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Nomenclature
Cy = friction coefficient, Eq. (22)
Cr = total friction coefficient, Eq. (23)
¢,y = fluid heat capacity, Ws kg™  K~!
Da; = Darcy number = K/L?
F = a function used in expressing inertia terms
H = thickness of the porous medium, m
k = thermal conductivity, Wm™' K~!
K = permeability of the porous medium, m?
L = length of the external boundary as shown in Fig.
1(@), m
P = pressure, Pa
r = ratio of x-component interfacial velocity to free-
stream velocity = u;/u,,
Pr = Prandtl number = v/a
Re; = Reynolds number = w,L/v
T = temperature, K
u = x-component velocity, ms™'
v = y-component velocity, ms™"
x = horizontal coordinate, m
»y = vertical coordinate, m
« = thermal diffusivity, m% ™"
ay = effective thermal diffusivity= kex/psC, s m’s™"
& = boundary-layer thickness, m
&, = thermal boundary-layer thickness, m
e = porosity of the porous medium
A, = inertial parameter = FL ¢//K
p = dynamic viscosity, kgm ~'s™"
v = kinematic viscosity, m% ™"
p = fluid density, kgm™>
7w = wall shear stress, Nm™?
Superscripts
~ = dimensionless quantity
Subscripts
- eff = effective
f = fluid
I = interface
P = porous
t = thermal
w = condition at the wall
x = local
o = condition at infinity
Introduction

During the past decade there has been a renewed research
interest in fluid flow and heat transfer through porous media
due to its relevance in various applications such as drying

'Department of Mechanical Engineering, The Ohio State University, Colum-
bus, OH 43210.

*Professor, Fellow ASME.

Contributed by the Heat Transfer Division of THE AMERICAN SOCIETY OF
MEcHANICAL ENGINEERS. Manuscript received by the Heat Transfer Division
September 1992; revision received September 1993, Keywords: Forced Convec-
tion, Materials Processing and Manufacturing Processes, Porous Media. As-
sociate Technical Editor: C. E. Hickox, Jr.

processes, thermal insulation, direct contact heat exchangers,
heat pipes, filtration, etc. Comprehensive reviews of the ex-
isting studies on these topics can be found in Cheng (1978)
and Tien and Vafai (1989).

An important problem related to convection through porous
media is flow and heat transfer through composite porous
systems. The convection phenomenon in these systems is usu-
ally affected by the temperature and flow field interactions in
the porous space and the open space. This type of composite
system is encountered in many applications, such as some
solidification problems, crude oil extraction, thermal insula-
tion, and some geophysical systems. Due to the mathematical
difficulties in simultaneously solving the coupled momentum
equations for both porous and fluid regions, it is usually as-
sumed that there is only one fluid-saturated porous region (i.e.,
there is no fluid region and interfacial surface) and the flow
is through this infinitely extended uniform medium. Thus the
interaction between the porous-saturated region and the fluid
region did not form a part of most of these studies. In addition,
most of the existing studies deal primarily with the mathe-
matical formulations in the porous medium based on the use
of Darcy’s law, which neglects the effects of a solid boundary
and inertial forces. These assumptions will easily break down
since in most applications the porous medium is bounded and
the fluid velocity is high.

Inertial and boundary effects on forced convection along a
flat plate embedded in a porous medium were studied by Vafai
and Tien (1981, 1982), and Vafai et al. (1985). Among these
studies Vafai and Tien (1981) treated a fluid-saturated porous
medium as a continuum, integrated the momentum equation
over a local control volume, and derived a volume-averaged
momentum equation, which included the flow inertia as well
as the boundary effects. There have been few investigations
related to porous/fluid composite systems. Poulikakos (1986)
presented a detailed numerical study of the buoyancy-driven
flow instability for a fluid layer extending over a porous sub-
strate in a cavity heated from the bottom. Another related
problem is that of Poulikakos and Kazmierczak (1987). In that
work a fully developed forced convection in a channel that is
partially filled with a porous matrix was investigated and the
existence of a critical thickness of the porous layer at which
the value of Nusselt number reaches a minimum was dem-
onstrated. Kaviany (1987), Beckermann and Viskanta (1987),
and Nakayama et al. (1990) evoked the boundary layer ap-
proximations and solved the generalized momentum equation
presented by Vafai and Tien (1981) to investigate the same
flow configuration. Vafai and Kim (1990) performed a nu-
merical analysis of forced convection over a porous/fluid com-
posite system, which consisted of a thin porous substrate
attached to the surface of the flat plate.

