in addition to the porous blocks creates various
interesting effects for controlling the flowfield while aug-
menting the heat transfer. For example, the interactions be-
tween vortex flow inside the cavity and the external flow play
a significant role in affecting the temperature field.>

The temperature field in the channel is displayed in Fig.
2c. As expected, the thickness of both upper and lower ther-
mal boundary layers increases along the length of heated plates
and becomes significantly distorted wifhin and around the
porous-block region. Also, the symmetric character of the
temperature field re-establishes itself far Enough downstream
of the porous block region. The variation of local Nusselt
number corresponding to the above temperature fields is il-
lustrated in Fig. 2d. A periodic variation of Nusselt number
on the bottom plate is observed starting before the leading
edge of porous block array (from x* = 6). The peak in each
cycle occurs at an x value corresponding to the center of the
larger vortex behind the porous block, while the minimum in
each cycle occurs at around the location where the larger and
the smaller vortices behind each block meet. The heat transfer
in the rear part of each porous block is higher due to increased
convection aided by higher velocities in the recirculation eddy.
Whereas the heat transfer at around the location, where the
larger and the smaller vortices meet, is lower due to an almost
stagnant flowfield within that region. Comparison of local
Nusselt number distributions for a channel with and without
porous blocks shows that the recirculation flow caused by
porous blocks can augment significantly the heat transfer rate.

Effect of the Darcy Number

The Darcy number is directly related to the permeability
of the porous medium. The effect of variations in the Darcy
number is depicted in Figs. 3 and 4 for Re = 750, A = 0.35,
Pr=07A=4andB =1,forDa =1 x 10-%,5 x 10°%,
and 9 x 10-*. Comparison of the streamlines in Fig. 3 shows
that the distortion of streamlines and the size of recirculation
zones behind the porous blocks becomes less pronounced as
the Darcy number increases. This i turn accelerates the core
flow to satisfy the mass continuity and confines the devel-
opment of recirculation zones in the transverse direction. For
smaller Darcy numbers, the recirculation cell occupies only
the space between the porous blocks and the flow penetration
into the porous block array is significantly reduced. In the
limit, if the Darcy number is reduced to a value approaching
zero, there will be no streamlines penetrating the porous block
and the flow passes over the solid block array. As the value
of the Darcy number is reduced, the distortion of the iso-
therms becomes less pronounced. This is the direct result of the
discussed flowfield. The variation of local Nusselt number for
various Darcy numbers is displayed in Fig. 4. It is seen that the
Darcy number has a significant impact on the local Nusselt
number distribution. Here there is an interesting phenomenon
for the overall trend in the Nusselt number distribution. There
exists an optimum Darcy number corresponding to the largest
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Fig. 2
B =1, H* = 0.25: a) streamlines, b} velocity distribution, c) isotherms,

values of the Nusselt number distribution, Below and above this
optimum value the peak values of the Nusselt number drop off.
This is the result of three competing effects. These are the flow
through the porous blocks, the blowing effect, and the suction
effect caused by the porous blocks.

Effect of Reynolds Number

Figures 5 to 6 show the streamlines and Nussclt number
distribution for Da = 1 x 10 5, A = 035, Pr =07, A =
4. and B = 1, with Re = 750, 1200, and 1500, respectively.
It can be seen from Fig. S that increasing the Reynolds number
from 750 to 1200 increases the distortion level in the core

and d) local Nusselt number distribution.

flow streamlines. As the Reynolds number increases, the larger
vortex behind each block diminishes and ultimately vanishes.
At the same time the size of the smaller vortex ahead of cach
block grows, occupying most of the porous block. For large!
Reynolds numbers (>1200), a large recirculation region 1>
formed behind the last porous block. The reason tof this ™
that at these larger Reynolds numbers a very sharp velocity
gradient occurs at the right top corner of the last porous him‘k;
which delays the reattachment of the core flow to the botton
plate. As expected, the temperature fields corresponding :Jl:
different Reynolds numbers show that at higher Reyno!

numbers the extent of distortion for isotherms increises: he
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Fig. 3 Effects of the Darcy number on streamlines for flow in a parallel plate channel with porous block obstacles for Re = 750, A = 0.35,
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“ Tt % T I 5 1 & T 3 Inertial Effects
3 g‘.i;:‘;o“ﬁ"“’““‘u“h The effect of an increase or decrease in the inertial param-
35 |- | .+, 3:Da=5x10° = eter is shown in Figs. 7 and 8 for Re = 1500, Da = 1 x 10°%,
A4 A 4:Da=9x10" Pr=0.7,A =4,and B = 1, for A = 0.35, 21, and 35. The
e b 1ono4 S:De=Ixi0 | flowfields displayed in Fig. 7 reveal that as the inertial pa-
oL :“ rameter increases, the vortex behind each block gradually
e 4oy grows inside the interblock spacing. This is due to the larger
25 |- (T - bulk frictional resistance that the flow encounters at larger
RET R values of the inertial parameter. This in turn causes a larger
s 29 L R ! a blowing effect through porous blocks, which displaces the
# RO fluid deeper into the core flow, and creates a larger recircu-
G it \ lation in the right top corner of porous blocks after encoun-
15 Pt e tering the primary flowfield. As expected, the distortion in
Ve R the isotherms becomes pronounced as the inertial parameter
10 N R i) i increases due to the increase in the size of the vortices behind
i :: ! the porous blocks. Again, this is the direct result of larger
bl 3,:\\ blowing effect for a larger inertial parameter. Figure 8 shows
5 | A A, l__ N3 - the variation of Nu, with inertial parameter. In general, as
W) _.' 5" the inertial parameter increases, the peak value of Nu, in-
4 R B SO, creases. This is due to the larger fluid mixing caused by a

| e =
0 2 4 6 B 10 12 14 18 18 20 22 24 26

X
Fig. 4 Effects of the Darcy number on local Nusselt number distri-
bution for flow in a parallel plate channel with porous block obstacles
for Re = 750, A = 0.35, Pr = 0.7, ko/k; = 1.0, A = 4, B = 1,
H* = 0.25.

effect of the Reynolds number on the local Nusselt number
distribution is depicted in Fig. 6. It shows that both peak and
trough values of Nu, increase with an increase in the Reynolds
number. The peak values of the Nusselt numbers correspond
to the reattachment regions of the core flow to the external
boundary behind each porous block, which increases the heat
transfer by convection. It should be noted that a high rate of
Increase in the overall rate of heat transfer from the channel
into the flow can be attained by using the porous blacks.

larger recirculation zone for larger values of the inertial pa-
rameter. 1

Prandtl Number Effects

In order to determine the effect of the Prandtl number on
the flow and temperature fields, three different Prandtl num-
bers were compared such that they will cover a wide range
of thermophysical properties. These comparisons, shown in
Fig. 9, were performed for Re = 750, Da = 1 x 10°%, A =
0.35, A = 4, and B = 1, for three different fluids with Pr =
0.7 (air). Pr = 7 (water), and Pr = 100 (typical value for
oil), respectively. Since Re, Da, and A are fixed, the variation
of Prandt] number has no effect on the flowfield, and there-
fore, the flowficld is the same for all Prandtl numbers. This
flowfield is shown in Fig. 2a. As expected, increasing the
Prandtl number decreases the thickness of the thermal bound-
ary layer. As scen in Fig. 9, the local Nusselt number and its
fluctuations increase with an increase in the Prandtl number.
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Note that utilizing a combination of Re and Pralone (i.e., Pe
= RePr) is insufficient for depicting the temperature field or
describing Nusselt number correlations.

Effect of A and B

A and B are related to the porous block’s aspect ratio and
pitch. The effect of aspect ratio on the flow and temperature
fields were studied for Re = 750, Da =1 x 1075 A = 0.35,
Pr = 0.7, and B = 1. The streamlines for A = 4 and A =

eynoklsaumberwmmﬁneaforﬂowlnapa_nlldphledunndwlthpomushhdio

14 16 18 20 2 24 26
f
x G
¢hés for Da = 1 x 107°%,

8 are represented on Fig. 10. As can be seen in Fig. 10, when
the value of A is increased from 4 to 8, the distortions for
streamlines and isotherms become less pronounced. In ad-
dition, the size of recirculation and interaction between suc-
cessive porous blocks reduce. This is duie to the relative de-
crease in the height of the porous blocks, which in turn offers
a lower degree of obstruction to the flow for larger values
of A.

The effect of pitch on flow and temperature fields was
investigated for a case where Re = 750, Da = 1 % 10-5, A
=035 Pr=07,and A = 4, for B =3,2,and 1. For larger
values of the pitch parameter, the recirculation zones caused
by the porous blocks are relatively independent of each other.
At the same time, several eddies are generated on the upper
smooth plate due to the core flow attaching to the bottom
plate between the blocks. With decreasing pitch up to B =
2. recirculation zones behind the first and second porous blocks
vanish. Comparison of the temperature fields shows that as
the pitch decreases from B = 3to B = 2, the isotherms are
more distorted. However, as B further decreases to 1, the
distortion of the isotherms is less pronounced.