The primary objective of this study is to present an analytical
solution for forced convection boundary layer flow and heat
transfer through a composite porous/fluid system and thereby
provide a comprehensive yet extremely fast alternative as well
as a comparative base for numerical solutions addressing these
type of interfacial transport. The details of the interaction
phenomena occurring in the porous medium and the fluid layer
are systematically analyzed, revealing the effects of various
parameters governing the physics of the problem under con-
sideration. The present analysis drastically reduces typical CPU
times for the interfacial simulations presented by Vafai and
Kim (1990). It should be noted that the configuration consid-
ered in this work is quite generic and forms an important and
fundamental geometry for a variety of applications.

Theory

The flow configuration and the coordinate system for this
problem are shown in Fig. 1(a). In this study, we are assuming
that the flow is steady, two dimensional, and that the boundary
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layer approximations hold (this was established by Vafai and
Kim, 1990). The conservation equations, which include the
boundary and inertiai effects, in the porous region can then
be written as (Vafai and Tien, 1981):
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where all the variables and parameters are defined in the no-
menclature section. Note that variables u, v, and T are volume-
averaged quantities. Since at a sufficiently large distance from
the wall the flow field is uniform, the free-stream axial pressure
gradient in the porous region required for maintaining the x-
component interfacial velocity u; can be expressed as

.1 dP Veir Fe du;

-y -y

pdxp K | K dx
Inserting Eq. (4) into Eq. (2), the momentum equation becomes
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In the fluid region, the conservation equations for mass, mo-
mentum, and energy are
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The boundary conditions are

lasswmal ol Uanal Tommaln=

x<0: u=dw, P=P, )
x>0, y=0: u=v=0 (10)
x>0, y—o u=u,, P=P. (11)

This implies that the free-stream flow field is not affected by
the presence of the porous media. This was found to be a very
good assumption based on the analysis presented by Vafai and
Kim (1990). The matching conditions at the interface of the
porous/fluid system are
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It should be noted that here we are not trying to resolve a
philosophical and complex question with respect to the physical
nature of the interface. In reality, a fluid-fluid or porous-
fluid interface is more complicated than what has been modeled
by investigators both in porous-fluid and fluid-fluid interface
modeling. Here we have adopted the traditional mathematical
idealization used for both fluid-fluid or porous-fluid inter-
faces, i.e., representing the interface by a singular surface.

Analysis

An integral analysis is applied to three different regions: the
porous boundary layer region, the fluid boundary layer within
the porous substrate, and the fluid boundary layer outside of
the porous substrate as shown in Fig. 1(b).

Integral Momentum Equation for the Porous Boundary
Layer. Following the Karman-Pohlhausen integral method,
the parabolic velocity distribution is described as

Up
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where 85 is the thickness of the momentum boundary layer in
the porous region. After a lengthy analysis the integral mo-
mentum equation in dimensionless form for the porous region
is derived as

(13)
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This equation is subject to the following initial condition given
by 85(0) = 0, A(0) = 0. It should be noted that x; = xp.
However, we have used separate notations for x; and xp for
the sake of consistency.

Integral Momentum Equation for the Fluid Boundary Layer
Within the Porous Substrate. A lengthy integral analysis for
the control volume 2 shown in Fig. 1(b) leads to the momentum
integral equation for that region
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where 7; is the shear stress in the porous/fluid interface and
ép and &; are the thicknesses of porous and fluid momentum
boundary layers, respectively. Assuming the following para-
bolic velocity distribution for the fluid boundary layer:
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where the subscript f refers to fluid and r = u;/u... Substituting
Eq. (16) into Eq. (15) and replacing 7; by »(du;/3yy), -0, the
derived integral momentum equation in dimensionless form
becomes

(16)
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This equation is subject to 8x(0) = 0, &,(0) = 0, r(0) = 0.

Integral Momentum Equation for the Fluid Boundary Layer
Outside of the Porous Substrate. A similar procedure for the
control volume 3 in Fig. 1(b), which incorporates the inter-
facial boundary conditions, leads to the integral momentum
equation for the interfacial region
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Substituting the velocity distributions for both porous and fluid
boundary layers into Eq. (19) gives the dimensionless form of
the integral momentum equation
200-r) (H-3p)r
Re;_é; Re,Da; a9
This equation is subject to 5(0) = 0, 3,(0) = 0, r(0) = 0.
Integral Energy Equation. Since only one thermal bound-
ary layer was observed in the forced convection through the
porous/fluid composite system under consideration (Vafai and
Kim, 1991), in this study the control volume 1 in Fig. 1() is
used to derive the integral energy equation, which depends on
the relative values of §p and &;. Performing an energy balance
over control volume 1 and using the following parabolic tem-
perature distribution:
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the integral energy equation in dimensionless form is obtained

after a very lengthy analysis for three different possible con-
ditions as
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Fig. 2 (a) Velocity and (b) p distribution along the flat plate

at three different locations, x = 0.2, 0.5, and 0.8, for Re; = 3 x 10% A,
= 0.35,Da, = 8 x 10°% Pr = 0.7 kylk, = 1, H/L = 0.02
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This equation is subject to 3p(0) = 0, §,(0) = 0, /0) = 0.