Effects of the Porous Blocks on the Pressure Drop

In the stream function-vorticity formulation, the pressure
field is eliminated in obtaining the solution. However, the
pressure field can be recovered from the converged stream
function and vorticity fields. This is done by integrating the
pressure gradient along the upper plate wall. The pressure
gradient is derived from the momentum equation utilizing the
impermeable boundary conditions on the solid wall. Since u*
— 0and v* = 0 on the upper plate, the pressure gradient on
that surface casted in dimensionless form can be presented as

1 3¢t

- 20
Re ay* @

¥l -
ax* | . B

ve=1

where pressure p* is nondimensionalized with respect 10
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Fig. 7 Influence of the inertial parameter on streamlines for flow in a parallel plate channel with porous block obstacles for Re = 1500, Da =

1% 10°5,4A =4,B=1,H*=0.25.
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Fig. 8 Influence of the inertial parameter on local Nusselt number
distribution for flow in a parallel plate channel with porous block
obstacles for Re = 1500, Da = 1 X 1075, Pr = 0.7, kqlk, = 1.0,
A=4,B=1,H* =025

pu?>. The total pressure drop along the upper plate wall is

then obtained from
L *
dx* = J — iag dx*
0 Re ay* |...,

(21)

PL—Pi _ J'"'aﬁi
Ll

pull 1ooxt

where P, refers to the inlet pressure condition.
Figure 11 shows the effect of the Reynolds number on the
pressure distribution along the upper plate wall for a channel
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Fig. 9 Prandtl number effects on local Nusselt number distribution
for flow in a parallel plate channel with porous block obstacles for
Re = 750,Da = 1 X 1075 A = 0.35, kolk, = 1.0, A = 4,B=1,
H* = 0.25.

with and without the porous blocks. It can be seen that the
porous block array causes an increase in the total pressure
drop. The reason is that as the flow approaches the smaller
passage formed by the porous block and the upper surface of
the channel, the fluid starts to accelerate, resulting in an in-
crease in the pressure drop. Pressure recovery behind each
porous block is not complete due to pressure loss in the re-
circulation zones. Note that the linear feature of the curve at
a downstream position indicates a seemingly fully developed
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Fig. 11 Effects of the Reynolds number on the pressure drop along
the upper plate for Da = 1 X 105, A = 0.35, 4 = 4,8 = 1,
H* = 0.25.
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Fig. 12 Influence of the inertial parameter on the préssure drop along
the upper plate for Re = 1500, Da = 1 X 105 A = 4, B = 1,
H* = 0.25. o :

character. For thé case without the porous blocks (sm&oth
channel) the fully developed velocity profile is used, that is

= - (22)

=1

ap* » 1 a%u®
...~ Rep”

The pressure drop for the smooth channel will actually be
more than what is predicted by the above equation due to
entry length effect. The inverse proportionality of the pressure
drop and the Reynolds number for a smooth channel can be

.18, +20 - 22 24 26

: X o y
parameter A on streamline and isotherms for flow in a paraliel plate channel:with porous block obstacles for
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Fig. 13 Effeﬂsofthcmrcynnmhcrmﬂwpmudrwamun
upper plate for Re = 750, A = 0.35,A=4,B = 1, H* = 0.25.

observed in Fig. 11. As expected, for the smooth channel the
dimensional pressure drop increases with an increase in the
Reynolds number. However, for the channel with porous ob-
stacles, the dimensional pressure drop is larger for Re = 750
than for Re = 1200. This is due to the absence of the large
recirculation region formed behind the last porous block for
Re = 1200, resulting in a smaller pressure loss. This inter-
esting phenomena clearly shows that-the porous' blocks can
be optimized for different applications. bo- 7

Pressure drop increases with the inertial number, as shown
in Fig. 12. This is due to the fact that the rate of pressuré
drop increases across the larger recirculation zoes. In ad-
dition, the larger eddy on the upper plate delays the pressure
recovery behind the last porous block, The influence of Darcy
number on the magnitude of the pressure drop along the
upper plate is displayed irf Fig. 13."It can be seen that the
computed pressure distribution becomes more distorted aaoss
the. porous block array for lower Darcy number. This is due
to_stronger vorticity gradients’ which. exist for -lower Darcy
numbers. It should be noted that the Prandtl number has no
effect on the flowfield or. the pressure:drop distribution along
the upper plate. :

Conclusions

A detailed investigation of forced convection augmental
in a channel using multiple emplaced porous blocks has beel
presented. The Brinkman-Forchheimer-extended Darcy MoT-
was used for the porous media. The rectangular porous block:
change the incoming parabolic velocity field oonsidcrabh'_
resulting in the formation of vortices penetrating these porow
blocks. These vortices which can be controlled by alterini

jon
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some governing parametric values have significant effects on
the heat transfer characteristics. The effects of the Reynolds
numbers, Darcy numbers, inertial parameters, Prandtl num-
bers, and geometric parameters on forced convection en-
hancement in a channel using multiple emplaced porous blocks
have been analyzed in detail, and the existence of an optimum
porous matrix is demonstrated. Comparison of the local Nus-
selt number distributions between the channel with and with-
out porous blocks clearly shows that significant heat transfer
augmentation can be achieved through the emplacement of
porous blocks.
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