Discussion of Results and Conclusions

The combinations of Egs. (15), (17), (19), and (21) form a
set of four nonlinear simultaneous ordinary differential equa-
tions for the four unknowns ép, &, &, and r. The fourth-order
Runge-Kutta method is applied to solve these equations.

As discussed earlier, the present analysis is extremely effec-
tive and expedient in showing the physics of the interfacial
transport. In what follows, the solutions obtained by integral
analysis are examined and compared with the velocity and
temperature distributions obtained by Vafai and Kim (1990).
Figure 2 shows how the boundary layer thickness, the velocity
and temperature distributions are affected by the presence of
a porous matrix. The results in Fig. 2 are presented for Reyn-
olds number of Re; = 3 x 10°, Darcy number Da; = 8 x
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107, inertial number A, = 0.35, Prandtl number Pr = 0.7,
effective conductivity ratio k./k; = 1, and the dimensionless
thickness of the porous slab of H = 0.02. As expected, there
are two distinct momentum boundary layers: one in the porous
region and the other one in the fluid region. Inside the porous
region as the transverse coordinate increases, the velocity pro-
file is shown to increase from zero to a constant value, which
is maintained until the outer boundary layer appears. Once it
crosses the porous/fluid interface, it goes through a smooth
transition and approaches a free-stream value in the fluid re-
101M.
g As expected, the momentum boundary layers in the porous
medium as well as in the fluid region grow in the streamwise
direction. Consequently, the magnitude of the interfacial ve-
locity decreases to adapt to this growth. Figure 2(b) shows the
temperature distribution along the flat plate at three different
locations. The values of the thickness of the thermal boundary
layer obtained by integral method are larger than those ob-
tained by numerical method. This is due to the approximate
expressions used for the velocity and temperature profiles in
the integral analysis. Figure 3 compares the results of the nu-
merical method and the integral method in the streamwise
direction for the interfacial velocity. The results show a re-
markably good agreement between the integral analysis and
the full numerical solution considering the complexity and the
much larger CPU requirements for the numerical simulations.
It should be noted that the type of agreements found in Figs.
2(a), 2(b), and 3 are typical for a wide range of pertinent
parameters but are not presented here for the sake of brevity.
The configuration considered in this work is quite generic
and forms an important and fundamental geometry for a va-
riety of applications. The results given in this work present a
comprehensive yet easy comparative base for numerical so-
lutions addressing this type of interfacial transport. The present
analysis provides a rather accurate simulation of the interfacial
transport while drastically reducing previously reported com-
putational times by Vafai and Kim (1990) for this type of
simulations.
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Perturbation Solution for Laminar
Convective Heat Transfer in a Helix
Pipe

G. Yang' and M. A. Ebadian'”?

Introduction

Coiled pipes are used extensively in many industries. A gen-
eral study of flow and heat transfer in the toroidal pipe (the
coiled pipe with negligible pitch) has been reviewed by Berger
et al. (1983) and Shah and Joshi (1987). It has long been
recognized that the pitch of the coiled pipe will create an
additional rotational force known as torsion. In a coiled pipe
with considerable pitch, torsion will distort the symmetric loops
of the secondary flow and twist the axial velocity contours
(Wang, 1981; Germano, 1989; Kao, 1987; Tuttle, 1990). To
distinguish, coiled pipes with a substantial pitch are defined
as helicoidal pipes. Although numerous studies have been con-
ducted on the toroidal pipe, a literature survey indicates that
only a few papers have been published to study convection
heat transfer in the helicoidal pipe (Manlapaz and Churchill,
1981; Futagami and Aoyama, 1988, In these papers, the overall
heat transfer behavior has been studied by simplifying the
governing equations. However, none have discussed the effects
of torsion on the temperature distribution and peripheral heat
transfer rate in the helicoidal pipe, which is very important
information for the effective design of the compact heat ex-
changer and combustor. The purpose of this note is to sum-
marize the analytical results of both thermally and
hydrodynamically fully developed convective heat transfer in

a helicoidal pipe subject to the boundary condition.
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